分享:
分享到微信朋友圈
X
特别关注
MRI功能成像及定量成像技术在宫颈癌诊疗中的应用述评
张钦和 刘爱连

Cite this article as: ZHANG Q H, LIU A L. Review on the application of MRI functional and quantitative imaging techniques in the diagnosis and treatment of cervical cancer[J]. Chin J Magn Reson Imaging, 2024, 15(8): 1-11, 24.本文引用格式:张钦和, 刘爱连. MRI功能成像及定量成像技术在宫颈癌诊疗中的应用述评[J]. 磁共振成像, 2024, 15(8): 1-11, 24. DOI:10.12015/issn.1674-8034.2024.08.001.


[摘要] 宫颈癌(cervical cancer, CC)是我国女性癌症中第五大常见癌症,且发病有年轻化的趋势,严重威胁女性的生命健康。不同分期及风险者治疗方案不尽相同,随着保育手术普及,对术前精准分期和风险评估提出了更高的要求。MRI是CC诊断、分期和疗效评估的重要方法。但MRI常规序列对CC的诊断及评估受限于主观经验,且缺乏客观定量,准确性欠佳。MRI功能成像及定量成像等新技术,能提供血流动力学改变、组织微观结构的变化、肿瘤乏氧环境以及细胞增殖和蛋白代谢等多维度的精准定量信息,用于CC术前精准诊断和风险评估,为全面了解肿瘤的病理生理、代谢等提供可视化依据。借助人工智能技术挖掘影像大数据,有助于解决临床难题。本文将针对CC分期、疗效及是否复发评估等临床难题,综述MRI功能成像及定量成像在CC诊疗中的应用进展,以推动其临床应用,提升诊疗水平。
[Abstract] Cervical cancer (CC) is the fifth most common cancer among women in our country, and the incidence is tending to be younger, which seriously threatens the life and health of women. The treatment plans for different stages and risks are not the same, and with the popularization of fertility preserving surgical treatment, higher requirements are placed on accurate preoperative staging and risk assessment. Magnetic resonance imaging (MRI) is an important method for the diagnosis, staging and efficacy evaluation of CC. However, the diagnosis and evaluation of CC by conventional MRI sequences are limited by subjective experience and lack of objective quantification, resulting in poor accuracy. New technologies, such as MRI functional imaging and quantitative imaging, can provide accurate quantitative information in multiple dimensions, including hemodynamic changes, varies in tissue microstructure, tumor hypoxia environment, cell proliferation and protein metabolism, which can be used for accurate preoperative diagnosis and risk assessment of CC and provide a visual basis for the comprehensive understanding of the pathophysiology and metabolism of tumors. Mining big imaging data by artificial intelligence can help solve clinical problems. This article will review the application progress of MRI functional imaging and quantitative imaging in the diagnosis and treatment of CC, aiming at clinical problems such as the staging, efficacy and recurrence assessment of CC, so as to promote its clinical application and improve the level of diagnosis and treatment.
[关键词] 宫颈癌;磁共振成像;病理特征;分子病理;疗效;预后;影像组学;人工智能;深度学习;精准医疗
[Keywords] cervical cancer;magnetic resonance imaging;pathological features;molecular pathology;efficacy;prognosis;radiomics;artificial intelligence;deep learning;precision medicine

张钦和    刘爱连 *  

大连医科大学附属第一医院放射科,大连 116011

通信作者:刘爱连,E-mail:cjr.liuailian@vip.163.com

作者贡献声明:刘爱连设计本研究的方案,对稿件重要内容进行了修改,获得了大连医科大学附属第一医院院内基金项目资助;张钦和起草和撰写稿件,获取、分析和解释本综述的数据及文献;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


        
        刘爱连,女,医学博士,主任医师、教授、博士生导师,大连医科大学附属第一医院教研室主任、放射科主任。长期从事腹部CT/MR影像诊断及医学影像人工智能研究。现兼任中华医学会放射学分会常务委员、腹部学组副组长、科普工作组组长,中国医师协会放射医师分会常委、泌尿生殖学组组长,中国女医师协会医学影像专业委员会副主任委员,中国非公立医疗机构协会放射专业委员会副主任委员,辽宁省医学会分子影像学分会副主任委员,大连市医学影像质量控制中心主任委员,辽宁省超极化磁共振工程专业技术创新中心主任,大连市医学影像人工智能技术创新中心主任等。主持各级课题10余项(其中国家自然科学基金2项),先后获华夏医学科技奖(三等奖)、辽宁省科技进步奖(二、三等奖)及大连市科技进步奖(三等奖)5项。以第一作者或通讯作者发表学术论文300余篇,其中SCI期刊收录64篇,参编专家共识及指南11个,主编、副主编及参编教材/医学专著13部,获国家发明专利5项,授权软件著作权2项。获第二届“中国最美女医师”“辽宁省优秀教师”、第三届“辽宁名医”称号。担任《中华放射学杂志》编委、《中国临床医学影像杂志》副主编、《中国医学影像学杂志》常务编委,《临床放射学杂志》《中国医学影像技术》《磁共振成像》等杂志编委,《Radiology》杂志审稿专家等。

基金项目: 大连医科大学附属第一医院院内基金项目 2021HZ015
收稿日期:2024-07-22
接受日期:2024-08-14
中图分类号:R445.2  R737.33 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.08.001
本文引用格式:张钦和, 刘爱连. MRI功能成像及定量成像技术在宫颈癌诊疗中的应用述评[J]. 磁共振成像, 2024, 15(8): 1-11, 24. DOI:10.12015/issn.1674-8034.2024.08.001.

0 引言

       宫颈癌(cervical cancer, CC)是我国女性癌症中第五大常见癌症[1, 2]。不同分期及风险者治疗方案不尽相同,随着保育手术普及,对术前精准分期和风险评估提出了更高要求。

       MRI已经成为CC检出、定性诊断、分期和疗效评估的重要方法[3, 4]。但MRI常规序列的评估受限于主观经验,准确性欠佳。MRI功能成像及定量成像等新技术,能提供血流动力学、肿瘤微环境以及细胞增殖和代谢等多维度的精准定量信息。借助人工智能技术挖掘影像信息,整合影像特征和临床病理指标,为CC临床决策提供依据。本文针对CC诊疗的临床需求,以MRI功能成像及定量成像技术发展为轴线,对其在肿瘤检出、诊断、分期的价值,以及在分子病理相关风险因素和疗效、预后预测的应用进行述评。

1 CC组织病理学特点及诊治进展

       CC的病理分型、组织分化程度及分期均与治疗方式、疗效及预后密切相关。宫颈组织分型中宫颈鳞状细胞癌(cervical squamous cell carcinoma, CSCC)占69%,宫颈腺癌(cervical adenocarcinoma, CAC)约占20%~25%。CSCC倾向于局部浸润,血行转移少。而CAC易侵犯血管淋巴间隙,易发生盆腹腔淋巴结转移(lymph node metastases, LNM)及远处转移;病理分级与总生存期(overall survival, OS)相关,高级别、低分化者更易局部浸润和远处转移,复发率更高,预后更差。

       CC分期采用2018年修订的国际妇产科联盟(International Federation of Gynecology and Obstetrics, FIGO)分期标准[5],涉及妇科检查、影像学及病理学结果:(1)Ⅰ期癌灶局限于宫颈:ⅠA期镜下间质浸润深度<5 mm,ⅠB期浸润深度≥5 mm;ⅠB期新增加2 cm、4 cm为临界值,分为ⅠB1、ⅠB2与ⅠB3期。(2)Ⅱ期癌灶浸润超出子宫,但未达阴道下1/3或未达盆壁;ⅡA期无宫旁浸润(parametrial infiitration, PMI)、ⅡB有PMI。(3)Ⅲ期癌灶浸润阴道下1/3和(或)达盆壁和(或)引起肾盂积水和(或)侵犯盆腔或主动脉旁淋巴结;新增ⅢC期,将盆腔(ⅢC1期)及腹主动脉旁(ⅢC2期)LNM纳入分期;并且新版FIGO指出,LNM的判定既可以是影像学评价(注明r),也可以是病理活检结果(注明p);(4)Ⅳ期癌累及膀胱、直肠黏膜(ⅣA期)或远处器官转移(ⅣB期)。

       早期(ⅠA1~ⅡA1期,除外ⅠB3期)CC以手术为主,局部晚期CC(ⅡB~ⅣA期以及ⅠB3/ⅡA2期)采用根治性同步放化疗(concurrent chemoradiotherapy, CCRT);晚期(ⅣB期)及复发转移CC以化疗、免疫及靶向治疗等系统治疗为主[6]。美国国家综合癌症网络(National Comprehensive CancerNetwork, NCCN)公布了2022年第1版《NCCN子宫颈癌临床实践指南》[7],推荐CC的初始治疗原则:(1)ⅠA期肿瘤浸润深度决定手术方案,ⅠA1期无淋巴脉管间隙浸润(lymphovascular space invasion, LVSI)行病灶锥切术,ⅠA1期伴LVSI或ⅠA2期首选根治性子宫颈切除+盆腔淋巴结切除。(2)ⅠB~ⅡA期肿瘤直径决定治疗方案:ⅠB1、ⅠB2期和ⅡA1期推荐根治性子宫切除术加淋巴结切除术;ⅠB3期和ⅡA2期首选CCRT。(3)是否存在PMI决定首选治疗方式;ⅡB期及以上不推荐手术治疗。

       随着CC年轻化及二胎政策的放开,对有保留生育功能的需求者,可选择根治性子宫颈切除+盆腔淋巴结切除。中国专家共识[8]推荐CC保育治疗(fertility-sparing treatment, FST)适应证:(1)肿瘤局限于子宫颈,最大直径≤2 cm、间质浸润深度<1/2的鳞癌,距宫颈内口≥0.5~1.0 cm。(2)肿瘤直径2~4 cm者考虑开腹广泛子宫颈切除术,或行1~3疗程新辅助化疗(neoadjuvant chemotherapy, NACT),肿瘤缩小至≤2 cm后实施FST。

       早期CC术后仍会出现复发和转移,相关的病理危险因素及治疗原则[9]如下:(1)高危因素包括手术切缘阳性、LNM或PMI,任意一个应给予术后补充放疗或CCRT。(2)中危因素包括肿瘤直径、LVSI和间质浸润,若满足Sedlis标准,建议术后进一步行盆腔外照射放疗±含铂同步化疗,但中危因素并不限于Sedlis标准。(3)低危病变并不需要任何辅助治疗[7, 9]。研究证明神经周围侵犯(perineural invasion, PNI)与肿瘤的进展、转移及预后密切相关[10, 11],亦成为术前评估的风险指标。

       近年来,化疗联合免疫治疗、靶向治疗以及抗体偶联药物治疗是晚期CC的研究热点。化疗联合PD-1单抗±贝伐珠单抗已成为晚期CC一线治疗[12]

       鉴于上述CC的组织病理学特点以及分期、风险因素对治疗决策的影响,临床对MRI精准评估CC提出了更高要求。部分中高危因素只能在术后病理有创获得,术前常规MRI不能评估,而MRI功能成像及定量成像等高新技术的发展使其成为可能。

2 MRI功能成像及定量成像技术的进展

       常规MRI以T2WI为基础序列,可以清楚地显示肿瘤边界、判断间质浸润深度及宫旁病变等[5],但缺乏定量指标,而MRI高级功能成像及定量成像技术能够提供多维度精准定量数据。

2.1 动态对比增强MRI

       动态对比增强MRI(dynamic contrast enhanced MRI, DCE-MRI)注射对比剂后连续多层扫描,通过药代动力学模型获得容积转移常数(volume transfer constant, Ktrans)、组织间隙血浆速率常数(rate constant, Kep)、血管外细胞外间隙容积分数(extravascular extracellular volume fraction, Ve),对血管和细胞外间隙对比剂交换定量分析,评价组织灌注与血管内皮的完整性。

2.2 扩散加权成像及衍生序列

       扩散加权成像(diffusion weighted imaging, DWI)反映组织内水分子微观运动,表观扩散系数(apparent diffusion coefficient, ADC)值定量评估水分子扩散运动受限程度。恶性肿瘤细胞增殖旺盛、细胞密度高、细胞外容积减小,肿瘤内水分子扩散受限明显,DWI信号增高,ADC值减低。DWI衍生序列包括:(1)体素内不相干运动(intravoxel incoherent motion, IVIM),通过双指数模型同时得到反映组织细胞密集和微循环的两组参数;ADC和真扩散系数(true diffusion coefficient, D)值对应水分子扩散的程度,而伪扩散系数(pseudo-diffusion coefficient, D*)和灌注分数(perfusion fraction, f)代表微循环灌注情况。(2)扩散张量成像(diffusion tensor imaging, DTI),在三维空间分析组织中水分子扩散的各向异性,反映细胞密度以及纤维组织的方向性。获定量数据平均扩散系数(mean diffusion, MD)、各向异性分数(fractional anisotropy, FA)。(3)扩散峰度成像(diffusion kurtosis imaging, DKI),基于非高斯分布模型,获得平均峰度(mean kurtosis, MK)、MD、FA,MK能更真实评价组织微观结构的异质性。

2.3 磁敏感加权成像

       磁敏感加权成像(susceptibility weighted imaging, SWI)包括MR血氧水平依赖性成像(blood oxygen level dependent imaging, BOLD)、增强T2*加权血管成像(enhanced T2* weighted angiography, ESWAN)等序列,可获得定量反映组织间磁敏感差异的R2*值,反映脱氧血红蛋白与氧合血红蛋白浓度的比例变化。恶性肿瘤代谢快、耗氧大,瘤内呈乏氧状态[13]。乏氧肿瘤和微出血等均可导致R2*值升高,BOLD成像可以表征肿瘤血管新生与乏氧环境[14, 15]

2.4 磁共振波谱

       磁共振波谱(magnetic resonance spectroscopy, MRS)技术可检测活体组织代谢物化学成分和含量,主要为1H-MRS,其次是31P-MRS。代谢物包括脂肪、胆碱复合物以及肌酸。恶性肿瘤的胆碱复合物含量升高,反映肿瘤细胞膜代谢活跃和细胞增殖增加。脂肪峰来源于细胞膜磷脂崩解释放的脂质,与细胞凋亡、组织坏死密切相关,为恶性肿瘤特征代谢物[16]

2.5 酰胺质子转移加权成像

       酰胺质子转移加权(amide proton transfer-weighted, APTw)成像是以化学交换饱和转移技术为基础的新兴MRI分子影像技术,能够检测体内游离蛋白或多肽分子酰胺质子的浓度和交换率,APT值反映组织游离蛋白含量及pH值变化,APTw成像可在形态学改变前评估肿瘤细胞增殖能力及微环境变化[17]

2.6 mapping成像及合成MRI

       mapping是定量成像技术,T2 mapping通过测量不同回波时间的MRI信号强度,计算每个体素的横向弛豫时间(T2),T2值定量评估组织成分和含水量[18]。合成MRI(synthetic morphologic images, SyMRI)单次扫描同时获得3个定量参数:纵向弛豫时间(T1)、T2、质子密度。T1值与大分子物质浓度和水结合状态相关,T1值多联合增强,通过计算细胞外体积分数、增强扫描前后T1值、T1值减低率(ΔT1%)等参数进行评估[19]

2.7 磁共振弹力成像

       磁共振弹力成像(magnetic resonance elastography, MRE)是运用外接的刺激器将弹性剪切波传达目标组织,利用MR的运动敏感梯度获得组织中质点的相位分布信息,生成弹性图对目标组织的弹性特性进行定量、定性,被认为是无创的触诊,已经尝试用于子宫[20]

3 MRI功能成像及定量成像技术在CC应用

       针对前述CC分期和临床治疗原则,尤其是保育手术适应证,术前需要精准确定肿瘤大小、间质浸润深度和距宫颈内口距离,以及是否累及阴道、有无PMI,是否有LNM,是否有膀胱、直肠或远处转移等。MRI发挥着不可替代的作用,已经纳入2018年FIGO分期修订版[5]。但常规MRI评估宫旁和阴道侵犯以及LNM时容易出现假阴性和假阳性,导致分期过高或过低[3],且术前难以预测CC的侵袭性。MRI功能成像及定量成像技术弥补了MRI常规序列的不足。影像组学通过人工智能技术将图像转化为更多维度可挖掘的影像组学特征,包括形状特征、一阶统计特征和纹理特征等,不同特征维度表示不同的肿瘤信息,结合临床资料建模,在CC的早期检出及诊断,组织病理学及治疗反应评估以及预后预测等,均取得可喜进展,有助于精准指导临床决策。

3.1 MRI对CC病灶检出及鉴别诊断的价值

       T2WI仍为CC诊断的主要序列,肿瘤呈较高信号,与低信号的基质环有显著对比;DWI肿瘤呈明显高信号,相应ADC图为低信号,且肿瘤ADC值低于正常组织[21]。DWI结合常规T2WI,鉴别CC和良性病变的AUC达0.95,优于T2WI[22];小视野DWI(reduced field-of-view DWI, rFOV-DWI)可提供高对比度的结构和功能信息,并获得更真实的ADC值[23, 24];IVIM序列能定量扩散和灌注信息,区分CC与非恶性组织[25];DCE-MRI动脉期肿瘤明显强化,易于发现小病灶[26],延迟期肿瘤呈边界清晰的低信号,可提高微小病灶的检出[26]。近年来,有研究表明肿瘤组织的APT值明显高于正常组织,开启了对CC的MRI分子影像临床研究[27, 28];CC组织水分增加,T2值高于非肿瘤组织[29]。T1pre、T1post、ΔT1%值在病灶与正常子宫肌层间亦有显著差异,mapping定量成像为CC诊断及评估提供了新的定量手段[30, 31];肿瘤细胞增殖迅速,腺体破坏,胶原纤维沉积,导致肿瘤组织硬度(tissue stiffness, TS)比正常组织高,MRE能够准确地发现CC组织的弹性变化,定性、定量区别正常宫颈和癌变宫颈组织[32, 33, 34]

       随着深度学习神经网络临床应用的转化及不断优化,研究显示在单次诊断CC时,基于T2WI图像深度卷积神经网络(deep convolution neural network, DCNN)模型的诊断性能与经验丰富的放射科医师相当[35]。基于3D卷积神经网络(convolution neural network, CNN)和Vision Transformer深度学习的CC分类方法,准确率达到98.6%,有望成为CC分类的有效工具[36]

       T2WI是CC诊断的主要序列,MRI功能成像及定量成像技术为CC的检出、定性诊断提供了更加丰富的信息。未来的研究需要充分整合多模态MRI和临床参数,量化地引入肿瘤标志物等进行综合分析,更多关注人工智能对CC的自动分割和自动识别,引入联邦学习技术以解决数据孤岛、数据隐私等问题。

3.2 MRI评估CC临床病理特征及生物标记物和分子病理表达

       CC病理分型、组织分化程度均与治疗方式、疗效和预后密切相关。术前获得相关信息有助于临床决策。

3.2.1 MRI鉴别CC组织病理分型

       常规MRI难以鉴别CC病理类型。CSCC细胞密度大、坏死严重,肿瘤不均质性明显,限制水分子扩散程度高。而CAC组织结构松散、分泌功能强、坏死少,水分子扩散更接近高斯分布。因此,DWI及衍生序列的定量数据均有助于两者鉴别,DKI更能反映CC的异质性[37, 38, 39, 40];CSCC组MTRasym值低于CAC组,与腺癌细胞分泌更多的黏蛋白,表达更多的蛋白质有关[41];不同分型CC的血管通透性及微血管密度不同,DCE-MRI可辅助分型[42];CSCC的T1值高于CAC,鉴别CSCC和CAC的AUC为0.772[43, 44];MRE显示CAC的TS显著高于CSCC,界值为4.10 kPa时AUC达0.80[32]。另外,由于CAC比内膜癌质硬,MRE为两者鉴别提供新的工具,有望解决CC侵及内膜或内膜癌侵及宫颈的鉴别难题[45]

       基于DKI全肿瘤纹理模型有助于鉴别CC亚型,组合模型的分型效能最佳,AUC达0.932[46];从MK图中提取影像组学特征构建的模型,鉴别CSCC和CAC的AUC值为0.87(训练组)、0.85(验证组)[47];基于多参数MRI(multi-parameter MRI, mpMRI)的放射组学模型,鉴别早期CC亚型AUC为0.89,准确度为81%、敏感度为67%、特异度为94%[48]

3.2.2 MRI判断CC组织学分级

       高级别肿瘤细胞异型性大,微环境复杂,DWI水分子扩散受限明显,平均ADC值、最小ADC值与细胞密度和病理分级呈负相关,有助于评估肿瘤的恶性程度[37]。IVIM的D值较ADC值更能反映肿瘤的病理级别(不受组织微循环影响),f值与肿瘤病理分级正相关;随分化级别增高,D值、D*值均逐渐减低[49, 50, 51]。多项研究显示DKI相关参数与CSCC组织学分级显著相关(MK值呈强正相关,MD值呈显著负相关),效能高于ADC值,说明DKI能更准确反映不同级别肿瘤的异质性[41, 47];低分化组的Ktrans和Kep值显著高于高中分化组,与肿瘤恶性程度越高血供越丰富有关[49]

       T2WI联合DKI的影像组学模型评估CC分级的效能高于单独的T2WI影像组学模型和DKI影像组学模型,证明T2WI联合DKI的影像组学获得CC分级的信息更全面、更准确[52]

       2018年LI等[53]通过与18F-FDG PET的对比研究,首次证明APTw可用于评估CSCC分级。后续研究显示APTw能够反映CSCC组织学特征。与DWI和DKI相比,APTw在CSCC诊断及分级评估中更具优势,建议将APTW作为CSCC中常规DWI的补充[27, 41, 54]。MENG等[55]联合APTw与mDixon-Quant序列鉴别CSCC分化程度,显示APTw与R2*组合鉴别低分化CSCC的AUC优于R2*,说明低分化组肿瘤细胞增殖活跃,并进一步提示APTw可作为其他序列的有效补充。

       研究证明T2 mapping评估CC病理分化有一定价值,低分化CSCC的T2值(83.8±9.5 ms)低于中高分化CSCC(92.8±9.5 ms),AUC为0.77[29, 56];增强T1 mapping的T1post、ΔT1%值鉴别低分化与高/中分化组CC的AUC分别为0.901、0.769[30, 57];MRE的TS在低分化和高/中分化CC之间有显著差异,区分中分化CC的TS阈值为4.42 kPa(AUC达0.83)[32]

3.2.3 MRI预测CC生物标记物表达及分子病理指标(分子分型和基因表型)

       肿瘤基因表达与其生物学特性潜在相关,影像学可用于分析肿瘤内部异质性,进而评估其生物学特性及基因表达。(1)血管生成相关:IVIM的D*值与微血管密度呈直线相关[51];MRI功能成像(R2*、IVIM、DCE-MRI)的定量数据可以提供肿瘤缺氧诱导因子(HIF-1α)、血液灌注信息,DCE-MRI与IVIM联合可提高对CC患者HIF-1α表达水平诊断能力[58, 59];基于T2WI和DCE-T1WI放射组学特征,联合FIGO分期建模,能有效预测血管内皮生长因子表达,为靶向药物选择提供有价值信息[60]。(2)细胞增殖相关:DWI的ADC值、rADC值与Ki-67呈负相关,为临床评价肿瘤细胞增殖程度提供新的思路[61];刘祎等[62]构建基于mpMRI影像组学模型,能有效地预测Ki-67状态,无创评估细胞增殖活性,为制订个体化治疗方案、化疗敏感性评估提供重要信息。(3)程序性死亡受体1(programmed death 1, PD-1):刘开惠等[63]研究证明联合临床病理、T2WI特征及IVIM参数D值构建的联合模型,可有效预PD-1/PD-L1表达。(4)基因蛋白相关:韦明珠等[64]构建基于T2WI的机器学习模型,能预测CC组织中P53的表达;MEYER等[65, 66]证明基于T2WI、T1WI(增强前后)及ADC图像的全病灶直方图分析,能够反映CC中Her-2状态、EGFR及组蛋白3表达。

       2020年WHO将CAC组织学亚型分为人乳头瘤病毒(human papillomavirus, HPV)相关腺癌(HPVA)和非HPV相关腺癌[HPVI;胃型腺癌(gastric-type adenocarcinoma, GAS)、透明细胞型和其他类型]。2023年MORI等[67]尝试用DCE-MRI评估CAC亚型,结果显示HPVI较HPVA的肿瘤直径更大,DCE-T1WI强化更不均匀,以GAS型多见,常呈浸润性生长,伴有瘤内囊肿形成和异质性增强,为CAC分型提供新的路径。

       MRI功能成像及定量数据能获取CC临床病理及分子病理的影像学标志物,表征肉眼无法辨识的肿瘤内部固有异质性,有助于术前精准评估。但是,目前研究均为回顾性研究,并且CAC病理分型、组织分化的研究相对较少,未来需要更多的大样本、多中心的研究,并且侧重于对CAC的分析。

3.3 MRI评估CC局部分期

3.3.1 MRI测量CC的大小及与宫颈管口距离

       FIGO分期修订后的ⅠB期对术前测量瘤灶大小提出更高要求,特别是对需保育手术的患者,还需要精准评估肿瘤靠近宫颈内口的距离。MRI确定CC位置的准确率约为91%,评估宫颈管内口受累的敏感性、特异性分别为86%、97%,预测肿瘤大小的准确率为93%[68, 69];随着压缩感知等人工智能加速技术的应用,高分辨3D-T2WI扫描时间大大缩短[70],获得容积数据曲面重建,能够对肿瘤大小进行全方位精确测量,基于MRI 3D重建计算的最大肿瘤直径评估准确率提升29.6%[71]

3.3.2 MRI评估CC阴道侵犯

       阴道穹窿是否受侵是Ⅱ期的一个重要指标,决定后续术式选择。常规MRI诊断阴道浸润的准确率为86%~93%[72],对IIA期往往出现低估或高估,与肿瘤体积较大或合并炎症时,阴道穹窿被遮挡或阴道上段受牵拉变形有关,也与阴道穹窿局部积液、积血、感染和组织充血水肿有关。孟醒等[73]探讨基于压缩感知技术的高分辨三维各向同性(3D isotropic, 3D-ISO)T2WI评估CC阴道穹窿侵犯,与2D T2WI图像比较,3D-ISO T2WI的曲面重建图像能更真实展示穹窿全貌,检出更多的真阳性例数和真阴性例数。1.9%被常规MRI低估的阴道穹窿浸润,3D重建后升期[71];徐青等[74]基于矢状位T2WI瘤内及瘤周3 mm组学特征,结合临床特征(肿瘤最大径、RBC计数)构建的影像组学列线图,能很好地预测ⅠB期和ⅡA期CC。

3.3.3 MRI评估CC的PMI

       PMI是指癌组织突破宫颈间质浸润到宫旁组织,根据是否存在PMI将CC分为ⅡA、ⅡB期,ⅡA期到ⅡB期的转变意味着CC治疗方式的不同,对无PMI的ⅡA期及以下分期首选手术治疗,对伴有PMI的ⅡB期及以上的晚期患者首选盆腔近距离放疗和外照射放疗联合化疗[6]。临床常常过低或过高评估PMI,前者术后易复发,易出现术后放化疗不良反应。后者导致错失手术时机或治疗不足,与预后不良有关。T2WI及DWI低信号的基质环是否完整有助于判断肿瘤是否局限于宫颈,PMI表现为宫颈外缘不规则、毛糙及条片影或肿块。较大的病灶由于肿瘤与瘤周炎症水肿,使T2WI上PMI会被高估[75]。同时,因不能显示微灶浸润而低估PMI[69, 72]

       DWI上PMI和肿瘤ADC值为病理上PMI的独立预测因子,两者结合可以提高识别病理性PMI低风险患者的诊断性能[76]。DTI的FA值在PMI组显著降低,与肿瘤细胞浸润到宫旁肌纤维束间隙,不同程度地破坏肌纤维,导致水在各个方向的扩散受限增大有关[77]。IVIM、DCE-MRI的定量数据D*、f值、Ktrans值、Kep值和Ve值均与PMI相关,其中Ktrans诊断PMI价值最高,AUC达0.896,与PMI者的生长速度相对较快,形成大量新生肿瘤微血管有关[78]

       纹理分析能够提高单纯MRI形态学判断PMI的准确度。DCE-MRI、IVIM定量参数与T2WI纹理特征参数联合模型,提高了精准识别PMI的敏感度[79, 80];综合T2WI及DWI放射组学特征,联合年龄和病理分级构建的放射组学列线图,识别PMI的准确性高于放射科医生[81];基于肿瘤本身以及其3 mm和5 mm瘤周区域的放射组学特征,结合FIGO分期、MRI间质环破裂、PMI、血清CA-125构建诺模图,可准确预测早期宫颈PMI[82];基于随机森林模型的新型机器学习预测模型较其他分类器具有更好的性能,可作为辅助识别PMI的经济高效的方法[83]

3.3.4 MRI评估深层间质浸润

       深间质浸润(deep stromalinvasion, DSI)是指肿瘤突破基底膜向间质浸润的过程,以病理为金标准确定浸入间质的深度。常规MRI评估间质浸润的总敏感度为87%、特异度为91%[69];T2WI、DWI和DCE-MRI序列上测量早期CC患者DSI的结果与病理结果一致性均较好;Ktrans和鳞状细胞癌抗原(squamous cell carcinoma antigen, SCC-Ag)是预测DSI的独立因素[84, 85]。临床-影像组学模型在区分早期CSCC的DSI时AUC为0.82~0.97,评估效果优于放射科医生,可帮助临床医生早期识别DSI高危患者[86, 87, 88]

       MRI检查能从多方位评估肿瘤大小、位置及生长方式,了解侵及范围及局部淋巴结有无转移等,为术前临床分期及治疗方案选择提供依据。但是目前存在样本量小、单中心研究等不足,未来的研究需要结合多模态序列及临床参数大样本数据进行分析、建模,经过大样本、多中心的研究验证。

3.4 MRI评估CC的LNM

       FIGO 2018年分期根据影像学评估LNM,决定治疗方案。目前常规影像主要依据淋巴结大小和形态特征评估,通常以短径≥10 cm,结合形态学异常(圆形、边缘不规则、中心坏死或黏液变性)及不均匀强化作为LNM的诊断依据。正常大小的LNM经常被遗漏,且存在炎症、增生性肿大淋巴结被误诊的可能。2023年NCCN CC指南推荐采用PET/CT评价Ⅱ~Ⅳ期隐匿的LNM[7]。《早期子宫颈癌保留生育功能手术的中国专家共识》推荐PET/MRI协助CC的临床决策。但PET/MRI设备普适性差,仍推荐首选MRI增强扫描为最低标准方案[8]

       常规MRI评估LNM的特异性为89%、敏感性为51%[69]。功能成像及定量技术弥补了形态学评估LNM准确性欠佳的不足,DWI及其衍生序列对LNM检出敏感,且定量数据能精准量化淋巴结的病理状态。转移性淋巴结组织被恶性肿瘤取代,导致水分子弥散受限,ADC值低于良性淋巴结。DWI检测到的最小转移淋巴结的短轴长度为5 mm,联合淋巴结短径、短长径比值以及ADC最小值,鉴别LNM的敏感度及特异度分别是93.5%和88.2%[68, 89]。IVIM较DWI更准确地反映肿瘤组织的细胞密度和微循环状况,转移淋巴结D值较高,f值较低。IVIM识别亚厘米盆腔LNM(pelvic LNM, PLNM)的准确率(90%)高于非亚专科医生(30%),与亚专科医生的准确率(90%)相似[90]。转移性淋巴结的Ktrans显著减低,Ktrans区分IB3和IIA2转移性淋巴结和非转移性淋巴结的AUC分别为0.740、0.786[91]。基于T2WI的淋巴结放射组学特征与LN形态学特征联合构建的影像组学列线图,在预测正常大小LNM方面具有良好的性能(AUC为0.82)[92]。QIAN等[93]应用ResNeSt架构的单通道卷积神经网络和多通道卷积神经网络,分别基于单模态或多模态MR图像结合临床信息构建深度学习列线图,能有效预测正常大小的LNM。

       针对淋巴结评估时,受限于影像与病理上淋巴结难以一一对应的难题,广大学者利用肿瘤原发灶的MRI定量参数与影像组学特征,多维度评估肿瘤的侵袭性和微环境变化,提高PLNM预测能力,并弥补了传统MRI和淋巴结穿刺活检的不足。ZHANG等[94]基于原发肿瘤和淋巴结的IVIM-DWI定量数据及纹理参数构建的模型,对LNM的诊断效能优于淋巴结形态特征。淋巴结定量数据结合纹理参数效能最高(AUC达0.937);LNM组原发肿瘤的MK值明显高于非LNM组(AUC为0.974),而MD值明显低于非LNM组(AUC为0.968),说明具有高异质性的肿瘤更容易发生PLNM,DKI有望成为CC的PLNM预测工具[95]。联合DKI和APTw预测LNM,显示LNM组较非LNM组原发肿瘤的APT值增高(3.7%±1.1% vs. 2.4%±1.0%),且APTw的鉴别能力优于DKI,两者联合效能增加,从代谢及微环境不同维度解读了肿瘤特性[96]

       XIA等[97]基于肿瘤T2WI的放射组学模型预测PLNM的AUC值为0.925,结合临床风险因素(间质浸润深度、FIGO分期和肿瘤最大径)开发的列线图,进一步提高AUC值(0.988);后续研究基于mpMRI放射组学特征,结合LNM相关的危险因素,增加MR报告LN状态构建放射组学列线图,能有效预测CC的LNM[98];由于瘤周组织内淋巴管生成活跃及淋巴流动异常,与LNM密切相关,瘤周信息评估备受关注。一项多中心研究证明基于DCE-T1WI和T2WI提取的肿瘤内和瘤周1 mm和3 mm区域的影像组学特征,联合MR报告的LN状态和肿瘤直径构建列线图,评估LNM具有良好的临床实用性(AUC达0.891)[99];mpMRI联合中性粒细胞/淋巴细胞比值(neutrophil to lymphocyte ratio, NLR)及血小板/淋巴细胞比值(platelet to lymphocyte ratio, PLR)提高了诊断CC患者LNM的特异度[100]

       功能成像和定量技术及影像组学可以提高检测LNM的准确性,但是这些技术还处于探索阶段,未来的研究仍需要整合多模态数据和临床参数,进行大样本、多中心研究来评估这些技术在CC患者LNM诊断中的应用。

3.5 MRI评估肿瘤LVSI及PNI

3.5.1 MRI评估LVSI

       根据NCCN指南,LVSI状态是决定CC术后是否行辅助治疗的因素之一,也是决定是否能实施保育手术的重要因素。LVSI结果虽然不改变CC分期,但有无LVSI决定了早期无LNM的CC患者的手术方式,若有LVSI则需行盆腔淋巴结清扫术。常规MRI无法直接评估LVSI,术后病理是金标准。因此,术前MRI影像定量分析技术及影像组学预测CC的LVSI是目前研究热点。

       LVSI阳性者肿瘤侵袭性强,癌细胞密度增加、核质比高和细胞外空间减少,微环境复杂,均可导致水分子扩散更受限。YANG等[101]发现LVSI阳性和LVSI阴性组肿瘤ADC值无显著性差异,但LVSI阳性组的mini-ADC值和mini-ADC比值显著低于LVSI阴性组,证明肿瘤的异质性与LVSI相关。LVSI阳性组与LVSI阴性组相比,MD值明显减低,MK值明显升高,MD和MK的效能相近(AUC为0.77、0.78),而相应的ADC值两组间无差异,进一步证明DKI对CC微环境复杂的异质性更加敏感[102]。有研究显示LVSI阳性组Kep、Ktrans及Ve值均升高,ADC值降低;DCE-MRI联合DWI的AUC为0.921,提高了对早期CC患者LVSI评估的效能[103];郭丽美等[104]应用SyMRI分析CC患者LVSI状态,显示LVSI阳性组的T1值和T2值低于LVSI阴性组,T1、T2值均能很好识别LVSI状态,与既往mapping评估LVSI的研究结果类似[105];SONG等[84]研究显示APTmean和Ktrans是预测LVSI的独立因素,APTmean联合Ktrans预测效能最高,AUC为0.874。

       基于多模态MRI的影像组学模型,结合临床危险因素(肿瘤分期、浸润深度)的多中心研究,证明列线图模型在预测CC的LVSI方面表现出良好的性能[106, 107, 108]。基于肿瘤分区域栖息地的放射组学模型,对CC的LVSI预测性能优于源自整个肿瘤的放射组学模型[109]。从T2WI和DCE-T1WI图像的肿瘤和肿瘤周围(3 mm、7 mm)提取影像特征,结合放射组学特征和细胞分化程度构建影像组学诺模图,预测早期CC患者LVSI效能最佳[110]。肿瘤大小、SCC-Ag、WBC和NLR是LVSI的独立危险因素;联合建立列线图,预测LVSI具有良好的性能(训练集AUC=0.845,外部验证集ACU=0.704)[111]。基于DCE-T1WI和T2WI图像的注意力集中学习模型预测效能的AUC达到0.911,有望帮助放射科医生术前预测CC的LVSI[112]。安琪等[113]研究表明APTw影像组学模型在术前预测宫颈癌LVSI方面具有较高的潜力,联合临床因素能进一步提高预测效能,有望为CC患者的个体化治疗和预后评估提供重要支持。

3.5.2 MRI评估PNI

       PNI阳性者术后需接受辅助治疗比例明显增加,PNI阳性为术后辅助放疗提供依据[11]。CAC、DSI、LVSI和切缘受累是PNI的独立危险因素,PNI是5年OS和无进展生存期(disease free survival, PFS)的独立危险因素,有潜力成为新的高危因素,术前准确评估有无PNI有助于精准确定治疗方案[114]。目前手术病理标本组织学检查仍是PNI诊断的金标准,但有创、且有一定滞后性。王灵华等[115]成功应用IVIM预测直肠癌的PNI,显示D*值预测结直肠癌PNI的AUC为0.649,敏感性和特异性分别为60.0%、61.3%,提示MRI功能成像有预测PNI的潜能。张倩瑜等[116]联合APTw与DCE-MRI评估PNI,结果显示PNI组的APT值和Vp值均大于非PNI组,APT值和Vp值评估PNI的AUC分别为0.717、0.785,敏感度及特异度分别为66.7%及75.0%、83.3%及75.0%,证明APTw及DCE-MRI均能有效预测CC的PNI,值得关注。

       当前对PNI的研究较少并且处在初级阶段;绝大多数研究并未明确区分“淋巴”和“血管”浸润,这些领域有待于学者未来进一步深入研究;另外,将来需开展MRI对隐匿性LVSI的评估工作。

3.6 MRI预测CC病理不良因素及风险分层

       如前所述,CC的临床病理特征及危险因素不是独立存在,是相互关联的,综合决定最终分期及复发风险。多项研究表明多模态MRI、MRI功能成像均有助于术前CC精准分期[47, 117]。T1 mapping、SyMRI定量成像是评估CC复发风险、预后因素的潜在无创工具,其定量数据的诊断性能优于ADC值,为个体化治疗和随访方案提供依据[32, 33, 37, 48, 56, 118-119]。APT值和MK值是肿瘤分型、组织学分级的独立预测因素,APT值与MK值结合可提升分型、分级能力。并且,APTw可提升IVIM无创预测CC不良预后因素能力[46, 120]。MRE用于CC的诊断,结果显示早期(≤ⅡA期)、晚期(≥ⅡB期)CC间弹性值、肿瘤体积及浸润深度不同,且与CC分期呈正相关,且弹性值的诊断效能优于肿瘤体积和浸润深度。

       mpMRI影像组学特征结合临床变量(SCC-Ag和血红蛋白)能预测CC的LVSI和临床结局,改善风险分层[121]。对于小于4 cm的早期CC,通过T2WI及DCE影像组学及血小板计数建立的临床-影像组学模型可以术前无创、精准预测CC中危因素[117];基于T2WI和DWI组合图像瘤内和瘤周区域的深度学习放射组学列线图有潜力预测早期复发风险因素,并对其进行风险分层,提高个体化精准治疗的价值[122]

       功能成像与常规MRI联合应用的多模态MRI影像组学有利于CC的危险分层,建立了影像信息向临床决策转化的通路。然而,未来的影像组学研究仍需要更严格的多中心前瞻性研究,标准化技术流程,验证模型的可泛化性。另外,以往感兴趣区的勾画不考虑肿瘤内的空间区域变异,筛选影像生物标志物的能力可能受到限制。因此,未来定量成像研究将可能集中在生镜成像上。

3.7 MRI对CC疗效评估和预后预测

       CCRT是局部进展期CC(locally advanced CC, LACC)的首选治疗手段[7]。但因肿瘤异质性及个体差异,约30%~50%患者治疗失败。早期准确预测CC的CCRT疗效,对治疗方案的制订及后续调整有着重要意义。常规MRI评估放化疗效果,依赖于形态学变化,而这种变化往往滞后于功能及代谢的改变,难以评估早期疗效。磁共振功能成像丰富的定量参数有望成为评估和解释肿瘤治疗反应的生物标志物。DWI及衍生序列定量数据能显示治疗过程中ADC值、D值增加和MK值降低,与治疗后肿瘤细胞缺血、缺氧,进而肿胀、坏死、凋亡,细胞减少、密集度减低,发生纤维化等有关,有望成为疗效评估的有效标志物[123, 124, 125]。CC患者CCRT治疗前和治疗后1个月ADC百分比(ΔADC)与PFS、癌症特异性生存率(cancer specific survival, CSS)和OS相关,肿瘤ADC的百分比变化可能是疾病进展和生存率的预测指标[126]。APT联合IVIM预测宫颈鳞癌CCRT治疗反应,完全缓解(complete response, CR)组的f和APT值较低,f和APT值的组合能较好地预测CCRT反应[127]。基于治疗前肿瘤栖息地特征(T2WI、DCE-T1WI、ADC图像)的放射组学模型,能有效预测局部晚期CC患者CCRT治疗反应[128]。FIGO分期、LNM、Ktrans、Ve、ADC、D、f和单核细胞与淋巴细胞比值(monocyte to lymphocyte, MLR)与ⅡB~Ⅲ期CC患者CCRT疗效有关,上述指标联合构建模型,预测CCRT疗效的效能高于单纯MRI定量参数模型、病理和血细胞参数模型[129]。LEE等[15]初探BOLD对CC患者CCRT临床预后的预测价值,显示肿瘤R2*值是PFS的显著独立因素,有助于预测CC的CCRT预后。R2*值反映肿瘤血流灌注及氧合状态,可作为判断阿帕替尼治疗后有无反应的定量指标,效能优于ADC值[14]

       基于原发肿瘤和受累淋巴结DCE-T1WI和T2WI的纹理特征建模,预测淋巴结阳性CC的CCRT效果及预后,证明来自淋巴结特征的模型预测区域控制率、远处转移生存率和OS性能更好,原发肿瘤纹理特征生成的模型预测局部控制率更好。说明肿瘤和淋巴结影像特征在预测淋巴结阳性CC的临床预后方面起到互补作用[130]

       基于ADC图和T2WI图像的纹理特征在不同直径(最大径<4.19 cm)肿瘤间有差异,纹理特征与临床病理特征(体积、浸润深度、LVSI)结合,可能预测低体积肿瘤的复发[131]。基于mpMRI的放射组学评分与临床特征(年龄、外照射剂量、血红蛋白、WBC、SCC-Ag、T分期、LNM和LVSI等)的组合模型,预测LACSC患者接受CCRT的PFS和OS显示出较好的效能,为CC患者预后预测的潜在标志物[132, 133, 134]

       NCCN指南推荐LACC的患者最佳治疗方案为CCRT加近距离放疗,然而CC发病率较高的农村地区放疗设备满足不了CCRT的需求。因此,临床上常在手术或放疗前行NACT[7, 9],实时监控NACT治疗后的LVSI、LNM状态,有助精准调整治疗方案。董林逍等[135]建立基于NACT前mpMRI影像数据的多个单序列模型、双序列模型和联合序列模型,用于预测LACC患者NACT后LVSI的状态;其中联合模型的预测价值最高,提示基线mpMRI组学特征有望帮助LACC患者个体化选择治疗方案,避免过度诊疗并改善预后。刘金金等[136]开发并验证了一种基于治疗前MRI的影像组学特征,预测LACC的NACT后LNM模型,实现早期无创性诊断LACC患者NACT后LNM情况并指导治疗。

       综上,尽管很多学者目前开始关注MRI在CC疗效评估和预后预测方面的价值,但是仍然以CCRT和NACT研究为主,缺少新辅助放化疗、辅助化疗的研究,这些方面未来值得关注。

4 小结与展望

       MRI功能成像及定量成像技术可以表征肿瘤特点,不同的技术表征肿瘤不同的生物学行为和微环境及代谢变化,完善了CC临床分期,具有评估肿瘤亚型、分级、分化及复发风险的潜能,并具有监测治疗反应及预测预后的价值。精准医学时代,将人工智能数据与影像和临床信息相结合是未来临床实践的需要。

       未来CC影像组学的发展,需要关注使用机器学习来自动分割和提取肿瘤及瘤周特征,纳入更多MRI功能成像及定量成像的影像组学特征,整合更多临床病理危险因素、炎症反应的血液学参数(NLR、PLR、MO、平均血小板体积等)和预后相关的生物学标志物(蛋白、基因),以及MRI报告信息等,将深度学习算法与影像组学结合,获得更多肿瘤多维度信息,通过列线图将其可视化,方便临床使用,帮助理解医学图像的复杂模式,提高影像组学的分析和预测能力,为CC精准诊治提供依据。

[1]
XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J, 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108.
[2]
ZHENG R S, CHEN R, HAN B F, et al. Cancer incidence and mortality in China, 2022[J]. Chin J Oncol, 2024, 46(3): 221-231. DOI: 10.3760/cma.j.cn112152-20240119-00035.
[3]
ZHANG W F, CHEN C L, LIU P, et al. Impact of pelvic MRI in routine clinical practice on staging of IB1-IIA2 cervical cancer[J]. Cancer Manag Res, 2019, 11: 3603-3609. DOI: 10.2147/CMAR.S197496.
[4]
SHAKUR A, LEE J Y J, FREEMAN S. An update on the role of MRI in treatment stratification of patients with cervical cancer[J/OL]. Cancers, 2023, 15(20): 5105 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/37894476/. DOI: 10.3390/cancers15205105.
[5]
BHATLA N, AOKI D, SHARMA D N, et al. Cancer of the cervix uteri[J]. Int J Gynaecol Obstet, 2018, 143(Suppl 2): 22-36. DOI: 10.1002/ijgo.12611.
[6]
中国抗癌协会妇科肿瘤专业委员会. 子宫颈癌诊断与治疗指南(2021年版)[J]. 中国癌症杂志, 2021, 31(6): 474-489. DOI: 10.19401/j.cnki.1007-3639.2021.06.06.
Gynecological Oncology Professional Committee of China Anti Cancer Association. Guidelines for diagnosis and treatment of cervical cancer (2021 edition)[J]. China Oncol, 2021, 31(6): 474-489. DOI: 10.19401/j.cnki.1007-3639.2021.06.06.
[7]
ABU-RUSTUM N R, YASHAR C M, BEAN S, et al. NCCN guidelines insights: cervical cancer, version 1.2020[J]. J Natl Compr Canc Netw, 2020, 18(6): 660-666. DOI: 10.6004/jnccn.2020.0027.
[8]
中国医师协会微无创医学专业委员会妇科肿瘤(学组)专业委员会, 中国妇幼保健协会生育力保存专业委员会. 早期子宫颈癌保留生育功能手术的中国专家共识[J]. 中国微创外科杂志, 2021, 21(8): 673-679. DOI: 10.3969/j.issn.1009-6604.2021.08.001.
Gynecological Oncology (Group) Professional Committee of the Minimally Invasive Medicine Professional Committee of the Chinese Medical Association. Fertility Preservation Professional Committee of China Maternal and Child Health Association. Consensus of China experts on fertility-preserving surgery for early cervical cancer[J]. Chin J Min Inv Surg, 2021, 21(8): 673-679. DOI: 10.3969/j.issn.1009-6604.2021.08.001.
[9]
彭巧华, 吕卫国. 2022年第1版《NCCN子宫颈癌临床实践指南》解读[J]. 实用肿瘤杂志, 2022, 37(3): 205-214. DOI: 10.13267/j.cnki.syzlzz.2022.034.
PENG Q H, LÜ W G. Interpretation of NCCN guidelines for cervical cancer, version 1.2022[J]. J Pract Oncol, 2022, 37(3): 205-214. DOI: 10.13267/j.cnki.syzlzz.2022.034.
[10]
CAO Y H, DENG S H, YAN L Z, et al. Perineural invasion is associated with poor prognosis of colorectal cancer: a retrospective cohort study[J]. Int J Colorectal Dis, 2020, 35(6): 1067-1075. DOI: 10.1007/s00384-020-03566-2.
[11]
李媛媛, 黄蓓蓓, 夏燕, 等. 老年宫颈癌患者肿瘤细胞侵犯周围神经与临床病理特征的关系及对治疗预后的影响[J]. 中国老年学杂志, 2021, 41(21): 4657-4660. DOI: 10.3969/j.issn.1005-9202.2021.21.018.
LI Y Y, HUANG B B, XIA Y, et al. Relationship between tumor cells invading peripheral nerves and clinicopathological features in elderly patients with cervical cancer and its influence on treatment and prognosis[J]. Chin J Gerontol, 2021, 41(21): 4657-4660. DOI: 10.3969/j.issn.1005-9202.2021.21.018.
[12]
吴达莹, 姜瑶, 李贵玲. 子宫颈癌化学治疗进展[J]. 中国癌症防治杂志, 2023, 15(5): 492-498. DOI: 10.3969/j.issn.1674-5671.2023.05.04.
WU D Y, JIANG Y, LI G L. Progress in chemotherapy of cervical cancer[J]. Chin J Oncol Prev Treat, 2023, 15(5): 492-498. DOI: 10.3969/j.issn.1674-5671.2023.05.04.
[13]
CHEN Z, HAN F F, DU Y, et al. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions[J/OL]. Signal Transduct Target Ther, 2023, 8(1): 70 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/36797231/. DOI: 10.1038/s41392-023-01332-8.
[14]
彭露杏, 陆合明, 陈甲信, 等. 多模态MRI预测中晚期宫颈癌患者对甲磺酸阿帕替尼治疗反应的价值[J]. 分子影像学杂志, 2023, 46(3): 494-499. DOI: 10.12122/j.issn.1674-4500.2023.03.19.
PENG L X, LU H M, CHEN J X, et al. Clinical value of multimodal MRI assessment of the response to apatinib mesylate thera-py in patients with advanced cervical cancer[J]. J Mol Imag, 2023, 46(3): 494-499. DOI: 10.12122/j.issn.1674-4500.2023.03.19.
[15]
LEE J, KIM C K, GU K W, et al. Value of blood oxygenation level-dependent MRI for predicting clinical outcomes in uterine cervical cancer treated with concurrent chemoradiotherapy[J]. Eur Radiol, 2019, 29(11): 6256-6265. DOI: 10.1007/s00330-019-06198-5.
[16]
IQBAL Z, ALBUQUERQUE K, CHAN K L. Magnetic resonance spectroscopy for cervical cancer: review and potential prognostic applications[J/OL]. Cancers, 2024, 16(11): 2141 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/38893260/. DOI: 10.3390/cancers16112141.
[17]
ZHOU J Y, PAYEN J F, WILSON D A, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nat Med, 2003, 9(8): 1085-1090. DOI: 10.1038/nm907.
[18]
GE Y X, HU S D, WANG Z, et al. Feasibility and reproducibility of T2 mapping and DWI for identifying malignant lymph nodes in rectal cancer[J]. Eur Radiol, 2021, 31(5): 3347-3354. DOI: 10.1007/s00330-020-07359-7.
[19]
YUAN J, WEN Q, WANG H, et al. The use of quantitative T1-mapping to identify cells and collagen fibers in rectal cancer[J/OL]. Front Oncol, 2023, 13: 1189334 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/37546428/. DOI: 10.3389/fonc.2023.1189334.
[20]
MANDUCA A, BAYLY P J, EHMAN R L, et al. MR elastography: principles, guidelines, and terminology[J]. Magn Reson Med, 2021, 85(5): 2377-2390. DOI: 10.1002/mrm.28627.
[21]
NAGANAWA S, SATO C, KUMADA H, et al. Apparent diffusion coefficient in cervical cancer of the uterus: comparison with the normal uterine cervix[J]. Eur Radiol, 2005, 15(1): 71-78. DOI: 10.1007/s00330-004-2529-4.
[22]
KUANG F, YAN Z P, LI H L, et al. Diagnostic accuracy of diffusion-weighted MRI for differentiation of cervical cancer and benign cervical lesions at 3.0T: comparison with routine MRI and dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2015, 42(4): 1094-1099. DOI: 10.1002/jmri.24894.
[23]
梁波, 曾凌宇, 何汉, 等. 小视野弥散加权成像与常规弥散加权成像对宫颈癌国际妇产科联盟分期的对比研究[J]. 影像研究与医学应用, 2022, 6(10): 103-105. DOI: 10.3969/j.issn.2096-3807.2022.10.034.
LIANG B, ZENG L Y, HE H, et al. Comparative study of small-field diffusion-weighted imaging and conventional diffusion-weighted imaging in staging of cervical cancer in the International Union of Obstetrics and Gynecology[J]. J Imag Res Med Appl, 2022, 6(10): 103-105. DOI: 10.3969/j.issn.2096-3807.2022.10.034.
[24]
MAO L J, ZHANG X L, CHEN T T, et al. High-resolution reduced field-of-view diffusion-weighted magnetic resonance imaging in the diagnosis of cervical cancer[J]. Quant Imaging Med Surg, 2023, 13(6): 3464-3476. DOI: 10.21037/qims-22-579.
[25]
李靖, 曲金荣, 黎海亮, 等. 宫颈癌患者MR体素内不一致运动序列的成像特征[J]. 中华放射学杂志, 2013, 47(11): 1019-1022. DOI: 10.3760/cma.j.issn.1005-1201.2013.11.015.
LI J, QU J R, LI H L, et al. Preliminary study of applying introvoxel incoherent motion sequence in cervical cancer[J]. Chin J Radiol, 2013, 47(11): 1019-1022. DOI: 10.3760/cma.j.issn.1005-1201.2013.11.015.
[26]
HAN K, CROKE J, FOLTZ W, et al. A prospective study of DWI, DCE-MRI and FDG PET imaging for target delineation in brachytherapy for cervical cancer[J]. Radiother Oncol, 2016, 120(3): 519-525. DOI: 10.1016/j.radonc.2016.08.002.
[27]
孟楠, 殷慧佳, 金兴兴, 等. 氨基质子转移成像对宫颈癌组织学特征的初步评价[J]. 临床放射学杂志, 2019, 38(2): 290-293.
MENG N, YIN H J, JIN X X, et al. Preliminary evaluation of histological characteristics of cervical carcinoma by amide proton transfer imaging[J]. J Clin Radiol, 2019, 38(2): 290-293.
[28]
HE Y L, LI Y, LIN C Y, et al. Three-dimensional turbo-spin-echo amide proton transfer-weighted MRI for cervical cancer: a preliminary study[J]. J Magn Reson Imaging, 2019, 50(4): 1318-1325. DOI: 10.1002/jmri.26710.
[29]
刘洁, 李淑健, 刘静静, 等. T2定量成像技术在宫颈癌临床分期与病理分化评估中的应用[J]. 郑州大学学报(医学版), 2023, 58(3): 419-423. DOI: 10.13705/j.issn.1671-6825.2022.06.062.
LIU J, LI S J, LIU J J, et al. Application of T2 mapping quantitative imaging in assessing clinical stage and pathological differentiation of cervical cancer[J]. J Zhengzhou Univ Med Sci, 2023, 58(3): 419-423. DOI: 10.13705/j.issn.1671-6825.2022.06.062.
[30]
谢娟, 白娇, 宋慧贞, 等. 增强T1 mapping成像评估宫颈癌组织学特征的价值[J]. 临床放射学杂志, 2023, 42(2): 291-295.
XIE J, BAI J, SONG H Z, et al. Histologic Features of Cervical Cancer by Enhanced T1 mapping[J]. J Clin Radiol, 2023, 42(2): 291-295.
[31]
LI S J, LIU J, GUO R F, et al. T1 mapping and extracellular volume fraction measurement to evaluate the poor-prognosis factors in patients with cervical squamous cell carcinoma[J/OL]. NMR Biomed, 2023, 36(8): e4918 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/36914267/. DOI: 10.1002/nbm.4918.
[32]
XIAO Y Q, CHEN W Y, LONG X, et al. 3D MR elastography-based stiffness as a marker for predicting tumor grade and subtype in cervical cancer[J]. Magn Reson Imaging, 2024, 109: 173-179. DOI: 10.1016/j.mri.2024.03.006.
[33]
GUO J, SAVIC L J, HILLEBRANDT K H, et al. MR elastography in cancer[J]. Invest Radiol, 2023, 58(8): 578-586. DOI: 10.1097/RLI.0000000000000971.
[34]
刘强,石喻,孙洪赞,等. 磁共振弹性成像在宫颈癌诊断中的初步应用研究[J]. 磁共振成像,2024,15(8):12-16,38. DOI: 10.12015/issn.1674-8034.2024.08.002.
LIU Q, SHI Y, SUN H Z, et al. A preliminary application study of magnetic resonance elastography in the diagnosis of cervical cancer[J]. Chin J Magn Reson Imaging, 2024, 15(8): 12-16, 38. DOI: 10.12015/issn.1674-8034.2024.08.002.
[35]
URUSHIBARA A, SAIDA T, MORI K, et al. Diagnosing uterine cervical cancer on a single T2-weighted image: comparison between deep learning versus radiologists[J/OL]. Eur J Radiol, 2021, 135: 109471 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/33338759/. DOI: 10.1016/j.ejrad.2020.109471.
[36]
ABINAYA K, SIVAKUMAR B. A deep learning-based approach for cervical cancer classification using 3D CNN and vision transformer[J]. J Imaging Inform Med, 2024, 37(1): 280-296. DOI: 10.1007/s10278-023-00911-z.
[37]
LIU Y, YE Z X, SUN H R, et al. Clinical application of diffusion-weighted magnetic resonance imaging in uterine cervical cancer[J]. Int J Gynecol Cancer, 2015, 25(6): 1073-1078. DOI: 10.1097/IGC.0000000000000472.
[38]
KUANG F, REN J, ZHONG Q, et al. The value of apparent diffusion coefficient in the assessment of cervical cancer[J]. Eur Radiol, 2013, 23(4): 1050-1058. DOI: 10.1007/s00330-012-2681-1.
[39]
田士峰, 刘爱连, 朱雯, 等. 初探DTI定量参数对子宫颈鳞状细胞癌和腺癌鉴别诊断的价值[J]. 中国医学计算机成像杂志, 2018, 24(6): 510-514. DOI: 10.3969/j.issn.1006-5741.2018.06.013.
TIAN S F, LIU A L, ZHU W, et al. A preliminary study on the diagnostic value of diffusion tensor imaging quantitative parameters in distinguishing cervical squamous cell carcinoma and cervical adenocarcinoma[J]. Chin Comput Med Imag, 2018, 24(6): 510-514. DOI: 10.3969/j.issn.1006-5741.2018.06.013.
[40]
陈静, 曹雷, 顾红梅. 扩散峰度成像在评估宫颈癌病理类型及分化程度中的价值[J]. 放射学实践, 2021, 36(5): 628-632. DOI: 10.13609/j.cnki.1000-0313.2021.05.011.
CHEN J, CAO L, GU H M. The value of DKI-MRI in evaluating pathological types and differentiation degree of cervical cancer[J]. Radiol Pract, 2021, 36(5): 628-632. DOI: 10.13609/j.cnki.1000-0313.2021.05.011.
[41]
MENG N, WANG X J, SUN J, et al. Application of the amide proton transfer-weighted imaging and diffusion kurtosis imaging in the study of cervical cancer[J]. Eur Radiol, 2020, 30(10): 5758-5767. DOI: 10.1007/s00330-020-06884-9.
[42]
蒋尧西, 余志红. 定量动态增强MRI在宫颈癌诊断、分型和分期中的价值[J]. 放射学实践, 2020, 35(5): 647-651. DOI: 10.13609/j.cnki.1000-0313.2020.05.015.
JIANG Y X, YU Z H. The value of quantitative DCE-MRI in the diagnosis, classification and staging of cervical cancer[J]. Radiol Pract, 2020, 35(5): 647-651. DOI: 10.13609/j.cnki.1000-0313.2020.05.015.
[43]
ZHANG Z X, LIU J, ZHANG Y, et al. T1 mapping as a quantitative imaging biomarker for diagnosing cervical cancer: a comparison with diffusion kurtosis imaging[J/OL]. BMC Med Imaging, 2024, 24(1): 16 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/38200447/. DOI: 10.1186/s12880-024-01191-x.
[44]
LI S J, LIU J, ZHANG W H, et al. T1 mapping and multimodel diffusion-weighted imaging in the assessment of cervical cancer: a preliminary study[J/OL]. Br J Radiol, 2023, 96(1148): 20220952 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/37183908/. DOI: 10.1259/bjr.20220952.
[45]
LONG L, LIU M L, DENG X J, et al. 3D multifrequency magnetic resonance elastography in distinguishing endometrial and cervical adenocarcinoma[J]. Magn Reson Imaging, 2023, 102: 62-68. DOI: 10.1016/j.mri.2023.05.002.
[46]
ZHANG Q, YU X D, OUYANG H, et al. Whole-tumor texture model based on diffusion kurtosis imaging for assessing cervical cancer: a preliminary study[J]. Eur Radiol, 2021, 31(8): 5576-5585. DOI: 10.1007/s00330-020-07612-z.
[47]
田士峰, 刘爱连, 郭妍, 等. 基于扩散峰度成像序列平均扩散峰度图的影像组学鉴别宫颈鳞癌与腺癌的应用[J]. 中国医学影像学杂志, 2021, 29(7): 716-720. DOI: 10.3969/j.issn.1005-5185.2021.07.015.
TIAN S F, LIU A L, GUO Y, et al. Application of radiomics methods based on DKI sequence MK map for differentiating squamous cell carcinoma from cervix adenocarcinoma[J]. Chin J Med Imag, 2021, 29(7): 716-720. DOI: 10.3969/j.issn.1005-5185.2021.07.015.
[48]
WANG W, JIAO Y N, ZHANG L C, et al. Multiparametric MRI-based radiomics analysis: differentiation of subtypes of cervical cancer in the early stage[J]. Acta Radiol, 2022, 63(6): 847-856. DOI: 10.1177/02841851211014188.
[49]
WANG H Y, ZHU L X, LI G H, et al. Perfusion parameters of intravoxel incoherent motion based on tumor edge region of interest in cervical cancer: evaluation of differentiation and correlation with dynamic contrast-enhanced MRI[J]. Acta Radiol, 2020, 61(8): 1087-1095. DOI: 10.1177/0284185119890086.
[50]
周延, 刘剑羽, 刘从容, 等. MR体素内不相干运动成像用于评价宫颈癌恶性程度和组织血供的价值[J]. 中华放射学杂志, 2015, 49(5): 354-359. DOI: 10.3760/cma.j.issn.1005-1201.2015.05.008.
ZHOU Y, LIU J Y, LIU C R, et al. Value of introvoxel incoherent motion model in assessment of differentiation and blood supply of cervical cancer[J]. Chin J Radiol, 2015, 49(5): 354-359. DOI: 10.3760/cma.j.issn.1005-1201.2015.05.008.
[51]
冉仪婷, 卑贵光. 体素内不相干运动成像及微血管密度与宫颈癌病理分级的相关性研究[J]. 磁共振成像, 2021, 12(7): 72-76. DOI: 10.12015/issn.1674-8034.2021.07.015.
RAN Y T, BEI G G. The correlation between intravoxel incoherent motion and microvessel density and pathological differentiation of cervical cancer[J]. Chin J Magn Reson Imag, 2021, 12(7): 72-76. DOI: 10.12015/issn.1674-8034.2021.07.015.
[52]
WANG M D, PERUCHO J A U, VARDHANABHUTI V, et al. Radiomic features of T2-weighted imaging and diffusion kurtosis imaging in differentiating clinicopathological characteristics of cervical carcinoma[J]. Acad Radiol, 2022, 29(8): 1133-1140. DOI: 10.1016/j.acra.2021.08.018.
[53]
LI B B, SUN H Z, ZHANG S Y, et al. Amide proton transfer imaging to evaluate the grading of squamous cell carcinoma of the cervix: a comparative study using 18F FDG PET[J]. J Magn Reson Imaging, 2019, 50(1): 261-268. DOI: 10.1002/jmri.26572.
[54]
HOU M Y, SONG K, REN J P, et al. Comparative analysis of the value of amide proton transfer-weighted imaging and diffusion kurtosis imaging in evaluating the histological grade of cervical squamous carcinoma[J/OL]. BMC Cancer, 2022, 22(1): 87 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/35057777/. DOI: 10.1186/s12885-022-09205-z.
[55]
MENG X, TIAN S F, MA C J, et al. APTw combined with mDixon-Quant imaging to distinguish the differentiation degree of cervical squamous carcinoma[J/OL]. Front Oncol, 2023, 13: 1105867 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/36761975/. DOI: 10.3389/fonc.2023.1105867.
[56]
LI S J, LIU J, ZHANG F F, et al. Novel T2 mapping for evaluating cervical cancer features by providing quantitative T2 maps and synthetic morphologic images: a preliminary study[J]. J Magn Reson Imaging, 2020, 52(6): 1859-1869. DOI: 10.1002/jmri.27297.
[57]
李淑健, 程敬亮, 张勇, 等. T1 mapping成像在宫颈癌组织分化程度评估中的初步应用[J]. 中国临床医学影像杂志, 2020, 31(4): 276-280. DOI: 10.12117/jccmi.2020.04.011.
LI S J, CHENG J L, ZHANG Y, et al. T1 mapping in evaluation of differentiation of cervical cancer: a primary study[J]. J China Clin Med Imag, 2020, 31(4): 276-280. DOI: 10.12117/jccmi.2020.04.011.
[58]
LI X S, WU S D, LI D C, et al. Intravoxel incoherent motion combined with dynamic contrast-enhanced perfusion MRI of early cervical carcinoma: correlations between multimodal parameters and HIF-1α expression[J]. J Magn Reson Imaging, 2019, 50(3): 918-929. DOI: 10.1002/jmri.26604.
[59]
ZHANG L O, SUN H Z, BAI X X, et al. Correlation between tumor glucose metabolism and multiparametric functional MRI (IVIM and R2*) metrics in cervical carcinoma: evidence from integrated 18F-FDG PET/MR[J]. J Magn Reson Imaging, 2019, 49(6): 1704-1712. DOI: 10.1002/jmri.26557.
[60]
DENG X J, LIU M L, SUN J Q, et al. Feasibility of MRI-based radiomics features for predicting lymph node metastases and VEGF expression in cervical cancer[J/OL]. Eur J Radiol, 2021, 134: 109429 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/33290975/. DOI: 10.1016/j.ejrad.2020.109429.
[61]
李健, 刘景旺, 张亚杰, 等. DWI与宫颈癌Ki-67表达的相关性研究[J]. 临床放射学杂志, 2021, 40(1): 97-100.
LI J, LIU J W, ZHANG Y J, et al. Correlation between DWI and ki-67 expression in cervical cancer[J]. J Clin Radiol, 2021, 40(1): 97-100.
[62]
刘祎, 文戈, 董天发, 等. 基于MRI影像组学预测宫颈癌Ki-67表达水平[J]. 放射学实践, 2023, 38(11): 1436-1441. DOI: 10.13609/j.cnki.1000-0313.2023.11.012.
LIU Y, WEN G, DONG T F, et al. MRI Radiomic models for prediction of Ki-67 expression in cervical cancer[J]. Radiol Pract, 2023, 38(11): 1436-1441. DOI: 10.13609/j.cnki.1000-0313.2023.11.012.
[63]
刘开惠, 杨蔚, 田海萍, 等. 临床、病理、MRI特征及IVIM参数联合模型预测宫颈癌程序性细胞死亡蛋白1及其配体(PD-1/PD-L1)表达[J]. 中国医学影像技术, 2023, 39(2): 235-240. DOI: 10.13929/j.issn.1003-3289.2023.02.019.
LIU K H, YANG W, TIAN H P, et al. Combined model of clinical, pathological, MRI features and IVIM parameters for predicting programmed cell death protein 1 (PD-1)/PD-1 ligand (PD-L1)expression in cervical cancers[J]. Chin J Med Imag Technol, 2023, 39(2): 235-240. DOI: 10.13929/j.issn.1003-3289.2023.02.019.
[64]
韦明珠, 赵振华, 胡红杰, 等. 宫颈癌MRI影像组学参数预测宫颈鳞癌p53的价值[J]. 中国医学影像学杂志, 2019, 27(12): 934-937, 947. DOI: 10.3969/j.issn.1005-5185.2019.12.013.
WEI M Z, ZHAO Z H, HU H J, et al. MRI radiomics parameters in predicting p53 of cervical squamous cell carcinoma[J]. Chin J Med Imag, 2019, 27(12): 934-937, 947. DOI: 10.3969/j.issn.1005-5185.2019.12.013.
[65]
MEYER H J, HAMERLA G, HÖHN A K, et al. Whole lesion histogram analysis derived from morphological MRI sequences might be able to predict EGFR- and Her2-expression in cervical cancer[J/OL]. Acad Radiol, 2019, 26(8): e208-e215 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/30318289/. DOI: 10.1016/j.acra.2018.09.008.
[66]
MEYER H J, GUNDERMANN P, HÖHN A K, et al. Associations between whole tumor histogram analysis parameters derived from ADC maps and expression of EGFR, VEGF, Hif 1-alpha, Her-2 and Histone 3 in uterine cervical cancer[J]. Magn Reson Imaging, 2019, 57: 68-74. DOI: 10.1016/j.mri.2018.10.016.
[67]
MORI T, KATO H, KAWAGUCHI M, et al. MRI characteristics for predicting histological subtypes in patients with uterine cervical adenocarcinoma[J/OL]. Eur J Radiol, 2023, 158: 110612 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/36542931/. DOI: 10.1016/j.ejrad.2022.110612.
[68]
SALVO G, ODETTO D, SAEZ PERROTTA M C, et al. Measurement of tumor size in early cervical cancer: an ever-evolving paradigm[J]. Int J Gynecol Cancer, 2020, 30(8): 1215-1223. DOI: 10.1136/ijgc-2020-001436.
[69]
XIAO M L, YAN B C, LI Y, et al. Diagnostic performance of MR imaging in evaluating prognostic factors in patients with cervical cancer: a meta-analysis[J]. Eur Radiol, 2020, 30(3): 1405-1418. DOI: 10.1007/s00330-019-06461-9.
[70]
SONG Q L, MA C J, TIAN S F, et al. Acceleration of uterine 3D T2 weighted imaging by compressed SENSE: a multicenter study[J/OL]. Br J Radiol, 2024: tqae113 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/38885406/. DOI: 10.1093/bjr/tqae113.
[71]
ZHANG J J, WANG Y T, CAO D Y, et al. MRI-based three-dimensional reconstruction for staging cervical cancer and predicting high-risk patients[J/OL]. Ann Transl Med, 2021, 9(18): 1398 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/34733950/. DOI: 10.21037/atm-21-2246.
[72]
SALEH M, VIRARKAR M, JAVADI S, et al. Cervical cancer: 2018 revised international federation of gynecology and obstetrics staging system and the role of imaging[J]. AJR Am J Roentgenol, 2020, 214(5): 1182-1195. DOI: 10.2214/AJR.19.21819.
[73]
孟醒, 田士峰, 林良杰, 等. 磁共振3D各向同性T2加权图像在宫颈癌侵犯阴道穹隆评估中的应用价值[J]. 中国CT和MRI杂志, 2023, 21(1): 123-125. DOI: 10.3969/j.issn.1672-5131.2023.01.041.
MENG X, TIAN S F, LIN L J, et al. Application value of 3D isotropic T2 weighted images for assessing vaginal fornix invasion of cervical cancer[J]. Chin J CT MRI, 2023, 21(1): 123-125. DOI: 10.3969/j.issn.1672-5131.2023.01.041.
[74]
徐青, 彭雪艳, 郭长义, 等. 基于矢状位T2WI瘤内瘤周影像组学列线图术前预测ⅠB期和ⅡA期宫颈癌的研究[J]. 磁共振成像, 2024, 15(8): 46-51, 64. DOI: 10.12015/issn.1674-8034.2024.08.007.
XU Q, PENG X Y, GUO C Y, et al. Intra- and peritumoral sagittal T2WI radiomics nomogram for preoperative prediction of patients with stage ⅠB and stage ⅡA cervical cancer[J]. Chin J Magn Reson Imaging, 2024, 15(8): 46-51, 64. DOI: 10.12015/issn.1674-8034.2024.08.007.
[75]
BALCACER P, SHERGILL A, LITKOUHI B. MRI of cervical cancer with a surgical perspective: staging, prognostic implications and pitfalls[J]. Abdom Radiol, 2019, 44(7): 2557-2571. DOI: 10.1007/s00261-019-01984-7.
[76]
PARK J J, KIM C K, PARK S Y, et al. Value of diffusion-weighted imaging in predicting parametrial invasion in stage IA2-IIA cervical cancer[J]. Eur Radiol, 2014, 24(5): 1081-1088. DOI: 10.1007/s00330-014-3109-x.
[77]
PAOLA V D, PERILLO F, GUI B, et al. Detection of parametrial invasion in women with uterine cervical cancer using diffusion tensor imaging at 1.5T MRI[J]. Diagn Interv Imaging, 2022, 103(10): 472-478. DOI: 10.1016/j.diii.2022.05.005.
[78]
李信响, 韦超, 林婷婷, 等. IVIM-DWI和DCE-MRI对Ⅱ期宫颈癌宫旁浸润的诊断价值[J]. 临床放射学杂志, 2020, 39(4): 720-725.
LI X X, WEI C, LIN T T, et al. Intravoxel incoherent motion diffusion weighted imaging and dynamic contrast-enhanced MRI in diagnosis of stage Ⅱ cervical cancer with parametrium invasion[J]. J Clin Radiol, 2020, 39(4): 720-725.
[79]
杨杨, 钱银锋. 体素内不相干运动扩散加权成像联合基于T2WI纹理分析对宫颈癌宫旁浸润的诊断价值[J]. 实用放射学杂志, 2021, 37(7): 1140-1143. DOI: 10.3969/j.issn.1002-1671.2021.07.022.
YANG Y, QIAN Y F. The value of intravoxel incoherent motion diffusion weighted imaging combined with texture analysis baesd on T2 WI in diagnosis of cervical cancer with parametrium invasion[J]. J Pract Radiol, 2021, 37(7): 1140-1143. DOI: 10.3969/j.issn.1002-1671.2021.07.022.
[80]
LI X X, LIN T T, LIU B, et al. Diagnosis of cervical cancer with parametrial invasion on whole-tumor dynamic contrast-enhanced magnetic resonance imaging combined with whole-lesion texture analysis based on T2- weighted images[J/OL]. Front Bioeng Biotechnol, 2020, 8: 590 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/32596230/. DOI: 10.3389/fbioe.2020.00590.
[81]
WANG T, GAO T T, GUO H, et al. Preoperative prediction of parametrial invasion in early-stage cervical cancer with MRI-based radiomics nomogram[J]. Eur Radiol, 2020, 30(6): 3585-3593. DOI: 10.1007/s00330-019-06655-1.
[82]
XIAO M L, FU L, WEI Y, et al. Intratumoral and peritumoral MRI radiomics nomogram for predicting parametrial invasion in patients with early-stage cervical adenocarcinoma and adenosquamous carcinoma[J]. Eur Radiol, 2024, 34(2): 852-862. DOI: 10.1007/s00330-023-10042-2.
[83]
CHAROENKWAN P, SHOOMBUATONG W, NANTASUPHA C, et al. iPMI: machine learning-aided identification of parametrial invasion in women with early-stage cervical cancer[J/OL]. Diagnostics, 2021, 11(8): 1454 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/34441388/. DOI: 10.3390/diagnostics11081454.
[84]
SONG Q L, TIAN S F, MA C J, et al. Amide proton transfer weighted imaging combined with dynamic contrast-enhanced MRI in predicting lymphovascular space invasion and deep stromal invasion of IB1-IIA1 cervical cancer[J/OL]. Front Oncol, 2022, 12: 916846 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/36172148/. DOI: 10.3389/fonc.2022.916846.
[85]
朱汇慈, 曹崑, 李晓婷, 等. MRI评估早期宫颈癌间质浸润深度[J]. 中国医学影像技术, 2020, 36(4): 559-563. DOI: 10.13929/j.issn.1003-3289.2020.04.019.
ZHU H C, CAO K, LI X T, et al. MRI assessment of early cervical cancer invasion depth of stroma[J]. Chin J Med Imag Technol, 2020, 36(4): 559-563. DOI: 10.13929/j.issn.1003-3289.2020.04.019.
[86]
任静, 何泳蓝, 李源, 等. 基于T2加权成像的影像组学特征和临床特征模型在早期宫颈鳞状细胞癌深间质浸润中的诊断价值[J]. 协和医学杂志, 2021, 12(5): 705-712. DOI: 10.12290/xhyxzz.2021-0437.
REN J, HE Y L, LI Y, et al. The value of model based on radiomics features of T2-weighted imaging and clinical feature in diagnosing the depth of stromal invasion of cervical squamous cell carcinoma[J]. Med J Peking Union Med Coll Hosp, 2021, 12(5): 705-712. DOI: 10.12290/xhyxzz.2021-0437.
[87]
YAN H W, HUANG G T, YANG Z H, et al. Machine learning-based multiparametric magnetic resonance imaging radiomics model for preoperative predicting the deep stromal invasion in patients with early cervical cancer[J]. J Imaging Inform Med, 2024, 37(1): 230-246. DOI: 10.1007/s10278-023-00906-w.
[88]
REN J, LI Y, YANG J J, et al. MRI-based radiomics analysis improves preoperative diagnostic performance for the depth of stromal invasion in patients with early stage cervical cancer[J/OL]. Insights Imaging, 2022, 13(1): 17 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/35092505/. DOI: 10.1186/s13244-022-01156-0.
[89]
LIN G, HO K C, WANG J J, et al. Detection of lymph node metastasis in cervical and uterine cancers by diffusion-weighted magnetic resonance imaging at 3T[J]. J Magn Reson Imaging, 2008, 28(1): 128-135. DOI: 10.1002/jmri.21412.
[90]
PERUCHO J A U, CHIU K W H, WONG E M F, et al. Diffusion-weighted magnetic resonance imaging of primary cervical cancer in the detection of sub-centimetre metastatic lymph nodes[J/OL]. Cancer Imaging, 2020, 20(1): 27 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/32252829/. DOI: 10.1186/s40644-020-00303-4.
[91]
KIM S H, CHO S H. Assessment of pelvic lymph node metastasis in FIGO ⅠB and ⅡA cervical cancer using quantitative dynamic contrast-enhanced MRI parameters[J]. Diagn Interv Radiol, 2020, 26(5): 382-389. DOI: 10.5152/dir.2020.19365.
[92]
SONG J C, HU Q M, MA Z L, et al. Feasibility of T2WI-MRI-based radiomics nomogram for predicting normal-sized pelvic lymph node metastasis in cervical cancer patients[J]. Eur Radiol, 2021, 31(9): 6938-6948. DOI: 10.1007/s00330-021-07735-x.
[93]
QIAN W L, LI Z S, CHEN W D, et al. RESOLVE-DWI-based deep learning nomogram for prediction of normal-sized lymph node metastasis in cervical cancer: a preliminary study[J/OL]. BMC Med Imaging, 2022, 22(1): 221 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/36528577/. DOI: 10.1186/s12880-022-00948-6.
[94]
ZHANG Y, ZHANG K Y, JIA H D, et al. Feasibility of predicting pelvic lymph node metastasis based on IVIM-DWI and texture parameters of the primary lesion and lymph nodes in patients with cervical cancer[J]. Acad Radiol, 2022, 29(7): 1048-1057. DOI: 10.1016/j.acra.2021.08.026.
[95]
HUANG Q H, WANG Y C, MENG X Y, et al. Amide proton transfer-weighted imaging combined with ZOOMit diffusion kurtosis imaging in predicting lymph node metastasis of cervical cancer[J]. Bioengineering, 2023, 10(3): 331 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/36978722/. DOI: 10.3390/bioengineering10030331.
[96]
XU Q H, SONG Q L, WANG Y, et al. Amide proton transfer weighted combined with diffusion kurtosis imaging for predicting lymph node metastasis in cervical cancer[J]. Magn Reson Imaging, 2024, 106: 85-90. DOI: 10.1016/j.mri.2023.12.001.
[97]
XIA X M, LI D D, DU W, et al. Radiomics based on nomogram predict pelvic lymphnode metastasis in early-stage cervical cancer[J/OL]. Diagnostics, 2022, 12(10): 2446 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/36292135/. DOI: 10.3390/diagnostics12102446.
[98]
WANG T, LI Y Y, MA N N, et al. A MRI radiomics-based model for prediction of pelvic lymph node metastasis in cervical cancer[J/OL]. World J Surg Oncol, 2024, 22(1): 55 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/38365759/. DOI: 10.1186/s12957-024-03333-5.
[99]
SHI J X, DONG Y, JIANG W Y, et al. MRI-based peritumoral radiomics analysis for preoperative prediction of lymph node metastasis in early-stage cervical cancer: a multi-center study[J]. Magn Reson Imaging, 2022, 88: 1-8. DOI: 10.1016/j.mri.2021.12.008.
[100]
杨兰英, 汤凯, 汪静, 等. mpMRI联合NLR及PLR在宫颈癌淋巴结转移中的诊断价值[J]. 医学信息, 2023, 36(18): 160-163. DOI: 10.3969/j.issn.1006-1959.2023.18.032.
YANG L Y, TANG K, WANG J, et al. The diagnostic value of mpMRI combined with NLR and PLR in lymph node metastasis of cervical cancer[J]. J Med Inf, 2023, 36(18): 160-163. DOI: 10.3969/j.issn.1006-1959.2023.18.032.
[101]
YANG W, QIANG J W, TIAN H P, et al. Minimum apparent diffusion coefficient for predicting lymphovascular invasion in invasive cervical cancer[J]. J Magn Reson Imaging, 2017, 45(6): 1771-1779. DOI: 10.1002/jmri.25542.
[102]
MALEK M, RAHMANI M, POURASHRAF M, et al. Prediction of lymphovascular space invasion in cervical carcinoma using diffusion kurtosis imaging[J/OL]. Cancer Treat Res Commun, 2022, 31: 100559 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/35460974/. DOI: 10.1016/j.ctarc.2022.100559.
[103]
石洋洋, 付娟, 刘浩. 磁共振动态增强扫描及弥散加权成像在评估早期宫颈癌淋巴血管间隙侵犯中的应用价值[J]. 癌症进展, 2022, 20(12): 1293-1296. DOI: 10.11877/j.issn.1672-1535.2022.20.12.28.
SHI Y Y, FU J, LIU H. Application value of dynamic contrast enhanced-magnetic resonance imaging and diffusion-weighted imaging in evaluating lymph-vascular space invasion in early cervical cancer[J]. Oncol Prog, 2022, 20(12): 1293-1296. DOI: 10.11877/j.issn.1672-1535.2022.20.12.28.
[104]
郭丽美, 王峻, 武文奇, 等. 合成MRI定量参数评估宫颈鳞癌淋巴脉管间隙浸润的初步研究[J]. 磁共振成像, 2023, 14(11): 103-107, 120. DOI: 10.12015/issn.1674-8034.2023.11.017.
GUO L M, WANG J, WU W Q, et al. A preliminary study of quantitative parameters derived from synthetic MRI for predicting the lymphovascular space invasion status in cervical squamous cell carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(11): 103-107, 120. DOI: 10.12015/issn.1674-8034.2023.11.017.
[105]
WANG W, FAN X F, YANG J, et al. Preliminary MRI study of extracellular volume fraction for identification of lymphovascular space invasion of cervical cancer[J]. J Magn Reson Imaging, 2023, 57(2): 587-597. DOI: 10.1002/jmri.28423.
[106]
DU W, WANG Y, LI D D, et al. Preoperative prediction of lymphovascular space invasion in cervical cancer with radiomics-based nomogram[J/OL]. Front Oncol, 2021, 11: 637794 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/34322375/. DOI: 10.3389/fonc.2021.637794.
[107]
HUANG G, CUI Y Q, WANG P, et al. Multi-parametric magnetic resonance imaging-based radiomics analysis of cervical cancer for preoperative prediction of lymphovascular space invasion[J/OL]. Front Oncol, 2021, 11: 663370 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/35096556/. DOI: 10.3389/fonc.2021.663370.
[108]
WU Y, WANG S X, CHEN Y Q, et al. A multicenter study on preoperative assessment of lymphovascular space invasion in early-stage cervical cancer based on multimodal MR radiomics[J]. J Magn Reson Imaging, 2023, 58(5): 1638-1648. DOI: 10.1002/jmri.28676.
[109]
WANG S X, LIU X W, WU Y, et al. Habitat-based radiomics enhances the ability to predict lymphovascular space invasion in cervical cancer: a multi-center study[J/OL]. Front Oncol, 2023, 13: 1252074 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/37954078/. DOI: 10.3389/fonc.2023.1252074.
[110]
CUI L P, YU T, KAN Y Y, et al. Multi-parametric MRI-based peritumoral radiomics on prediction of lymph-vascular space invasion in early-stage cervical cancer[J]. Diagn Interv Radiol, 2022, 28(4): 312-321. DOI: 10.5152/dir.2022.20657.
[111]
GUO Q, GAO Y F, LIN Y Y, et al. A nomogram of preoperative indicators predicting lymph vascular space invasion in cervical cancer[J]. Arch Gynecol Obstet, 2024, 309(5): 2079-2087. DOI: 10.1007/s00404-024-07385-6.
[112]
JIANG X R, LI J X, KAN Y Y, et al. MRI based radiomics approach with deep learning for prediction of vessel invasion in early-stage cervical cancer[J]. IEEE/ACM Trans Comput Biol Bioinform, 2021, 18(3): 995-1002. DOI: 10.1109/TCBB.2019.2963867.
[113]
安琪,张钦和,仲林, 等. 基于APTw的影像组学术前预测宫颈癌淋巴血管间隙侵犯[J]. 磁共振成像, 2024, 15(8): 31-38. DOI: 10.12015/issn.1674-8034.2024.08.005.
AN Q, ZHANG Q H, ZHONG L, et al. The radiomics model based on APT for preoperative prediction of cervical cancer lymphovascular space invasion[J]. Chin J Magn Reson Imaging, 2024, 15(8): 31-38. DOI: 10.12015/issn.1674-8034.2024.08.005.
[114]
CHEN X L, DUAN H, ZHAO H W, et al. Perineural invasion in cervical cancer: a multicenter retrospective study[J/OL]. Eur J Surg Oncol, 2024, 50(6): 108313 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/38579659/. DOI: 10.1016/j.ejso.2024.108313.
[115]
王灵华, 孟闫凯, 李绍东, 等. MR体素内不相干运动定量参数与直肠腺癌脉管、神经侵犯的相关性分析[J]. 实用放射学杂志, 2023, 39(3): 408-412. DOI: 10.3969/j.issn.1002-1671.2023.03.016.
WANG L H, MENG Y K, LI S D, et al. Correlation analysis of MR intravoxel incoherent motion quantitative parameters with vascular and nerve invasion of rectal adenocarcinoma[J]. J Pract Radiol, 2023, 39(3): 408-412. DOI: 10.3969/j.issn.1002-1671.2023.03.016.
[116]
张倩瑜, 刘架伸, 田士峰, 等. 酰胺质子转移成像与动态对比增强MRI 评估宫颈癌神经侵犯的价值[J]. 磁共振成像, 2024, 15(8): 39-45. DOI: 10.12015/issn.1674-8034.2024.08.006.
ZHANG Q Y, LIU J S, TIAN S F, et al. The value of amide proton transfer weighted combined with dynamic contrast-enhanced MRI in evaluating cervical cancer nerve invasion[J]. Chin J Magn Reson Imaging, 2024, 15(8): 39-45. DOI: 10.12015/issn.1674-8034.2024.08.006.
[117]
易芹芹, 周宙, 罗燕, 等. 基于术前MRI影像组学及临床特征的早期宫颈癌中危因素预测模型构建[J]. 磁共振成像, 2022, 13(4): 124-127, 136. DOI: 10.12015/issn.1674-8034.2022.04.024.
YI Q Q, ZHOU Z, LUO Y, et al. Construction of prediction model of intermediate risk factors for early cervical cancer based on preoperative MRI radiomics and clinical features[J]. Chin J Magn Reson Imag, 2022, 13(4): 124-127, 136. DOI: 10.12015/issn.1674-8034.2022.04.024.
[118]
LIU J, LI S J, CAO Q C, et al. Risk factors for the recurrence of cervical cancer using MR-based T1 mapping: a pilot study[J/OL]. Front Oncol, 2023, 13: 1133709 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/37007135/. DOI: 10.3389/fonc.2023.1133709.
[119]
ZHANG W J, LU N, HE H Q, et al. Application of synthetic magnetic resonance imaging and DWI for evaluation of prognostic factors in cervical carcinoma: a prospective preliminary study[J/OL]. Br J Radiol, 2023, 96(1141): 20220596 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/36341699/. DOI: 10.1259/bjr.20220596.
[120]
LI S J, LIU J, ZHANG Z X, et al. Added-value of 3D amide proton transfer MRI in assessing prognostic factors of cervical cancer: a comparative study with multiple model diffusion-weighted imaging[J]. Quant Imaging Med Surg, 2023, 13(12): 8157-8172. DOI: 10.21037/qims-23-324.
[121]
崔雅琼, 黄刚, 王莉莉, 等. 基于临床-多参数磁共振影像组学特征预测宫颈癌脉管浸润和预后的研究[J]. 磁共振成像, 2023, 14(2): 73-82. DOI: 10.12015/issn.1674-8034.2023.02.013.
CUI Y Q, HUANG G, WANG L L, et al. Clinical-radiomic analysis of multi-parametric magnetic resonance imaging predicts lymphovascular space invasion and outcomes in cervical cancer[J]. Chin J Magn Reson Imag, 2023, 14(2): 73-82. DOI: 10.12015/issn.1674-8034.2023.02.013.
[122]
ZHANG Y J, WU C, DU J L, et al. Prediction of recurrence risk factors in patients with early-stage cervical cancers by nomogram based on MRI handcrafted radiomics features and deep learning features: a dual-center study[J]. Abdom Radiol, 2024, 49(1): 258-270. DOI: 10.1007/s00261-023-04125-3.
[123]
郑祥, 沈芳敏, 郑德春, 等. 磁共振扩散峰度成像评价宫颈癌放疗早期疗效的应用价值[J]. 磁共振成像, 2023, 14(2): 68-72, 82. DOI: 10.12015/issn.1674-8034.2023.02.012.
ZHENG X, SHEN F M, ZHENG D C, et al. The application of magnetic resonance diffusion kurtosis imaging in efficacy evaluation of early radiotherapy of cervical carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(2): 68-72, 82. DOI: 10.12015/issn.1674-8034.2023.02.012.
[124]
RIZZO S, BUSCARINO V, ORIGGI D, et al. Evaluation of diffusion-weighted imaging (DWI) and MR spectroscopy (MRS) as early response biomarkers in cervical cancer patients[J]. Radiol Med, 2016, 121(11): 838-846. DOI: 10.1007/s11547-016-0665-y.
[125]
BIAN H, LIU F H, CHEN S, et al. Intravoxel incoherent motion diffusion-weighted imaging evaluated the response to concurrent chemoradiotherapy in patients with cervical cancer[J/OL]. Medicine, 2019, 98(46): e17943 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/31725650/. DOI: 10.1097/MD.0000000000017943.
[126]
GU K W, KIM C K, CHOI C H, et al. Prognostic value of ADC quantification for clinical outcome in uterine cervical cancer treated with concurrent chemoradiotherapy[J]. Eur Radiol, 2019, 29(11): 6236-6244. DOI: 10.1007/s00330-019-06204-w.
[127]
DENG X J, LIU M L, ZHOU Q, et al. Predicting treatment response to concurrent chemoradiotherapy in squamous cell carcinoma of the cervix using amide proton transfer imaging and intravoxel incoherent motion imaging[J]. Diagn Interv Imaging, 2022, 103(12): 618-624. DOI: 10.1016/j.diii.2022.09.001.
[128]
FANG M J, KAN Y Y, DONG D, et al. Multi-habitat based radiomics for the prediction of treatment response to concurrent chemotherapy and radiation therapy in locally advanced cervical cancer[J/OL]. Front Oncol, 2020, 10: 563 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/32432035/. DOI: 10.3389/fonc.2020.00563.
[129]
王雅静, 李伟兰, 程慧欣, 等. 基于MRI定量、病理及血细胞参数的ⅡB~Ⅲ期宫颈癌同步放化疗疗效预测模型构建及外部验证[J]. 磁共振成像, 2023, 14(8): 86-93. DOI: 10.12015/issn.1674-8034.2023.08.014.
WANG Y J, LI W L, CHENG H X, et al. The development and external validation of a model based on MRI quantification, pathology, and blood cell parameters to predict the efficacy of concurrent chemoradiotherapy for stage ⅡB-Ⅲcervical cancer[J]. Chin J Magn Reson Imag, 2023, 14(8): 86-93. DOI: 10.12015/issn.1674-8034.2023.08.014.
[130]
PARK S H, HAHM M H, BAE B K, et al. Magnetic resonance imaging features of tumor and lymph node to predict clinical outcome in node-positive cervical cancer: a retrospective analysis[J/OL]. Radiat Oncol, 2020, 15(1): 86 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/32312283/. DOI: 10.1186/s13014-020-01502-w.
[131]
WORMALD B W, DORAN S J, IND T E, et al. Radiomic features of cervical cancer on T2-and diffusion-weighted MRI: prognostic value in low-volume tumors suitable for trachelectomy[J]. Gynecol Oncol, 2020, 156(1): 107-114. DOI: 10.1016/j.ygyno.2019.10.010.
[132]
张羽, 薄娟, 韦超, 等. 多参数MRI及影像组学预测宫颈癌和子宫内膜癌淋巴结转移及疗效的价值[J]. 中华放射学杂志, 2023, 57(3): 339-340. DOI: 10.3760/cma.j.cn112149-20230118-00046.
ZHANG Y, BO J, WEI C, et al. The value of multi parameter MRI and radiomics in predicting lymph node metastasis and efficacy in cervical and endometrial cancer[J]. Chin J Radiol, 2023, 57(3): 339-340. DOI: 10.3760/cma.j.cn112149-20230118-00046.
[133]
CAI M T, YAO F, DING J, et al. MRI radiomic features: a potential biomarker for progression-free survival prediction of patients with locally advanced cervical cancer undergoing surgery[J/OL]. Front Oncol, 2021, 11: 749114 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/34970482/. DOI: 10.3389/fonc.2021.749114.
[134]
ZHANG X M, ZHAO J W, ZHANG Q, et al. MRI-based radiomics value for predicting the survival of patients with locally advanced cervical squamous cell cancer treated with concurrent chemoradiotherapy[J/OL]. Cancer Imaging, 2022, 22(1): 35 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/35842679/. DOI: 10.1186/s40644-022-00474-2.
[135]
董林逍, 刘金金, 张月洁, 等. 基于治疗前多参数MRI 影像组学特征预测局部晚期宫颈癌患者新辅助化疗后脉管浸润[J]. 磁共振成像, 2024, 15(8): 1-7.
[136]
刘金金, 董林逍, 杨紫涵, 等. 治疗前多参数MRI 影像组学特征预测晚期宫颈鳞癌患者新辅助化疗后淋巴结转移[J]. 磁共振成像, 2024, 15(8): 1-8.

上一篇 坐骨股骨撞击综合征磁共振定量评估研究进展
下一篇 磁共振弹性成像在宫颈癌诊断中的初步应用研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2