分享:
分享到微信朋友圈
X
特别关注
酰胺质子转移成像与动态对比增强MRI评估宫颈癌神经侵犯的价值
张倩瑜 刘架伸 田士峰 张钦和 宋庆玲 陈丽华 马长军 王楠 林良杰 王家正 刘爱连

Cite this article as: ZHANG Q Y, LIU J S, TIAN S F, et al. The value of amide proton transfer weighted combined with dynamic contrast-enhanced MRI in evaluating cervical cancer nerve invasion[J]. Chin J Magn Reson Imaging, 2024, 15(8): 39-45.本文引用格式:张倩瑜, 刘架伸, 田士峰, 等. 酰胺质子转移成像与动态对比增强MRI评估宫颈癌神经侵犯的价值[J]. 磁共振成像, 2024, 15(8): 39-45. DOI:10.12015/issn.1674-8034.2024.08.006.


[摘要] 目的 探讨酰胺质子转移加权(amide proton transfer weighted, APTw)与动态对比增强磁共振成像(dynamic contrast enhanced MRI, DCE-MRI)序列评估宫颈癌神经周围侵犯(perineural invasion, PNI)的价值。材料与方法 回顾性分析36例行盆腔3.0 T MRI检查(包括APTw、DCE-MRI序列)且手术病理证实为宫颈癌的患者病例及影像资料,其中有PNI(PNI组)12例,无PNI(NPNI组)24例。由两位观察者分别测量病灶的APT值与DCE-MRI定量参数值,包括容积转移分数(volume transfer constant, Ktrans)、速率常数(exchange rate between EES and blood plasma, Kep)、血管外细胞外间隙容积分数(extravascular volume fraction, Ve)以及血浆容积分数(capillary plasma volume, Vp)。采用组内相关系数(intra-class correlation coefficient, ICC)检验2位观察者对各参数值测量结果的一致性;采用Kolmogorov-Smirov检验数据是否符合正态分布,通过两独立样本t检验或Mann-Whitney U检验比较两组间参数值的差异,采用受试者工作特征(receiver Operating Characteristic, ROC)曲线评估有差异参数诊断PNI效能,获得相应的曲线下面积(area under the curve, AUC)、阈值、敏感度和特异度。采用二元logistic回归计算有差异参数的联合诊断效能,DeLong检验进行各参数和联合参数AUC比较,Spearman相关分析检测APT值和有差异DCE-MRI参数间的相关性。结果 两位观察者测得的APT值及Ktrans值、Kep值、Ve值、Vp值结果一致性良好,ICC均>0.75。两组间的APT值和Vp值差异有统计学意义(P<0.05),Ktrans、Kep、Ve差异无统计学意义(P>0.05)。PNI组的APT值(2.89%±0.72%)和Vp值[7.80×10-3(6.80×10-3,1.14×10-2)]均大于NPNI组[APT值2.31%±0.71%;Vp值4.19×10-3(2.04×10-3, 7.35×10-3)]。评估宫颈癌PNI时,APT值和Vp值的AUC分别为0.717、0.785,阈值分别为2.7%及6.46×10-3,敏感度及特异度分别为66.7%及75.0%、83.3%及75.0%;APT值联合Vp值后的AUC为0.792,APT值、Vp值与两者联合后的AUC之间差异无统计学意义(P>0.05)。APT值与Vp值无相关性(r=0.219,P=0.198)。结论 APTw序列及DCE-MRI的定量参数均能有效预测宫颈癌PNI,具有一定临床应用价值。
[Abstract] Objective To explore the value of amide proton transfer weighted (APTw) combined with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) sequence in evaluating perineural invasion (PNI) of cervical cancer.Materials and Methods A retrospective analysis was conducted on 36 patients who underwent pelvic 3.0 T MRI examination (including APTw and DCE-MRI sequences) and were confirmed to have cervical cancer by surgical pathology. Among them, there were 12 cases in the PNI group and 24 cases in the non-PNI (NPNI) group. Two observers measured the APT value and DCE-MRI quantitative parameter values of the lesion, including volume transfer constant (Ktrans), exchange rate between EES and blood plasma (Kep), extravascular volume fraction (Ve), and capillary plasma volume (Vp). The mean of the measurements was then taken for statistical analysis. Using intra-class correlation coefficient (ICC) to test the consistency of the measurement results of two observers for each parameter value; Kolmogorov-Smirov test was used to determine whether the data conforms to a normal distribution. Two independent sample t-tests or Mann-Whitney U-tests were used to compare the differences in parameter values between the two groups. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficacy of the parameters with differences, and the corresponding area under the curve (AUC), threshold, sensitivity, and specificity were obtained. Calculate the joint diagnostic efficacy of differential parameters using binary logistic regression, and compare the AUC of each parameter and the joint parameter using DeLong test. Use Spearman correlation to detect the correlation between APT values and differential DCE-MRI parameters.Results The APT values, Ktrans values, Kep values, Ve values, and Vp values measured by the two observers showed good consistency, with ICC values greater than 0.75. The difference in APT and Vp values between the two groups was statistically significant (P<0.05), while the difference in Ktrans, Kep, and Ve was not statistically significant (P>0.05). The APT value (2.89%±0.72%) and Vp value [7.80×10-3 (6.80×10-3, 1.14×10-2)] of the PNI group were both higher than those of the NPNI group [APT value 2.31% ± 0.71%; Vp value 4.19×10-3 (2.04×10-3, 7.35×10-3)]. The AUC for evaluating the APT value and Vp value of cervical cancer PNI were 0.717 and 0.785, respectively; the thresholds are 2.7% and 6.46×10-3, respectively, and the sensitivity and specificity are 66.7% and 75.0%, 83.3% and 75.0%, respectively. The AUC of APT value combined with Vp value is 0.792; there was no statistically significant difference (P>0.05) between the APT value, Vp value, and the AUC of the combined evaluation of PNI. There is no correlation between APT value and Vp value (r=0.219, P=0.198).Conclusions The quantitative parameters of APTw sequence and DCE-MRI can effectively predict cervical cancer PNI, which has certain clinical application value.
[关键词] 宫颈癌;酰胺质子转移成像;动态对比增强磁共振;磁共振成像;神经周围侵犯
[Keywords] cervical cancer;amide proton transfer imaging;dynamic contrast enhanced magnetic resonance imaging;magnetic resonance imaging;peripheral nerve invasion

张倩瑜 1   刘架伸 2   田士峰 1   张钦和 1   宋庆玲 1   陈丽华 1   马长军 3   王楠 1   林良杰 4   王家正 4   刘爱连 1*  

1 大连医科大学附属第一医院放射科,大连 116011

2 大连医科大学附属第一医院病理科,大连116011

3 大连理工大学医学部,大连 116011

4 飞利浦(中国)投资有限公司北京分公司,北京 100016

通信作者:刘爱连,E-mail:cjr.liuailian@vip.163.com

作者贡献声明:刘爱连设计本研究的方案,对稿件重要内容进行了修改,获得了大连医科大学附属第一医院院内基金项目资助;张倩瑜起草和撰写稿件,获取、分析和解释本研究的数据;刘架伸、田士峰、张钦和、宋庆玲、陈丽华、马长军、王楠、林良杰、王家正获取、分析或解释本研究的数据,对稿件重要的内容进行了修改,田士峰获得了大连市医学科学研究计划项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 大连医科大学附属第一医院院内基金项目 2021HZ015 大连市医学科学研究计划项目 2023DF038
收稿日期:2024-04-09
接受日期:2024-07-09
中图分类号:R445.2  R737.33 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.08.006
本文引用格式:张倩瑜, 刘架伸, 田士峰, 等. 酰胺质子转移成像与动态对比增强MRI评估宫颈癌神经侵犯的价值[J]. 磁共振成像, 2024, 15(8): 39-45. DOI:10.12015/issn.1674-8034.2024.08.006.

0 引言

       宫颈癌是我国女性癌症中第五大常见癌症[1],每年都有超过50万的女性确诊患有宫颈癌[2],2022年癌症统计结果表明宫颈癌死亡率仍在继续增加[3]。影响其预后的因素有很多,目前已知的包括流产、临床分期及淋巴结转移等[4]。神经周围侵犯(perineural Invasion, PNI)为一种特殊的潜在转移途径,多种研究表明[5, 6, 7, 8]PNI与肿瘤的进展、复发、转移存在紧密的关联,与其他不良预后因素有显著相关性;CHEN等[9]也证实PNI是影响宫颈癌患者五年总生存期(overall aurvival, OS)与五年无病生存期(disease free survival, DFS)的独立危险因素。PNI的定义为癌细胞靠近神经并累及至少33%神经或神经鞘的三层结构中任何一层出现肿瘤细胞[10, 11]。众多文献证实PNI会降低生存率,提高复发率,其原因可能是切除手术常常会忽略沿着神经束扩散的肿瘤细胞[12]。临床上针对手术病理证实有PNI的宫颈癌患者,会采取切除神经的根治性子宫切除术,与保留神经的术式相比,该方式可以降低复发风险,避免神经损伤带给患者剧烈的疼痛,但同时也会降低患者生活质量,导致患者术后排尿、储尿困难[13, 14]。故术前准确评估有无PNI有助于为宫颈癌患者提供更加精准、符合病情的治疗方案。

       目前手术病理标本组织学检查仍是PNI诊断的主要手段和金标准,但它有创、有一定滞后性,并且不适用于晚期放化疗患者。MRI作为无创、非侵入性检查技术,目前已经成为子宫肿瘤术前重要的检查方法。既往有多个研究[15, 16, 17]利用酰胺质子转移加权(amide proton transfer weighted, APTw)序列与动态对比增强磁共振成像(dynamic contrast-enhanced MRI, DCE-MRI)来评估宫颈癌淋巴血管间隙浸润、放化疗疗效、复发、淋巴结转移等,鉴于这两种技术在预测宫颈癌各方面有较好的诊断效能,且目前国内外尚未有研究联合APTw与DEC-MRI来评估宫颈癌PNI。故本研究拟探讨APTw和DCE-MRI定量参数评估宫颈癌PNI的价值。

1 材料与方法

1.1 研究对象

       本研究为回顾性研究,遵守《赫尔辛基宣言》,经大连医科大学附属第一医院伦理委员会批准,免除患者知情同意,批准文号:PJ-KS-KY-2021-180。收集2019年7月至2023年5月因怀疑有子宫疾病于大连医科大学附属第一医院行盆腔MRI检查的患者182例。纳入标准:(1)经手术病理证实为宫颈癌;(2)术前两周内行盆腔3.0 T MRI检查,扫描序列包括APTw和DCE-MRI。排除标准:(1)患者术前接受其他治疗或处置(n=20);(2)图像有伪影或病灶出血坏死囊变范围较大,感兴趣区(regions of interest, ROI)无法勾画(n=19);(3)临床病理信息不全,病理结果无法确定有无PNI(n=63)。最终入组PNI患者12例,无神经周围侵犯(non perineural invasion, NPNI)组患者68例。为防止两组病例数相差过大造成结果偏倚,最终以1∶2的比例[18]随机从NPNI组中抽取24例,总病例数为36例。

1.2 扫描方法与参数

       采用3.0 T MRI(Ingenia CX, Philips Healthcare, Best, the Netherlands)进行盆腔扫描,使用32通道线圈。检查前嘱咐患者排空膀胱和肠管,禁食水4 h。有节育环者需在检查前1 d取出。扫描序列包括轴位T1WI、矢状位T2WI、矢状位APTw及矢状位DCE-MRI序列,具体参数如表1所示。DCE-MRI序列在扫描前先进行5°和15°翻转角的T1 mapping序列扫描,在扫描1期后采用高压注射器经右肘正中静脉以2.5 mL/s的速度和0.2 mL/kg的剂量注入对比剂钆喷酸二葡胺(Gd-DTPA,北京北陆药业股份有限公司,中国北京),随后连续采集39期,每期7.3 s。

表1  扫描序列参数
Tab. 1  Scan sequence parameters

1.3 图像分析与数据测量

       由2名放射科诊断医师(分别为具有2年诊断经验的主治医师和8年诊断经验的副主任医师)采用双盲法独立完成。从ISP 7.0(Intellispace Portal, Philips Healthcare)工作站上导出DCE-MRI原始图像,随后使用FSL软件库(FMRIB Software Library, Oxford, UK,https://fsl.fmrib.ox.ac.uk/fsl/fslwiki)进行预处理,再使用Extended-Tofts模型计算定量参数,通过该模型获得容积转移分数(volume transfer constant, Ktrans)、血管外细胞外间隙容积分数(extravascular volume fraction, Ve)和血浆容积分数(capillary plasma volume, Vp);在3D Slicer软件上选择肿瘤最大径所在层面勾画ROI,ROI的放置需尽可能包括整个肿瘤实质区,同时需要避开出血、坏死、囊变等区域,随后取各参数的平均值做进一步研究。速率常数(rate constant, Kep)是Ktrans与Ve的比值。

       在ISP工作站上经后处理得到APTw序列,参考T2WI图像并将APTw图像与之融合,以此确定病变的部位和范围。在APTw-T2WI融合图像上选择肿瘤最大层面,在肿瘤实质区内手动逐点勾画ROI,ROI的放置范围应尽可能大,但需要避开出血、坏死、囊变等区域,适当避开病灶边缘防止部分容积效应,测量两次后取均值,由此测得APT值,如图1图2所示。保证APTw和DCE勾画ROI的层面、大小尽量一致。

图1  女,39岁,宫颈高-中分化鳞状细胞癌,侵及宫颈全层,有神经周围侵犯(PNI组)。1A:轴位T2WI图像;1B:矢状位T2WI图像,子宫颈内可见团块影,T2WI呈稍高信号,周围脂肪间隙完整,基质环显示不清,病变未达阴道下2/3;1C:APTw与T2WI融合图像,APT值为3.31%;1D:Ktrans图,病灶Ktrans值为0.38 min-1;1E:Ve图,病灶Ve值为0.61;1F:Kep图,病灶Kep值为0.62 min-1;1G:Vp图,病灶Vp值为1.14×10-2;1H:病理图(HE ×200),神经束见癌细胞侵犯(箭)。APTw:酰胺质子转移加权成像;Ktrans:容积转移分数;Ve:血管外细胞外间隙容积分数;Kep:速率常数;Vp:血浆容积分数。
Fig.1  Female, 39 years old, with highly to moderately differentiated squamous cell carcinoma of the cervix, invading the entire layer of the cervix with nerve invasion (PNI group). 1A: Axial T2WI image; 1B: Sagittal T2WI image, mass shadow can be seen in the cervix, with slightly high signal on T2WI. The surrounding fat spaces are intact, the stromal ring is not clearly displayed, and the lesion does not reach 2/3 of the vagina; 1C: APTw and T2WI fusion images, with an APT value of 3.31%; 1D: Ktrans plot, lesion Ktrans value is 0.38 min-1; 1E: Ve plot, lesion Ve value is 0.61; 1F: Kep plot, lesion Kep value is 0.62 min-1; 1G: Vp plot, lesion Vp value is 1.14×10-2; 1H: Pathological image (HE ×200), with cancer cell invasion in nerve bundle (arrow). APTw: amide proton transfer weighted imaging; Ktrans: volume transfer constant; Ve: extravascular volume fraction; Kep: exchange rate between EES and blood plasma; Vp: capillary plasma volume.
图2  女,57岁,宫颈低分化鳞状细胞癌,侵及<1/2层,无神经周围侵犯(NPNI组)。2A:轴位T2WI图像;2B:矢状位T2WI图像,子宫颈左侧壁可见不规则团块影,T2WI呈高信号,左侧阴道穹隆饱满,局部阴道壁增厚;2C:APTw与T2WI融合图像,APT值为2.85%;2D:Ktrans图,病灶Ktrans值为0.39 min-1;2E:Ve图,病灶Ve值为0.51;2F:Kep图,病灶Kep值为0.77 min-1;2G:Vp图,病灶Vp值为5.83×10-3;2H:病理图(HE ×200),未见明确的神经侵犯。APTw:酰胺质子转移加权成像;APT;酰胺质子转移;Ktrans:容积转移分数;Ve:血管外细胞外间隙容积分数;Kep:速率常数;Vp:血浆容积分数。
Fig. 2  Female, 57 years old, poorly differentiated squamous cell carcinoma of the cervix, invading less than 1/2 layer, without nerve invasion (NPNI group). 2A: Axial T2WI image; 2B: Sagittal T2WI image shows irregular mass shadows on the left wall of the cervix, with high signal intensity on T2WI. The left vaginal fornix is full and the local vaginal wall thickens; 2C: APTw and T2WI fusion images, with an APT value of 2.85%; 2D: Ktrans plot, lesion Ktrans value is 0.39 min-1; 2E: Ve plot, lesion Ve value is 0.51; 2F: Kep plot, lesion Kep value is 0.77 min-1; 2G: Vp plot, lesion Vp value is 5.83×10-3; 2H: Pathological image (HE ×200), no clear nerve invasion observed. APTw: amide proton transfer weighted imaging; APT: amide proton transfer; Ktrans: volume transfer constant; Ve: extravascular volume fraction; Kep: exchange rate between EES and blood plasma; Vp: capillary plasma volume.

1.4 统计学方法

       使用SPSS 27.0软件(IBM, USA)和MedCalc 22.001(MedCalc Software, Ostend, Belgium)软件,使用组内相关系数(intra-class correlation coefficient, ICC)检验2位观察者所测各定量数据的一致性,ICC值<0.50一致性低,0.75>ICC值≥0.50一致性中等,ICC值≥0.75一致性高,取两组数据的平均值进行后续统计分析。应用Kolmogorov-Smirov检验数据是否符合正态分布,若数据符合正态分布,则用均值±标准差的形式表示,并进行两独立样本t检验比较差异;若数据不符合正态分布,则用中位数(25%分位数,75%分位数)的形式表示,并进行Mann-Whitney U检验比较差异。两组患者一般临床病理资料以例数和率(%)表示,组间比较采用Fisher确切概率法。随后采用受试者工作特征(receiver operating characteristic, ROC)曲线评估有差异的参数的诊断PNI的效能,获得相应的曲线下面积(area under the curve, AUC)、阈值、敏感度和特异度。采用二元logistic回归整体输入法计算有差异参数的联合诊断效能,DeLong检验进行各参数和联合参数AUC比较,Spearman相关分析检测APT值和有差异 DCE-MRI参数间的相关性。P<0.05为差异有统计学意义。

2 结果

2.1 一般资料

       两组患者在年龄、组织分化程度、病理分型、FIGO分期、淋巴-脉管间隙受侵、淋巴结转移、不规则阴道流血、绝经状态等一般临床病理信息间的差异均无统计学意义(P>0.05),而在肿瘤大小、深间质浸润、阴道受累间的差异具有统计学意义(P<0.05),具体如表2所示。

表2  患者一般临床病理资料
Tab. 2  General clinical and pathological data of patients

2.2 观察者间测量数据及一致性检验

       两位观察者测得的APT值及Ktrans值、Kep值、Ve值、Vp值结果一致性良好,ICC均>0.75(表3)。

表3  两名观察者的组内相关系数检验
Tab. 3  The test value of the intra group correlation coefficient of two observers

2.3 两组各定量参数的比较

       PNI组的APT值和Vp值大于NPNI组,差异具有统计学意义(P=0.029、0.005);两组间的Ktrans值、Kep值与Ve值差异均无统计学意义(P>0.05)(表4)。

表4  宫颈癌PNI组、NPNI组间APT、Ktrans、Kep、Ve及Vp值比较
Tab. 4  Comparison of APT, Ktrans, Kep, Ve, and Vpvalues between cervical cancer PNI group and NPNI group

2.4 宫颈癌PNI的APT值与Vp值的相关性

       Spearman相关系数显示APT值与Vp值间无相关性(r=0.219,P=0.198)。

2.5 APT值与Vp值对PNI的诊断效能

       APT值与Vp值评估宫颈癌PNI的AUC为0.717、0.785,两者联合后AUC为0.792(图3表5)。DeLong检验结果显示APT值、Vp值与两者联合后评估PNI的AUC间差异无统计学意义(P>0.05)。

图3  APT、Vp及两者联合后预测PNI的ROC曲线
Fig. 3  Predicting the ROC curve of PNI using APT, Vp, and their combination
表5  各参数评估宫颈癌神经侵犯的效能
Tab. 5  The efficacy of various parameters in evaluating cervical cancer nerve invasion

3 讨论

       术前诊断有无PNI的存在,有利于临床医生制订精准、个体化的治疗决策,保证治疗有效的同时避免过度治疗。MRI作为无创、安全的检查手段,其多序列、高分辨的优势在临床诊断中有重要价值。既往谢玉海等[19]、王灵华等[20]分别提出扩散加权成像(diffusion weighted imaging, DWI)联合DCE-MRI半定量参数、体素内不相干运动(intravoxel incoherent motion, IVIM)成像定量参数能较好地诊断直肠癌PNI。本研究通过联合APTw与DCE-MRI定量参数对宫颈癌PNI进行预测,结果表明:PNI组的APT值和Vp值大于NPNI组(P<0.05),APT值联合Vp值的诊断效能最高(AUC=0.792)。本研究首次在国内外报道APTw联合DCE-MRI评估宫颈癌PNI,为宫颈癌PNI的术前诊断提供了新思路。

3.1 APTw评估PNI的价值

       APTw是化学交换饱和转移(chemical exchange saturation transfer, CEST)成像的延续,该序列的信号强度由酰胺质子和水质子间的交换速率决定,而两者的交换速率又取决于体内环境的pH值和蛋白质浓度,已有研究表明交换速度与pH值及蛋白质、多肽等大分子的含量、浓度呈正相关[21]。本研究中PNI组的APT值高于NPNI组,分析出现这种情况的原因如下:一是与细胞密度有关,PNI的形成是由于宫颈癌细胞能刺激生成许旺细胞(Schwann cells, SCs),其衍生物趋化因子配体2(CCL2)会诱导宫颈癌细胞向神经细胞移动,从而造成神经的损伤和侵犯,此外,它还能加速癌细胞的生长与增殖[14],并且本研究中PNI组的低分化癌、ⅢC期宫颈癌占比更大,深间质浸润占比更多,恶性程度更高,因此该组的肿瘤细胞增殖代谢速度快,产生的蛋白和多肽浓度也更大[22];二是与微血管密度有关,PNI的状态与肿瘤组织中垂体腺苷酸环化酶激活多肽(pituitary adenylate cyclase-activating polypeptide, PACAP)的水平呈正相关,而PACAP可以诱导组织蛋白酶S(cathepsin S, CTSS)的表达,CTSS可以刺激血管的生成,从而增大微血管密度[23],微血管密度的增加可释放高度浓缩的可移动蛋白质和肽[24, 25],因此PNI组的微血管密度更大,产生的蛋白质和肽浓度也更大。而本研究中PNI组的DCE-MRI定量参数Vp值大于NPNI组,也恰好印证了此观点。

3.2 DCE-MRI评估PNI的价值

       DCE-MRI可通过动态捕捉对比剂在血管和血管外细胞外间隙(extracellular space of blood vessels, EES)的流动过程,无创性地评估肿瘤微环境的灌注、渗透性、血管生成活性及缺氧情况[26, 27]。目前多用于宫颈癌[28]、子宫内膜癌[29]及子宫肌瘤[30]等疾病的研究。DCE-MRI通过药代动力学双室模型延伸出Ktrans、Kep、Ve和Vp四种定量参数,Ktrans反映对比剂从血管流到EES的转移速度,Kep反映对比剂从EES反流到微血管的速度,Ktrans与Kep两者的值大小与血管内皮面积、血流速度、血管通透性有关[31]。既往LI等[32]提出有宫旁浸润的宫颈癌中的Ktrans值高于无宫旁浸润的宫颈癌,原因可能是因为恶性程度更高的肿瘤内不成熟血管更多,血管通透性更高,渗透性更好。本研究中两组间的Ktrans、Kep值相差不大且差异无统计学意义,可能是因为两组病理分型、分期等无差异,一定程度上会中和甚至反转参数间的差异。Vp反映平均血管密度,对灌注敏感[33]。本研究发现PNI组的Vp值大于NPNI组,可能是因为PNI组的神经元、周边神经的SCs与癌细胞间的相互趋向性、旁分泌相互作用为肿瘤提供了良好的生长环境[12],以及SCs能够分泌大量的蛋白酶来分解细胞外基质,从而形成方便肿瘤转移的通道[23],因此肿瘤细胞增殖快,耗氧量大,刺激更多毛细血管生成,微血管密度更大。Ve反映EES容积分数,可反映血管的通透性、细胞大小密度及肿瘤坏死程度[34]。本研究结果显示PNI组的Ve小于NPNI组,可能是因为PNI组的低分化癌占比较多,肿瘤生长速度快,细胞密度大,导致EES容积减小;既往ZHANG等[16]提出Ve值较低的宫颈癌患者的2年无病生存率(disease-free survival, DFS)会明显降低;NAGASAKA等[35]通过对乳腺癌分子亚型的研究也表明Ve值越低与肿瘤越高的侵袭性、增殖力有关。但本研究中两组病例的Ve值差异无统计学意义,可能与样本量较小有关。本组病例APT值与Vp值间无相关性,各参数AUC与两者联合后AUC相比差异无统计学意义,但联合后的AUC呈现出升高的趋势,在这方面可以扩大样本量后继续研究。

3.3 本研究的局限性

       本研究存在一定局限性:(1)样本量相对较小,可能影响各参数联合后的诊断效能;(2)测量病灶只勾画了肿瘤最大层面的实质区域,未对肿瘤进行全域分析,可能会遗漏部分肿瘤异质性信息,未来可全域勾画进行影像组学相关研究;(3)APTw与DCE-MRI扫描层厚不同,两个序列间所勾画的ROI未能完全匹配;(4)在未来研究中,我们还需要根据宫颈癌分期将研究细化,进一步探讨影像学手段对进展期宫颈癌PNI的评估。

4 结论

       综上所述,APTw的APT值和DCR-MRI的Vp值能够无创、有效评估宫颈癌PNI,联合后的诊断效能表现出提高的趋势,具有一定临床应用价值。

[1]
ZHENG R S, CHEN R, HAN B F, et al. Cancer incidence and mortality in China, 2022[J]. Zhonghua Zhong Liu Za Zhi, 2024, 46(3): 221-231. DOI: 10.3760/cma.j.cn112152-20240119-00035.
[2]
COHEN P A, JHINGRAN A, OAKNIN A, et al. Cervical cancer[J]. Lancet, 2019, 393(10167): 169-182. DOI: 10.1016/S0140-6736(18)32470-X.
[3]
CRONIN K A, SCOTT S, FIRTH A U, et al. Annual report to the nation on the status of cancer, part 1: national cancer statistics[J]. Cancer, 2022, 128(24): 4251-4284. DOI: 10.1002/cncr.34479.
[4]
LI J N, LIU G M, LUO J Y, et al. Cervical cancer prognosis and related risk factors for patients with cervical cancer: a long-term retrospective cohort study[J/OL]. Sci Rep, 2022, 12(1): 13994 [2023-10-08]. https://pubmed.ncbi.nlm.nih.gov/35978078/. DOI: 10.1038/s41598-022-17733-8.
[5]
AL-SUKHNI E, ATTWOOD K, GABRIEL E M, et al. Lymphovascular and perineural invasion are associated with poor prognostic features and outcomes in colorectal cancer: a retrospective cohort study[J]. Int J Surg, 2017, 37: 42-49. DOI: 10.1016/j.ijsu.2016.08.528.
[6]
CAO Y H, DENG S H, YAN L Z, et al. Perineural invasion is associated with poor prognosis of colorectal cancer: a retrospective cohort study[J]. Int J Colorectal Dis, 2020, 35(6): 1067-1075. DOI: 10.1007/s00384-020-03566-2.
[7]
SHI R J, KE B W, TANG Y L, et al. Perineural invasion: a potential driver of cancer-induced pain[J/OL]. Biochem Pharmacol, 2023, 215: 115692 [2024-03-09]. https://pubmed.ncbi.nlm.nih.gov/37481133/. DOI: 10.1016/j.bcp.2023.115692.
[8]
HU J M, CHEN W Z, SHEN L S, et al. Crosstalk between the peripheral nervous system and breast cancer influences tumor progression[J/OL]. Biochim Biophys Acta Rev Cancer, 2022, 1877(6): 188828 [2024-06-09]. https://pubmed.ncbi.nlm.nih.gov/36283598/. DOI: 10.1016/j.bbcan.2022.188828.
[9]
CHEN X L, DUAN H, ZHAO H W, et al. Perineural invasion in cervical cancer: a multicenter retrospective study[J/OL]. Eur J Surg Oncol, 2024, 50(6): 108313 [2024-06-09]. https://pubmed.ncbi.nlm.nih.gov/38579659/. DOI: 10.1016/j.ejso.2024.108313.
[10]
LIEBIG C, AYALA G, WILKS J A, et al. Perineural invasion in cancer: a review of the literature[J]. Cancer, 2009, 115(15): 3379-3391. DOI: 10.1002/cncr.24396.
[11]
LI J B, KANG R, TANG D L. Cellular and molecular mechanisms of perineural invasion of pancreatic ductal adenocarcinoma[J]. Cancer Commun, 2021, 41(8): 642-660. DOI: 10.1002/cac2.12188.
[12]
MARCHESI F, PIEMONTI L, MANTOVANI A, et al. Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis[J]. Cytokine Growth Factor Rev, 2010, 21(1): 77-82. DOI: 10.1016/j.cytogfr.2009.11.001.
[13]
SAKURAGI N. Nerve-sparing radical hysterectomy: time for a new standard of care for cervical cancer?[J]. J Gynecol Oncol, 2015, 26(2): 81-82. DOI: 10.3802/jgo.2015.26.2.81.
[14]
HUANG T, FAN Q, WANG Y W, et al. Schwann cell-derived CCL2 promotes the perineural invasion of cervical cancer[J/OL]. Front Oncol, 2020, 10: 19 [2023-11-07]. https://pubmed.ncbi.nlm.nih.gov/32064233/. DOI: 10.3389/fonc.2020.00019.
[15]
SONG Q L, TIAN S F, MA C J, et al. Amide proton transfer weighted imaging combined with dynamic contrast-enhanced MRI in predicting lymphovascular space invasion and deep stromal invasion of IB1-IIA1 cervical cancer[J/OL]. Front Oncol, 2022, 12: 916846 [2023-10-22]. https://pubmed.ncbi.nlm.nih.gov/36172148/. DOI: 10.3389/fonc.2022.916846.
[16]
ZHANG Q, GUO J X, OUYANG H, et al. Added-value of dynamic contrast-enhanced MRI on prediction of tumor recurrence in locally advanced cervical cancer treated with chemoradiotherapy[J]. Eur Radiol, 2022, 32(4): 2529-2539. DOI: 10.1007/s00330-021-08279-w.
[17]
HUANG Q H, WANG Y C, MENG X Y, et al. Amide proton transfer-weighted imaging combined with ZOOMit diffusion kurtosis imaging in predicting lymph node metastasis of cervical cancer[J/OL]. Bioengineering, 2023, 10(3): 331 [2024-03-12]. https://pubmed.ncbi.nlm.nih.gov/36978722/. DOI: 10.3390/bioengineering10030331.
[18]
ADEBANJI A, ASAMOAH-BOAHENG M, OSEI-TUTU O. Robustness of the Quadratic Discriminant Function to correlated and uncorrelated normal training samples[J/OL]. Springerplus, 2016, 5: 102 [2023-10-27]. https://pubmed.ncbi.nlm.nih.gov/26877900/. DOI: 10.1186/s40064-016-1718-3.
[19]
谢玉海, 钱银锋, 刘星, 等. 3.0T MR扩散加权成像及动态增强诊断直肠癌神经脉管侵犯的价值[J]. 放射学实践, 2021, 36(5): 637-641. DOI: 10.13609/j.cnki.1000-0313.2021.05.013.
XIE Y H, QIAN Y F, LIU X, et al. Value of the diffusion weighted imaging and dynamic contrast enhanced MRI for diagnosis of neurovascu- lar invasion of rectal cancer[J]. Radiol Pract, 2021, 36(5): 637-641. DOI: 10.13609/j.cnki.1000-0313.2021.05.013.
[20]
王灵华, 孟闫凯, 李绍东, 等. MR体素内不相干运动定量参数与直肠腺癌脉管、神经侵犯的相关性分析[J]. 实用放射学杂志, 2023, 39(3): 408-412. DOI: 10.3969/j.issn.1002-1671.2023.03.016.
WANG L H, MENG Y K, LI S D, et al. Correlation analysis between quantitative parameters of incoherent motion in MR voxel and vascular and neural invasion in rectal adenocarcinoma[J]. J Pract Radiol, 2023, 39(3): 408-412. DOI: 10.3969/j.issn.1002-1671.2023.03.016.
[21]
孔雅晴, 曲倩倩, 明蕾, 等. 酰胺质子转移成像在泌尿生殖系统疾病中的研究进展[J]. 磁共振成像, 2021, 12(10): 118-120. DOI: 10.12015/issn.1674-8034.2021.10.031.
KONG Y Q, QU Q Q, MING L, et al. Research progress of amidine proton transfer imaging in genitourinary system disease[J]. Chin J Magn Reson Imag, 2021, 12(10): 118-120. DOI: 10.12015/issn.1674-8034.2021.10.031.
[22]
MENG N, WANG X J, SUN J, et al. Application of the amide proton transfer-weighted imaging and diffusion kurtosis imaging in the study of cervical cancer[J]. Eur Radiol, 2020, 30(10): 5758-5767. DOI: 10.1007/s00330-020-06884-9.
[23]
CHEN G Q, ZHENG Z, SUN H, et al. Dedifferentiated Schwann cells promote perineural invasion mediated by the PACAP paracrine signalling in cervical cancer[J]. J Cell Mol Med, 2023, 27(23): 3692-3705. DOI: 10.1111/jcmm.17897.
[24]
孟醒, 刘爱连. 酰胺质子转移成像在子宫MRI检查中的应用进展[J]. 中国医学影像学杂志, 2023, 31(4): 413-417. DOI: 10.3969/j.issn.1005-5185.2023.04.023.
MENG X, LIU A L. Progress on application of amide proton transfer imaging in uterine MRI examination[J]. Chin J Med Imag, 2023, 31(4): 413-417. DOI: 10.3969/j.issn.1005-5185.2023.04.023.
[25]
HOU M Y, SONG K, REN J P, et al. Comparative analysis of the value of amide proton transfer-weighted imaging and diffusion kurtosis imaging in evaluating the histological grade of cervical squamous carcinoma[J/OL]. BMC Cancer, 2022, 22(1): 87 [2023-10-22]. https://pubmed.ncbi.nlm.nih.gov/35057777/. DOI: 10.1186/s12885-022-09205-z.
[26]
HAMEEDUDDIN A, SAHDEV A. Diffusion-weighted imaging and dynamic contrast-enhanced MRI in assessing response and recurrent disease in gynaecological malignancies[J/OL]. Cancer Imaging, 2015, 15(1): 3 [2023-10-19]. https://pubmed.ncbi.nlm.nih.gov/25889065/. DOI: 10.1186/s40644-015-0037-1.
[27]
ZHENG D C, YUE Q Y, REN W, et al. Early responses assessment of neoadjuvant chemotherapy in nasopharyngeal carcinoma by serial dynamic contrast-enhanced MR imaging[J]. Magn Reson Imaging, 2017, 35: 125-131. DOI: 10.1016/j.mri.2016.08.011.
[28]
HILLESTAD T, HOMPLAND T, FJELDBO C S, et al. MRI distinguishes tumor hypoxia levels of different prognostic and biological significance in cervical cancer[J]. Cancer Res, 2020, 80(18): 3993-4003. DOI: 10.1158/0008-5472.CAN-20-0950.
[29]
YE Z J, NING G, LI X S, et al. Endometrial carcinoma: use of tracer kinetic modeling of dynamic contrast-enhanced MRI for preoperative risk assessment[J/OL]. Cancer Imaging, 2022, 22(1): 14 [2024-03-12]. https://pubmed.ncbi.nlm.nih.gov/35264244/. DOI: 10.1186/s40644-022-00452-8.
[30]
ŁOZIŃSKI T, CIEBIERA M, ŁUCZYŃSKA E, et al. Magnetic resonance-guided high-intensity focused ultrasound ablation of uterine fibroids-efficiency assessment with the use of dynamic contrast-enhanced magnetic resonance imaging and the potential role of the administration of uterotonic drugs[J/OL]. Diagnostics, 2021, 11(4): 715 [2024-03-12]. https://pubmed.ncbi.nlm.nih.gov/33923667/. DOI: 10.3390/diagnostics11040715.
[31]
MARKIET K, GLINSKA A, NOWICKI T, et al. Feasibility of intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in differentiation of benign parotid gland tumors[J/OL]. Biology, 2022, 11(3): 399 [2024-02-16]. https://pubmed.ncbi.nlm.nih.gov/35336773/. DOI: 10.3390/biology11030399.
[32]
LI X X, LIN T T, LIU B, et al. Diagnosis of cervical cancer with parametrial invasion on whole-tumor dynamic contrast-enhanced magnetic resonance imaging combined with whole-lesion texture analysis based on T2- weighted images[J/OL]. Front Bioeng Biotechnol, 2020, 8: 590 [2024-03-25]. https://pubmed.ncbi.nlm.nih.gov/32596230/. DOI: 10.3389/fbioe.2020.00590.
[33]
JACKSON A, O'CONNOR J P B, PARKER G J M, et al. Imaging tumor vascular heterogeneity and angiogenesis using dynamic contrast-enhanced magnetic resonance imaging[J]. Clin Cancer Res, 2007, 13(12): 3449-3459. DOI: 10.1158/1078-0432.CCR-07-0238.
[34]
林凯, 罗凡, 王智文. DCE-MRI定量和半定量分析对结直肠良恶性肿瘤的鉴别诊断价值[J]. 放射学实践, 2023, 38(5): 587-592. DOI: 10.13609/j.cnki.1000-0313.2023.05.010.
LIN K, LUO F, WANG Z W. Value of DCE-MRI quantitative and semi-quantitative analysis in the differential diagnosis of benign and malignant colorectal tumors[J]. Radiol Pract, 2023, 38(5): 587-592. DOI: 10.13609/j.cnki.1000-0313.2023.05.010.
[35]
NAGASAKA K, SATAKE H, ISHIGAKI S, et al. Histogram analysis of quantitative pharmacokinetic parameters on DCE-MRI: correlations with prognostic factors and molecular subtypes in breast cancer[J]. Breast Cancer, 2019, 26(1): 113-124. DOI: 10.1007/s12282-018-0899-8.

上一篇 基于APTw的影像组学术前预测宫颈癌淋巴血管间隙侵犯
下一篇 基于矢状位T2WI瘤内瘤周影像组学列线图术前预测ⅠB期和ⅡA期宫颈癌的研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2