分享:
分享到微信朋友圈
X
临床研究
基于Kaiser评分临床-多参数MRI诊断模型在乳腺良恶性病变鉴别诊断中的价值
高文霞 盛美红 肖建云 倪建 严循成 孙蓉

Cite this article as: GAO W X, SHENG M H, XIAO J Y, et al. Value of a clinical-multiparametric MRI diagnostic model based on Kaiser score in the differential diagnosis of benign and malignant breast lesions[J]. Chin J Magn Reson Imaging, 2024, 15(8): 117-123.本文引用格式:高文霞, 盛美红, 肖建云, 等. 基于Kaiser评分临床-多参数MRI诊断模型在乳腺良恶性病变鉴别诊断中的价值[J]. 磁共振成像, 2024, 15(8): 117-123. DOI:10.12015/issn.1674-8034.2024.08.018.


[摘要] 目的 建立基于Kaiser评分(Kaiser score, KS)临床-多参数乳腺MRI影像诊断模型,并探讨其在乳腺良恶性病变诊断及鉴别中的价值。材料与方法 回顾性分析2019年1月至2022年12月经病理证实乳腺肿瘤患者389名(共403例病灶)的术前MRI及临床病理资料,其中良性组100例及恶性组303例。记录基于KS中的MRI图像特征、表观扩散系数(apparent diffusion coefficient, ADC)值及相关临床指标,单因素分析比较乳腺良恶性病变组间各指标之间的差异,多因素logistic回归分析筛选乳腺恶性病变的独立危险因素,建立临床-多参数MRI影像诊断模型,绘制受试者工作特征(receiver operating characteristic, ROC)曲线评估其诊断效能,DeLong检验比较临床-多参数MRI影像诊断模型与单纯KS的诊断效能。结果 乳腺良恶性病变组间根征、时间-信号强度曲线(time-signal intensity curve, TIC)类型、边缘、内部强化、水肿、ADC值、年龄、妇科肿瘤病史、绝经史差异有统计学意义(P<0.001),多因素logistic回归分析显示病灶根征阳性、TIC为Ⅲ型、边缘不光整、年龄大、存在妇科肿瘤史[比值比(odds ratio, OR)=7.889、7.707、4.398、1.122、0.239,P<0.05]是乳腺恶性病变的独立预测因子,基于KS相关特征、年龄、妇科肿瘤史建立临床-多参数MRI影像诊断模型。以乳腺良恶性为标准绘制KS及临床-多参数MRI影像诊断模型的ROC曲线,敏感度分别为97.4%、91.1%,特异度为69.3%、84.2%,曲线下面积(area under the curve, AUC)值为0.912、0.950;DeLong检验显示两者的AUC差异有统计学意义(P=0.006)。腋窝淋巴结(axillary lymph node, ALN)转移阳性组与阴性组在乳腺癌根征(χ2=6.477,P=0.011)、瘤周水肿(χ2=12.241,P<0.001)、ADC值(Z=10.988,P=0.015)差异有统计学意义。多因素logistic回归分析显示瘤周水肿(OR=2.807,P=0.006)会增加ALN转移风险,存在瘤周水肿增加ALN转移的风险是无此特征患者的2.807倍。结论 KS对乳腺病灶有较高的诊断价值,基于KS的临床-多参数MRI影像诊断模型有助于提高乳腺良恶性病变的诊断效能,且乳腺MRI原发灶存在瘤周水肿可作为乳腺癌ALN转移的独立预测因子。
[Abstract] Objective To establish a clinical-multiparameter breast MRI diagnostic model based on Kaiser score (KS) and explore its value in the diagnosis and differentiation of benign and malignant breast lesions.Materials and Methods Clinical and preoperative MRI data of 389 patients with 403 lesions confirmed by pathology were retrospectively analyzed between January 2019 and December 2022, collected MRI, clinical and pathological data of breast lesions, including 100 cases in benign group and 303 cases in malignant group. Based on MRI image features, apparent diffusion coefficient (ADC) value and related clinical indicators in KS, comparing the differences between the indicators of benign and malignant breast lesions by univariate analysis, multivariate logistic regression analysis established clinical-multiparameter MRI imaging diagnosis model. The receiver operating characteristic (ROC) cruve was plotted to evaluate the diagnostic performance. DeLong test was used to compare the diagnostic efficacy of clinical-multiparameter MRI imaging diagnosis model with the KS.Results Root features, time-signal intensity curves (TIC) type, margin, internal enhancement, edema, ADC value, age, gynecological tumor history, menopausal status between benign and malignant breast lesions with a statistical difference (P<0.001). Multivariate logistic regression analysis showed positive root sign, TIC type Ⅲ, rough margins, old age, and history of gynecological tumors [odds ratio (OR)=7.889, 7.707, 4.398, 1.122, 0.239, P<0.05] was an independent predictor of malignant breast lesions. A clinical-multiparametric MRI imaging diagnostic model was established based on KS correlation characteristics, age, and gynecological tumor history. The ROC curves of KS and clinically-multi-parameter MRI diagnostic models were mapped using benign and malignant breast as criteria. Sensitivity was 97.4% and 91.1%, specificity was 69.3% and 84.2%, respectively. Area under the curve (AUC) values were 0.912 and 0.950. The AUC difference was statistically significant (P=0.006). There were significant differences between the positive and negative ALN metastasis groups in breast cancer root sign (χ2=6.477, P=0.011), peritumoral edema (χ2=12.241, P<0.001), and ADC value (Z=10.988, P=0.015). Multivariate logistic regression analysis showed that peritumoral brain edema (OR=2.807, P=0.006) increased the risk of axillary lymph node (ALN) metastasis, and the presence of peritumoral edema increased the risk of ALN metastasis 2.807 times higher than in patients without this feature.Conclusions KS has high diagnostic value for breast lesions, the clinical-multiparametric MRI diagnostic model based on KS is subservient to improve the diagnostic efficacy of benign and malignant breast lesions, and the presence of peritumoral edema in the primary breast MRI can be used as an independent predictor of ALN metastasis in breast cancer.
[关键词] 乳腺癌;磁共振成像;Kaiser评分;淋巴结转移;临床因素
[Keywords] breast cancer;magnetic resonance imaging;Kaiser score;lymph node metastasis;clinical factors

高文霞 1   盛美红 2*   肖建云 1   倪建 1   严循成 1   孙蓉 1  

1 如皋市人民医院放射科,如皋 226500

2 南通大学第二附属医院(南通市第一人民医院)影像科,南通 226001

通信作者:盛美红,E-mail:smh4127@163.com

作者贡献声明:盛美红设计本研究的方案,对稿件重要内容进行了修改;高文霞起草和撰写稿件,收集、整理、分析和解释本研究的数据;肖建云、倪建、严循成、孙蓉参与本研究的数据收集,对稿件重要内容进行了修改;高文霞获得了南通市基础科学研究和社会民生科技计划项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 南通市基础科学研究和社会民生科技计划项目 MSZ2022083
收稿日期:2024-03-20
接受日期:2024-08-05
中图分类号:R445.2  R737.9 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.08.018
本文引用格式:高文霞, 盛美红, 肖建云, 等. 基于Kaiser评分临床-多参数MRI诊断模型在乳腺良恶性病变鉴别诊断中的价值[J]. 磁共振成像, 2024, 15(8): 117-123. DOI:10.12015/issn.1674-8034.2024.08.018.

0 引言

       乳腺癌是全球女性中最常见的恶性肿瘤,对女性的健康和生活质量构成了巨大威胁[1]。乳腺MRI是乳腺癌诊断最敏感的成像方式,已成为乳腺癌检出、诊断和分期中不可或缺的工具[2]。美国放射学会制定的乳腺影像报告和数据系统(breast imaging reporting and data system, BI-RADS)并没有提供进行诊断决策的具体方法,在使用BI-RADS词典进行乳腺MRI诊断时,阅片者间的诊断准确性差异较大[3]。BALTZER等[4]提出了一个用于乳腺MRI循证诊断的评分系统Kaiser评分(Kaiser score, KS)。KS是基于动态对比增强MRI及5个BI-RADS词汇标准的决策树结构,用于乳腺MRI诊断的循证决策。研究显示,KS在不降低诊断准确性的情况下,为乳腺病变的表征提供了一个简单而直观的决策规则,且使用KS进行乳腺MRI诊断时阅片者间的诊断差异很小[5]。近年来,KS在乳腺MRI诊断中的应用研究日益广泛,在模型优化、诊断效能验证、与其他诊断模型对比等方面均有相关研究[6, 7, 8]。模型优化方面相关研究多是对单独因素与KS进行联合,且联合诊断对KS诊断效能提升价值有限。AN等[9]通过4个不同ADC阈值探讨扩散加权成像(diffusion-weighted imaging, DWI)作为KS的补充,发现仅使用DWI作为KS的辅助手段并未改善乳腺MRI诊断性能。

       本研究旨在建立基于KS临床-多参数乳腺MRI影像诊断模型,并探讨其在乳腺良恶性病变诊断及鉴别中的价值,为患者诊断、预后预测提供依据。

1 材料与方法

1.1 研究对象

       回顾性收集南通市第一人民医院2019年1月至2022年12月经手术或活检病理证实的456名患者489例乳腺病灶。纳入标准:(1)经乳腺MRI检查发现单侧或双侧乳腺病变;(2)乳腺MRI检查在活检或化疗前14天内进行;(3)具有完整的临床资料及MRI数据;(4)病灶大小范围在0.5~10.0 cm。排除标准:(1)乳腺MRI图像质量差,伪影较大;(2)病理结果不明确。因部分序列图像伪影大、病理结果有争议排除了86个病灶,最终纳入389名患者(女388名,男1名),共有403例乳腺病灶。采集并记录389名患者的年龄、绝经状态(绝经、尚未绝经)以及妇科肿瘤史结果,妇科肿瘤史主要包括罹患宫颈癌、子宫内膜癌、卵巢癌、子宫肌瘤等与子宫及附件相关的肿瘤病史即为妇科肿瘤史阳性,否则为阴性,男性患者直接归为阴性。本研究遵守《赫尔辛基宣言》,经南通市第一人民医院伦理委员会批准,免除受试者知情同意,批准文号:2021YL038。

1.2 磁共振检查设备及成像技术

       研究采用德国Siemens 3.0 T磁共振扫描仪(Verio; Siemens, Erlangen, Germany),16通道相控阵乳腺专用线圈,俯卧位,头先进,双乳自然悬垂于乳腺线圈内,乳头保持位于线圈中心位置。扫描使用常规MRI平扫、DWI扫描及动态对比增强扫描,扫描序列及参数:(1)横断面TIRM序列(TR 4300 ms,TE 61 ms,翻转角80°,矩阵340×100,层厚4.0 mm,层间隔0.4 mm),T1WI脂肪抑脂(non-fat sat-T1WI,non-fs-T1WI)序列(TR 6.04 ms,TE 2.45 ms,翻转角20°,矩阵340×100,层厚1.4 mm,层间隔0.28 mm);(2)弥散加权成像(b=50、400、800 s/mm2)(TR 7300 ms,TE 82 ms,翻转角90°,矩阵420×75,层厚4.0 mm,层间隔0.4 mm);(3)动态对比增强扫描,T1-VIBE序列,TR 4.67 ms,TE 1.66 ms,翻转角10°,矩阵340×100,层厚1.2 mm,层间隔0.24 mm,先扫蒙片,而后高压注射器(OptiStar Elite; Liebel, Cincinnati, USA)以2.0 mL/s流率注射对比剂钆喷酸葡胺(马根维显,Bayer Pharma AG)15~20 mL及同等量生理盐水,注射对比剂完成后延迟25 s开始扫描动态对比增强第一期,直至5个动态对比增强时相采集完成,每个时相采集1 min。

1.3 影像分析

       由1名放射科副主任医师和1名放射科主治医师(分别具有10年和4年乳腺影像学经验)对手术报告和病理结果不知情的情况下,在PACS工作站对患者的所有乳腺MRI检查序列进行回顾性独立阅片,当诊断结果不一致时,经讨论达成一致意见后进行评价。评价内容包括:(1)根征,DCE-MRI第一期观察病边缘不规则呈不接触胸壁的针状突起被定义为根征阳性;(2)TIC类型,TIC的类型由初始和延迟增强决定,持续信号增加被定义为Ⅰ型(流入型),一段时间内信号稳定为Ⅱ型(平台型),从初始阶段到延迟阶段信号下降被定义为Ⅲ型(流出型);(3)边缘,光滑和不规则;(4)内部强化模式,分为均匀、离心或边缘强化和不均匀或环形强化;(5)瘤周水肿,病灶周围、弥漫性同侧或皮下的T2WI高信号,分为无周围局灶水肿或双侧弥漫性水肿和周围局灶水肿或单侧弥漫性水肿;(6)ADC值,在ADC图上选取病变实性部分的最大层面,同时避开坏死、囊变、出血区勾画感兴趣区(region of interest, ROI),测量三次,最终结果取平均值,勾画过程见图1。按照KS评分规则分别记录每个病灶的各个特征,根据KS流程图计算每个病灶的分值,范围为1~11,并以4分为临界值,1~4分为良性,5~11分为恶性[4],记录病灶的KS分类。KS规则见图2

图1  ADC值测量及ROI勾画过程。在ADC图上选取病变实性部分的最大层面,连续勾画三次ROI(平均大小为5~10 mm2),最终结果取三次平均值。ADC:表观扩散系数,ROI:感兴趣区。
Fig. 1  ADC value measurement and ROI delineation process. The maximum level of the solid part of the lesion is selected on the ADC chart, and the ROI is delineated for three consecutive times (the average size is 5-10 mm2), and the final result is averaged for three times. ADC: apparent diffusion coefficient; ROI: region of interest.
图2  Kaiser评分(KS)流程图。数字是对应KS分值。
Fig. 2  Kaiser score (KS) flow chart. Numbers are the corresponding KS scores.

1.4 统计学分析

       采用SPSS 26.0和MedCalc 15.0软件进行统计分析。连续变量符合正态分布采用均值±标准差表示,不符合正态分布时采用MP25,P75)表示。正态分布的定量变量比较采用t检验,否则采用Mann-Whitney U检验;两组间比较采用独立样本t检验,计数资料间比较采用χ2检验。采用单因素分析比较乳腺良恶性病变组间各指标之间的差异,多因素logistic回归分析筛选乳腺恶性病变的独立危险因素建立临床-多参数MRI影像诊断模型,ROC曲线评估其诊断效能,使用DeLong检验比较临床-多参数MRI影像诊断模型与单纯KS诊断效能。P<0.05为差异有统计学意义。

2 结果

2.1 一般资料

       本研究共纳入389名患者(403例病灶),年龄(52.9±12.8)岁,其中恶性303例和良性100例病灶,有14名患者有两处病灶,其中3名患者两处病灶均为良性,8名患者一处病灶为良性、一处病灶为恶性,3名患者两处病灶均为恶性。良性病灶100例中纤维腺瘤38例、导管内乳头状瘤25例、腺病17例、炎症12例、良性叶状肿瘤5例、囊肿、囊肿伴感染及男性乳腺发育各1例;恶性病灶303例中浸润性导管癌184例、混合性小管/小叶癌59例、导管内癌20例、黏液癌9例、导管内乳头状癌7例、浸润性小管癌5例、浸润性小叶癌4例、Paget病4例、恶性叶状肿瘤3例、化生癌2例、髓样癌2例、淋巴瘤2例、基底细胞癌1例、纤维腺瘤原位癌变1例。403例病灶KS相关参数特征结果见表1

表1  403例病灶KS相关参数特征结果
Tab. 1  Results of 403 lesions in KS correlation parameter feature

2.2 基于KS临床-多参数MRI影像诊断模型的诊断效能分析

       经病理证实的403个病灶中,所有病变的KS的曲线下面积(area under the curve, AUC)为0.912[95%置信区间(confidence interval, CI):0.901~0.953],KS对所有病变的敏感度和特异度分别为97.4%和69.3%。

       经KS诊断,303例乳腺恶性病变中271例(89.4%)真阳性病灶和32例(10.6%)假阴性病灶。32例病灶中有19例表现为肿块,有13例表现为非肿块强化。在32例假阴性结果中,16例为浸润性导管癌,8例为导管原位癌,5例为浸润性小叶癌,2例为黏液癌,1例为恶性叶状肿瘤。与真阴性组相比,假阴性组多表现为边缘较光整(P<0.001),内部强化较均匀(P<0.05)。

       经KS诊断,100例乳腺良性病变有86例(86.0%)真阴性病灶和14例(14.0%)假阳性病灶。14例病灶中有8例表现为肿块,有6例表现为非肿块强化。在14例假阳性结果中,7例为导管内乳头状瘤,3例为炎症,2例为硬化性腺病,1例为良性叶状肿瘤,1例为纤维腺瘤。与真阳性组相比,假阳性组包括边缘欠规则,部分病灶存在轻度弥散受限等特征。典型病例见图3图4,KS的ROC曲线见图5

图3  女,35岁,肉芽肿性小叶炎患者(穿刺)。3A~3D:多参数MRI图像。3A:TIRM序列显示右乳外侧乳头后方见片状等信号,周围见水肿信号;3B:ADC图显示病变区域平均ADC值约1.348×10-3 mm2/s;3C:DCE-2期病变呈节段样分布的非肿块强化,病灶内部呈簇集强化,根征阴性;3D:TIC类型为Ⅰ型。KS为3分。
图4  女,48岁,乳腺癌腋窝淋巴结转移患者,病理为浸润性导管癌。4A~4D:多参数MRI图像。4A:TIRM序列显示左乳外侧卵圆形肿块,病灶周围少许条状高信号水肿;4B:ADC图示病灶中央平均ADC值约为0.970×10-3 s/mm2;4C:DCE-1期示病灶边缘不清晰、有毛刺,根征阳性,内部混杂强化;4D:TIC呈Ⅲ型。KS为11分。ADC:表观扩散系数;DCE:动态对比增强;TIC:时间-信号强度曲线;KS:Kaiser评分。
Fig. 3  A 35 years old female with granulomatous phylitis (puncture). 3A-3D: Multi parameter MR images. 3A: TIRM sequence shows the signal behind the lateral nipple of the right breast, and edema is seen around the lesion; 3B: ADC chart shows the average ADC value of the lesion area is about 1.348×10-3 mm2/s; 3C: DCE-2 lesion is distributed as non-mass enhancement , and the inside lesion is showed clustered enhancement, and root sign is negative; 3D: TIC is type Ⅰ. The KS is point 3.
Fig. 4  A 48 years old female with axillary lymph node metastasis of breast invasive ductal carcinoma. 4A-4D: Multi parameter MR images. 4A: TIRM sequence shows a lateral oval mass of left breast with a few strip edema around the lesion; 4B: ADC chart diagram the mean ADC value of the central lesion is about 0.970×10-3 s/mm2; 4C: DCE-1 shows vague margin, spicule sign, positive root sign and enhanced internal confounding; 4D: TIC is type Ⅲ. The KS is point 11. ADC: apparent diffusion coefficient; DCE: dynamic contrast-enhanced; TIC: time-signal intensity curve; KS: Kaiser score.
图5  KS与临床-多参数MRI影像诊断模型的受试者工作特征曲线。KS:Kaiser评分。
Fig. 5  Receiver operating characteristic curve for KS and clinical-multiparametric MRI diagnostic model. KS: Kaiser score.

2.3 临床-多参数MRI影像诊断模型的建立及与KS对乳腺良恶性病变诊断效能的比较

       乳腺良性病变组与恶性病变组年龄(Z=-7.644,P<0.001)、绝经状态(χ2=31.532,P<0.001)、妇科肿瘤史(χ2=25.293,P<0.001)差异有统计学意义。logistic回归显示病灶根征阳性、TIC为Ⅲ型、边缘不光整、年龄大、存在妇科肿瘤史[比值比(odds ratio, OR)=7.889、7.707、4.398、1.122、0.239,P<0.05]是乳腺癌独立预测因子。建立临床-多参数MRI影像诊断模型,其敏感度为91.1%,特异度84.2%,AUC值为0.950(95% CI:0.924~0.969)。基于KS乳腺良恶性病变的影像相关因素分析见表2,基于KS临床-多参数MRI影像诊断模型的ROC曲线见图5。KS与临床-多参数MRI影像诊断模型均表现出较高的诊断性能,DeLong检验显示两个诊断模型的AUC差异有统计学意义(P=0.006)。ADC值、KS与临床-多参数MRI影像诊断模型的敏感度、特异度、AUC见表3

表2  基于KS乳腺良恶性病变的影像相关因素分析
Tab. 2  Analysis of imaging-related factors based on benign and malignant breast lesions in KS
表3  ADC值、KS、基于KS临床-多参数MRI影像诊断模型对乳腺MRI良恶性病变的诊断效能
Tab. 3  ADC values, KS, diagnostic efficacy of benign and malignant breast MRI

2.4 乳腺癌ALN转移状态与患者临床特征、MRI特征的关系

       乳腺癌ALN转移阳性组与阴性组仅根征(χ2=6.477,P=0.011)、瘤周水肿(χ2=12.241,P<0.001)、ADC值(Z=10.988,P=0.015)差异有统计学意义(P<0.05)。KS预测乳腺癌ALN的敏感度64.7%,特异度59.9%。使用多因素logistic回归分析显示存在瘤周水肿增加ALN转移的风险,是无此特征患者的2.807倍(P<0.05)。影响乳腺癌ALN转移的相关指标分析见表4

表4  影响乳腺癌腋窝淋巴结转移的相关指标分析
Tab. 4  Analysis of relevant indicators affecting axillary lymph node metastasis in breast cancer

3 讨论

       KS是一个结构化、简单直观的乳腺MRI诊断流程图,用于区分乳腺MRI良恶性病变。本研究基于KS,联合ADC值和部分乳腺癌临床高危因素,建立基于KS的临床-多参数MRI影像诊断模型。尽管目前对KS的研究应用甚少,但本研究进一步验证了KS的稳健性、高准确性,且本研究纳入了乳腺癌临床高危因素,进一步提高乳腺良恶性病变的诊断效能,对乳腺病变的诊断及个体化治疗及预后评估有重要临床价值,为乳腺MRI诊断预测提供更多诊断、治疗依据。

3.1 KS对乳腺MRI良恶性病变鉴别的诊断性能

       KS在多项研究中表现出优异的诊断性能[10, 11, 12],其敏感度为95.1%~98.9%,特异度为58.3%~82.5%。冯琳琳等[13]对199个乳腺MRI病灶进行分析,研究显示KS有较高的诊断敏感度、特异度、阳性预测值、阴性预测值和准确率(94.2%、84.2%、86.7%、93.0%、89.4%),其对乳腺良恶性病变的诊断效能优于BI-RADS分类。肿块和非肿块样强化病变均可通过KS准确评估[14],且KS的阅片者间一致性良好,可以弥补阅片者的经验不足[15, 16]。本研究中KS对病变的敏感度为97.4%,特异度为69.3%,AUC为0.93,与以前的研究结果一致[5, 17]。KS基于T2WI和动态对比增强T1WI序列所包含的信息,独立于特定的检查方案[18],无须复杂的后处理及模型运算,可作为鉴别良性和恶性病变的判定标准,临床可使用性高,有望成为乳腺MRI诊断中的决策规则。

3.2 临床-多参数MRI影像诊断模型对乳腺癌的诊断效能

       本研究中基于KS临床-多参数MRI影像诊断模型在乳腺良恶性病变鉴别方面有更高的准确率,将KS联合患者年龄、妇科肿瘤病史可以提高乳腺恶性病变的检出率,利于诊断医师进行客观、准确的乳腺MRI诊断。有学者[19]将“年龄”“附属影像特征”和“最大信号投影征”作为新的参数引入KS系统,建立了基于KS的乳腺肿块诊断模型,其对乳腺肿块的诊断性能优于经典KS。有研究表明KS结合乳腺血管评估可有效提高KS对乳腺病变尤其是非肿块性病变的诊断能力[20]。也有研究[21]认为结合KS的5个MRI特征、ADC值和患者年龄的模型改进了KS的诊断性能,与KS相比可以避免了不必要的活检,与本研究结果一致。

       之前的研究联合ADC值对KS进行优化[22, 23, 24],表明将DWI加入KS并不能提高KS的诊断性能。本研究的诊断模型里,ADC值并不是乳腺癌的独立预测因子,而临床特征(患者年龄、妇科肿瘤病史)与乳腺癌的诊断独立且相关,联合患者年龄、妇科肿瘤病史可以更好的预测乳腺癌。分析其原因可能:第一,KS的五个影像特征中毛刺征、边缘、TIC类型均与乳腺癌的诊断显著且独立相关,而ADC值在乳腺良恶性病灶中存在一定的重叠,特异度不高[22];第二,由于ADC图分辨率低且存在几何失真,ADC值在乳腺亚厘米级非肿块病灶中的诊断效能欠佳[25],本研究并未将肿块和非肿块强化病变分开统计分析;第三,患者年龄大是乳腺癌的已知的重要危险因素[26],妇科肿瘤与乳腺癌密切相关[27],这两个高危因素与乳腺MRI特征联合判读可以增加乳腺MRI的诊断效能。

3.3 乳腺癌原发灶KS磁共振特征在ALN转移评估中的价值

       本研究中乳腺MRI原发灶存在瘤周水肿可作为乳腺癌ALN转移的独立预测因子,为乳腺癌ALN预测提供一定的依据。此前尚未有KS相关特征在乳腺癌ALN转移诊断中的研究报道。有研究显示瘤周水肿表现为乳腺MRI中T2加权图像上肿瘤周围的高信号强度,是乳腺癌预后不良相关的重要征象[28, 29]。术前T2WI瘤周水肿往往提示肿瘤更高的T分期、N分期,导致预后更差[30]。原因是肿瘤周围水肿与淋巴血管浸润、间质纤维化和肿瘤坏死的详细组织病理特征以及年龄和组织学分级的基线临床病理特征有关[31]。因此,瘤周水肿可以被认为是一个不良的预后标志。

3.4 本研究的局限性

       本研究也有一定的局限性:(1)本研究为单一机构进行的回顾性研究,所有数据均采用同一方案获取,可能导致结果被高估。使用多中心的数据在进一步的研究中进行前瞻性评估会减少此类偏倚。(2)本研究没有进行阅片者间一致性分析,未评估不同阅片者之间使用模型进行诊断的一致性程度。(3)本研究没有对诊断模型进行进一步验证,后续需要更多患者的队列研究以得到更可靠的数据。(4)本研究在测量ADC值时在二维图像上勾画ROI,避开坏死、囊性或出血区域,这可能会忽略病变异质性的影响。

4 结论

       综上所述,基于KS的临床-多参数MRI影像诊断模型对乳腺病灶有较高的诊断价值,有助于提高乳腺良恶性病变的诊断效能,且乳腺MRI原发灶存在瘤周水肿可作为乳腺癌ALN转移的独立预测因子。

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
LEPOLA A, ARPONEN O, OKUMA H, et al. Association between breast cancer's prognostic factors and 3D textural features of non-contrast-enhanced T1 weighted breast MRI[J/OL]. Br J Radiol, 2022, 95(1130): 20210702 [2024-03-19]. https://pubmed.ncbi.nlm.nih.gov/34826254/. DOI: 10.1259/bjr.20210702.
[3]
KHOURY M E, LALONDE L, DAVID J, et al. Breast imaging reporting and data system (BI-RADS) lexicon for breast MRI: interobserver variability in the description and assignment of BI-RADS category[J]. Eur J Radiol, 2015, 84(1): 71-76. DOI: 10.1016/j.ejrad.2014.10.003.
[4]
BALTZER P A T, DIETZEL M, KAISER W A. A simple and robust classification tree for differentiation between benign and malignant lesions in MR-mammography[J]. Eur Radiol, 2013, 23(8): 2051-2060. DOI: 10.1007/s00330-013-2804-3.
[5]
ISTOMIN A, MASARWAH A, VANNINEN R, et al. Diagnostic performance of the Kaiser score for characterizing lesions on breast MRI with comparison to a multiparametric classification system[J/OL]. Eur J Radiol, 2021, 138: 109659 [2024-03-19]. https://pubmed.ncbi.nlm.nih.gov/33752000/. DOI: 10.1016/j.ejrad.2021.109659.
[6]
MENG L S, ZHAO X, GUO J X, et al. Evaluation of the differentiation of benign and malignant breast lesions using synthetic relaxometry and the Kaiser score[J/OL]. Front Oncol, 2022, 12: 964078 [2024-03-19]. https://pubmed.ncbi.nlm.nih.gov/36303839/. DOI: 10.3389/fonc.2022.964078.
[7]
AVDAN ASLAN A, GÜLTEKIN S. Diagnostic performance of Kaiser score in patients with newly diagnosed breast cancer: factors associated with false-negative results[J/OL]. Eur J Radiol, 2023, 164: 110864 [2024-03-19]. https://pubmed.ncbi.nlm.nih.gov/37209464/. DOI: 10.1016/j.ejrad.2023.110864.
[8]
DIETZEL M, BERNATHOVA M, CLAUSER P, et al. Added value of clinical decision rules for the management of enhancing breast MRI lesions: a systematic comparison of the Kaiser score and the Göttingen score[J/OL]. Eur J Radiol, 2023, 169: 111185 [2024-03-19]. https://pubmed.ncbi.nlm.nih.gov/37939606/. DOI: 10.1016/j.ejrad.2023.111185.
[9]
AN Y Y, MAO G Q, AO W Q, et al. Can DWI provide additional value to Kaiser score in evaluation of breast lesions[J]. Eur Radiol, 2022, 32(9): 5964-5973. DOI: 10.1007/s00330-022-08674-x.
[10]
王珊, 李建玉, 郑慧, 等. Kaiser评分对乳腺BI-RADS 4类非肿块样强化病灶的诊断价值分析[J]. 临床放射学杂志, 2021, 40(12): 2282-2286. DOI: 10.13437/j.cnki.jcr.2021.12.010.
WANG S, LI J Y, ZHENG H, et al. Analysis on Kaiser sore in diagnostic value of BI-RADS 4 types of breast non-masses enhancement[J]. J Clin Radiol, 2021, 40(12): 2282-2286. DOI: 10.13437/j.cnki.jcr.2021.12.010.
[11]
RONG X C, KANG Y H, XUE J, et al. Value of contrast-enhanced mammography combined with the Kaiser score for clinical decision-making regarding tomosynthesis BI-RADS 4A lesions[J]. Eur Radiol, 2022, 32(11): 7439-7447. DOI: 10.1007/s00330-022-08810-7.
[12]
WANG Q B, FU F L, CHEN Y, et al. Application of the Kaiser score by MRI in patients with breast lesions by ultrasound and mammography[J]. Diagn Interv Radiol, 2022, 28(4): 322-328. DOI: 10.5152/dir.2022.201075.
[13]
冯琳琳, 冯小会, 闫锐, 等. 基于多参数MRI的Kaiser评分系统对乳腺病变诊断效能的研究[J]. 中国CT和MRI杂志, 2023, 21(3): 93-95. DOI: 10.3969/j.issn.1672-5131.2023.03.034.
FENG L L, FENG X H, YAN R, et al. Study on the Diagnostic Efficacy of Kaiser Scoring System Based on Multi-parameter MRI in Breast[J]. Lesions Chanese Journal Of CT And MRI, 2023, 21(3): 93-95. DOI: 10.3969/j.issn.1672-5131.2023.03.034
[14]
张冰, 冯琳琳, 王琳, 等. Kaiser评分在乳腺非肿块强化病变诊断中的可行性研究[J]. 南方医科大学学报, 2020, 40(4): 562-566. DOI: 10.12122/j.issn.1673-4254.2020.04.18.
ZHANG B, FENG L L, WANG L, et al. Kaiser score for diagnosis of breast lesions presenting as non-mass enhancement on MRI[J]. J South Med Univ, 2020, 40(4): 562-566. DOI: 10.12122/j.issn.1673-4254.2020.04.18.
[15]
PÖTSCH N, KORAJAC A, STELZER P, et al. Breast MRI: does a clinical decision algorithm outweigh reader experience?[J]. Eur Radiol, 2022, 32(10): 6557-6564. DOI: 10.1007/s00330-022-09015-8.
[16]
GRIPPO C, JAGMOHAN P, HELBICH T H, et al. Correct determination of the enhancement curve is critical to ensure accurate diagnosis using the Kaiser score as a clinical decision rule for breast MRI[J/OL]. Eur J Radiol, 2021, 138: 109630 [2024-03-19]. https://pubmed.ncbi.nlm.nih.gov/33744507/. DOI: 10.1016/j.ejrad.2021.109630.
[17]
MILOS R I, PIPAN F, KALOVIDOURI A, et al. The Kaiser score reliably excludes malignancy in benign contrast-enhancing lesions classified as BI-RADS 4 on breast MRI high-risk screening exams[J]. Eur Radiol, 2020, 30(11): 6052-6061. DOI: 10.1007/s00330-020-06945-z.
[18]
DIETZEL M, BALTZER P A T. How to use the Kaiser score as a clinical decision rule for diagnosis in multiparametric breast MRI: a pictorial essay[J]. Insights Imaging, 2018, 9(3): 325-335. DOI: 10.1007/s13244-018-0611-8.
[19]
易熙, 王月爱, 刘芳, 等. 基于Kaiser评分的乳腺 MRI肿块诊断预测模型的构建与验证[J]. 磁共振成像, 2023, 14(5): 96-103. DOI: 10.12015/issn.1674-8034.2023.05.018.
YI X, WANG Y A, LIU F, et a1. Development and validation of a predictive model for the diagnosis of breast MRI masses based on the Kaiser score[J]. Chin J Magn Reson Imaging, 2023, 14(5): 96-103. DOI: 10.12015/issn.1674-8034.2023.05.018.
[20]
ZHOU X Z, LIU L H, HE S, et al. Diagnostic value of Kaiser score combined with breast vascular assessment from breast MRI for the characterization of breast lesions[J/OL]. Front Oncol, 2023, 13: 1165405 [2024-03-19]. https://pubmed.ncbi.nlm.nih.gov/37483510/. DOI: 10.3389/fonc.2023.1165405.
[21]
MENG L S, ZHAO X, GUO J X, et al. Improved differential diagnosis based on BI-RADS descriptors and apparent diffusion coefficient for breast lesions: a multiparametric MRI analysis as compared to Kaiser score[J/OL]. Acad Radiol, 2023, 30(Suppl 2): S93-S103 [2024-03-19]. https://pubmed.ncbi.nlm.nih.gov/37236897/. DOI: 10.1016/j.acra.2023.03.035.
[22]
潘佳玲, 李晓虹, 陈新杰, 等. Kaiser评分与表观扩散系数评价乳腺病灶的对比研究[J]. 磁共振成像, 2022, 13(6): 108-111, 116. DOI: 10.12015/issn.1674-8034.2022.06.021.
PAN J L, LI X H, CHEN X J, et al. A comparison of the Kaiser score and apparent diffusion coefficient mapping in the assessment of breast lesions[J]. Chin J Magn Reson Imag, 2022, 13(6): 108-111, 116. DOI: 10.12015/issn.1674-8034.2022.06.021.
[23]
任晓梦, 刘晓春, 代天姿, 等. Kaiser评分与ADC值对乳腺BI-RADS 4类病变的诊断效能评价[J]. 磁共振成像, 2022, 13(9): 25-29, 34. DOI: 10.12015/issn.1674-8034.2022.09.005.
REN X M, LIU X C, DAI T Z, et al. Comparative assessment of MRI BI-RADS 4 breast lesions with Kaiser score and apparent diffusion coefficient value[J]. Chin J Magn Reson Imag, 2022, 13(9): 25-29, 34. DOI: 10.12015/issn.1674-8034.2022.09.005.
[24]
MENG L S, ZHAO X, LU L, et al. A comparative assessment of MR BI-RADS 4 breast lesions with Kaiser score and apparent diffusion coefficient value[J/OL]. Front Oncol, 2021, 11: 779642 [2024-03-19]. https://pubmed.ncbi.nlm.nih.gov/34926290/. DOI: 10.3389/fonc.2021.779642.
[25]
IIMA M, HONDA M, SIGMUND E E, et al. Diffusion MRI of the breast: current status and future directions[J]. J Magn Reson Imaging, 2020, 52(1): 70-90. DOI: 10.1002/jmri.26908.
[26]
GIORDANO S H. Breast cancer in men[J]. N Engl J Med, 2018, 378(24): 2311-2320. DOI: 10.1056/NEJMra1707939.
[27]
解春生, 郭海, 王媛媛, 等. 妇科肿瘤与乳腺癌伴绝经患者骨质疏松综合治疗的临床研究[J]. 中国骨质疏松杂志, 2010, 16(10): 747-749, 736. DOI: 10.3969/j.issn.1006-7108.2010.10.009.
XIE C S, GUO H, WANG Y Y, et al. Clinical research of comprehensive therapy for postmenopausal osteoporosis patients with gynecologic tumors or the breast cancer[J]. Chin J Osteoporos, 2010, 16(10): 747-749, 736. DOI: 10.3969/j.issn.1006-7108.2010.10.009.
[28]
ÇETINKAYA E, YıLDıZ Ş, OTÇU H, et al. The value of adjacent vessel sign in malignant breast tumors[J]. Diagn Interv Radiol, 2022, 28(5): 463-469. DOI: 10.5152/dir.2022.211228.
[29]
CHEON H, KIM H J, KIM T H, et al. Invasive breast cancer: prognostic value of peritumoral edema identified at preoperative MR imaging[J]. Radiology, 2018, 287(1): 68-75. DOI: 10.1148/radiol.2017171157.
[30]
王刚, 张国富. 术前磁共振T2WI瘤周水肿征象对浸润性乳腺癌早期复发的诊断价值[J]. 临床肿瘤学杂志, 2019, 24(1): 66-70. DOI: 10.3969/j.issn.1009-0460.2019.01.012.
WANG G, ZHANG G F. Preoperative diagnostic value of magnetic resonance T2WI peritumoral edema for early recurrence of invasive breast cancer[J]. Chin Clin Oncol, 2019, 24(1): 66-70. DOI: 10.3969/j.issn.1009-0460.2019.01.012.
[31]
PARK N J, JEONG J Y, PARK J Y, et al. Peritumoral edema in breast cancer at preoperative MRI: an interpretative study with histopathological review toward understanding tumor microenvironment[J/OL]. Sci Rep, 2021, 11(1): 12992 [2024-03-19]. https://pubmed.ncbi.nlm.nih.gov/34155253/. DOI: 10.1038/s41598-021-92283-z.

上一篇 基于SyMRI弛豫定量分析和QSM预测早期帕金森病患者脑黑质微结构变化的临床价值研究
下一篇 心脏磁共振评价慢性肾脏病患者不同左心室构型的心肌组织特征
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2