分享:
分享到微信朋友圈
X
临床研究
磁共振集合序列与T2mapping序列在慢性冈上肌腱炎定量评估中的价值研究
徐奋玲 田兆荣 田博 龚瑞 马芳芳 胡靖波 王志军

Cite this article as: XU F L, TIAN Z R, TIAN B, et al. The value of magnetic resonance image compilation and T2mapping sequence in the quantitative assessment of chronic supraspinatus tendonitis[J]. Chin J Magn Reson Imaging, 2024, 15(8): 158-165.本文引用格式:徐奋玲, 田兆荣, 田博, 等. 磁共振集合序列与T2mapping序列在慢性冈上肌腱炎定量评估中的价值研究[J]. 磁共振成像, 2024, 15(8): 158-165. DOI:10.12015/issn.1674-8034.2024.08.024.


[摘要] 目的 探讨磁共振集合序列(magnetic resonance image compilation, MAGiC)与T2mapping序列在慢性冈上肌腱炎中的诊断价值,并比较两者在冈上肌腱扫描中的图像质量,以及两序列的T2值在冈上肌腱不同亚区的相关性。材料与方法 回顾性收集2022年10月至2024年1月本院慢性冈上肌腱炎的患者30例(肌腱炎组)及健康体检者26例(对照组),均进行了常规MRI、T2mapping序列和MAGiC序列扫描。由两名放射科医生根据冈上肌腱走行将其分为外侧、中间、内侧亚区,并在MAGiC序列及T2mapping序列上测量不同亚区定量值。对比T2mapping序列第一回波图像与MAGiC T2WI的图像质量,并测量信号噪声比(signal to noise ratio, SNR)、对比噪声比(contrast to noise ratio, CNR)。采用Mann-Whitney U检验分析肌腱炎组与对照组在不同亚区各定量参数的差异以及两序列的图像质量。绘制受试者工作特征(receiver operating characteristic, ROC)曲线并计算曲线下面积(area under the curve, AUC),评价其对慢性冈上肌腱炎的诊断效能。对T2mapping序列与MAGiC序列测得的不同亚区T2值采用Pearson相关分析评价相关性。结果 MAGiC序列重建图像MAGiC T2WI与T2mapping序列第一回波图像质量主观评分差异无统计学意义(Z=-1.535,P>0.05);MAGiC T2WI图像的CNR高于T2mapping序列第一回波图像[15.45(12.76,20.46)vs. 9.94(8.74,12.23)],差异有统计学意义(Z=-2.473,P<0.001),而MAGiC T2WI图像的SNR低于T2mapping序列第一回波图像[2.49(2.16,2.71)vs. 5.82(5.16,7.44)],差异有统计学意义(Z=-0.609,P<0.001);MAGiC序列与T2mapping序列的T2值在肌腱炎组外侧亚区、内侧亚区均高于对照组,差异有统计学意义(P<0.05);MAGiC序列的T1值在肌腱炎组外侧亚区高于对照组,差异有统计学意义(P<0.05)。外侧亚区T2mapping T2值、MAGiC T1、T2值诊断冈上肌腱炎的AUC分别为0.822、0.663、0.799;内侧亚区T2mapping T2值、MAGiC T2值诊断冈上肌腱炎的AUC分别为0.711、0.762。MAGiC序列T2值与T2mapping T2值在冈上肌腱外侧亚区、中间亚区、内侧亚区呈正相关(相关系数分别为0.736、0.437、0.464)。结论 MAGiC定量图谱的T1、T2值与T2mapping T2值能够有效评估冈上肌腱内部成分的异质性,反映慢性冈上肌腱炎与正常肌腱内部成分的差异及肌腱自身的区域性差异,可为临床对冈上肌腱变性提供量化的客观依据。
[Abstract] Objective To explore the diagnostic value of magnetic resonance image compilation (MAGiC) and T2mapping sequences in chronic supraspinatus tendinitis, and compare the image quality of the two in supraspinatus tendon scanning, and the T2 values of the two sequences in chronic supraspinatus tendonitis. Correlation of different subregions in supraspinatus tendonitis.Materials and Methods A retrospective collection of 30 patients with chronic supraspinatus tendonitis (tendinitis group) and 26 healthy persons undergoing physical examination (control group) in our hospital from October 2022 to January 2024, and all underwent conventional MRI, T2mapping sequence and MAGiC sequence scanning. Two radiologists divided the supraspinatus tendon into lateral, middle, and medial subregions according to its course, and measured the T2 values of different subregions on the MAGiC sequence and T2mapping sequence. Compare the image quality of the first echo image of the T2mapping sequence and MAGiC T2WI, and measure the signal to noise ratio (SNR) and contrast to noise ratio (CNR). The Mann-Whitney U test was used to analyze the differences in quantitative parameters between the tendonitis group and the control group in different subregions as well as the image quality of the two sequences. Draw the receiver operating characteristic (ROC) curve and calculate the area under the curve (AUC) to evaluate its diagnostic performance for tendonitis. Pearson correlation analysis was used to evaluate the correlation between T2 values in different subregions measured by T2mapping sequence and MAGiC sequence.Results There is no statistically significant difference in the subjective score of the first echo image quality between MAGiC T2WI and T2mapping sequences reconstructed images (Z=-1.535, P>0.05); the CNR of MAGiC T2WI images [15.45 (12.76, 20.46)] is higher than that of T2mapping sequences the first echo image [9.94 (8.74, 12.23)], the difference is statistically significant (Z=-2.473, P<0.001), while the SNR of the MAGiC T2WI image [2.49 (2.16, 2.71)] was lower than the first in the T2mapping sequence echo image [5.82 (5.16, 7.44)], the difference was statistically significant (Z=-0.609, P<0.001); the T2 values of MAGiC sequence and T2mapping sequence were both higher in the lateral subregion and medial subregion of the tendinitis group. In the control group, the difference was statistically significant (P<0.05); the T1 value of the MAGiC sequence in the lateral subregion of the tendonitis group was higher than that in the control group, and the difference was statistically significant (P<0.05). The AUC of MAGiC sequence T1 and T2 values in diagnosing supraspinatus tendinitis in the lateral sub-region are 0.663 and 0.799 respectively, and the AUC of T2 value in diagnosing supraspinatus tendinitis in the medial sub-region is 0.762; the T2mapping sequence T2 value in the lateral sub-region, the AUCs for diagnosing supraspinatus tendonitis in the medial subregion were 0.822 and 0.711 respectively. The MAGiC sequence T2 value and T2mapping T2 value were positively correlated in the lateral subregion, middle subregion, and medial subregion of the supraspinatus tendon (correlation coefficients were 0.736, 0.437, 0.464 respectively).Conclusions The T1 and T2 values of the MAGiC quantitative map and T2mapping T2 values can effectively assess the heterogeneity of the internal components of the supraspinatus tendon, reflect the differences between the internal components of the normal tendon and the regional differences of the tendon itself, and provide an objective basis for the quantification of the supraspinatus tendon degeneration in clinical practice.
[关键词] 冈上肌腱炎;磁共振成像;磁共振集合序列;T2mapping;信号噪声比;对比噪声比;定量评估
[Keywords] supraspinatus tendonitis;magnetic resonance imaging;magnetic resonance image compilation;T2mapping;signal to noise ratio;contrast to noise ratio;quantitative evaluation

徐奋玲 1, 2   田兆荣 2   田博 2   龚瑞 2   马芳芳 1, 2   胡靖波 1, 2   王志军 2*  

1 宁夏医科大学第一临床医学院,银川 750001

2 宁夏医科大学总医院放射科,银川 750001

通信作者:王志军,E-mail:wangzhijun2056@163.com

作者贡献声明:王志军设计本研究的方案,对稿件重要内容进行了修改;徐奋玲起草和撰写稿件,获取、分析和解释本研究的数据;田兆荣、田博、龚瑞、马芳芳、胡靖波获取、分析或解释本研究的数据,对稿件重要内容进行了修改;王志军、田兆荣获得了宁夏回族自治区重点研发计划基金项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 宁夏回族自治区重点研发计划项目 2021BEG03033,2023BEG03003
收稿日期:2024-03-14
接受日期:2024-07-30
中图分类号:R445.2  R686.1 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.08.024
本文引用格式:徐奋玲, 田兆荣, 田博, 等. 磁共振集合序列与T2mapping序列在慢性冈上肌腱炎定量评估中的价值研究[J]. 磁共振成像, 2024, 15(8): 158-165. DOI:10.12015/issn.1674-8034.2024.08.024.

0 引言

       随着人口老龄化及体育运动和过肩运动中肩部过度劳损,肩袖损伤发病率逐渐增高,且趋于年轻化。有研究表明肩袖损伤随着时间的推移,会出现肌腱萎缩和肌肉脂肪浸润,可能变得不可修复,大量肩袖撕裂晚期也会出现肱骨头上移,肱骨头、关节盂及肩峰骨质的侵蚀而严重影响患者生活质量,因此早期对肩袖损伤精确诊断并进行及时有效干预尤为重要[1, 2, 3]。冈上肌作为肩部力量集中的交叉点,因其独特的解剖结构特点以及承受的机械应力使其成为肩袖中最易损伤的肌腱,约占肩袖损伤的85%以上[4]。频繁的过肩运动,冈上肌腱的挤压磨损会造成肌腱炎症,随着疾病进展,长期肌腱炎症导致冈上肌腱钙化,在外伤时肌肉突然收缩,易发生撕裂。但冈上肌腱炎仅依靠临床特征来诊断容易造成漏诊和误诊,导致病情延误。因此,临床医师常需结合查体及影像学检查加强诊断。目前常用的影像学检查包括CT、MRI及超声等[5]。MRI因其高软组织分辨率、多参数及多维度成像,被认为是肩袖损伤无创检查的金标准[6]。但常规MRI具有一定主观性、缺乏量化标准,尤其在肌腱损伤早期,可能已经表现出肌腱炎的典型组织病理学变化[7],在常规序列却未见异常信号。定量MRI不仅可直观显示肌腱形态和信号变化,还能评价肌腱内不同生化成分含量变化[8]。近年来已有研究利用T2mapping序列定量分析早期肌腱病理变化[9]。但因T2mapping在不同回波时间进行采样耗时较长,对于疼痛患者长期保持一种姿势配合扫描难度较大,使得T2mapping技术在临床诊断中无法广泛应用。

       磁共振集合序列(magnetic resonance image compilation, MAGiC)作为一种新的定量技术,通过一次扫描重建出多组不同对比度图像和定量图谱[10, 11],被广泛应用于颅脑、前列腺等部位疾病的诊断,在冈上肌腱炎的研究中鲜少见,且MAGiC序列与T2mapping序列在冈上肌腱炎诊断中的对比研究尚未报道。故本研究通过对比分析T2mapping序列与MAGiC序列的图像质量及定量参数在慢性冈上肌腱炎中的价值,旨在为临床诊断提供影像依据及技术支持。

1 材料与方法

1.1 一般资料

       本研究遵循《赫尔辛基宣言》,经宁夏医科大学总医院伦理委员会批准,免除受试者知情同意,批准文号:2020-657。回顾性收集2022年10月至2024年1月肩关节疼痛并接受肩关节MRI检查的60位患者,纳入标准:(1)完成常规MRI序列、T2mapping序列及MAGiC序列扫描;(2)符合慢性冈上肌腱炎诊断标准[12, 13, 14]:①起病缓慢,有轻微外伤或受凉史;②肩部外侧疼痛,向三角肌止点放射;③肱骨大结节或肩峰下压痛;④疼痛弧试验阳性;⑤肩关节MRI证实冈上肌肌腱损伤[T2WI脂肪抑制(fat saturation, FS)序列上肌腱信号增加]。排除标准:(1)MRI证实冈上肌腱撕裂患者;(2)上肢骨折及肿瘤病史;(3)图像有运动伪影;(4)盂肱关节脱位;(5)X线片或CT检查提示钙化性肌腱炎。在60例患者中排除冈上肌腱部分撕裂患者11例,图像有运动伪影9例,盂肱关节脱位3例,X线片或CT提示钙化性肌腱炎患者7例,最终纳入30例冈上肌腱炎病例。选择年龄相匹配的体检者26例作为对照组,纳入标准:(1)无肩关节疼痛史;(2)肩关节常规MRI扫描未见异常病灶。排除标准同肌腱炎组排除标准。

1.2 仪器与扫描参数

       所有被检者均采用GE SIGNA Architect 3.0 T扫描仪(SIGNA Architect 3.0 T,美国通用电气医疗公司,芝加哥,美国)和16通道肩关节专用线圈进行检查。患者取仰卧位,头先进,患侧尽量靠近主磁场中心,肩部放松,患肢自然放置身侧,掌心朝上,使用沙袋固定线圈及肩关节以减少运动伪影。行肩关节MRI横轴位脂肪抑制T2加权(fat-saturated T2-weighted imaging, T2WI FS)序列、快速自旋回波T1加权(T1-weighted fast spin echo, T1WI FSE)序列、斜冠状位脂肪抑制T2加权(fat-saturated T2-weighted imaging, T2WI FS)序列、斜矢状位脂肪抑制质子密度加权(fat-saturated proton density weighted, PDW FS)序列扫描,同时行斜冠状位T2mapping序列及MAGiC序列扫描。横断位扫描层面与关节盂垂直,扫描范围从肩锁关节至关节盂下缘。斜冠状面扫描层面与冈上肌腱平行。斜矢状面扫描层面与冈上肌腱垂直,扫描范围包括肱骨头和整个关节盂。具体扫描参数如表1所示。

表1  肩关节MRI扫描序列及相关参数
Tab.1  Shoulder MRI into the scanning sequence and related parameters

1.3 图像后处理

       由两名放射科医师(分别为具有5、10年以上骨肌系统诊断经验的主治、副主任医师)对图像进行后处理。MAGiC图像采用GE主机MAGiC软件包进行后处理,生成T1mapping、T2mapping、质子密度定量图(proton density mapping, PDmapping)、纵向弛豫率定量图(R1mapping)和横向弛豫率定量图(R2mapping)5组定量图谱,在MAGiC序列生成的T2mapping、T1mapping伪彩图上绘制感兴趣区(region of interest, ROI),得到T2、T1值,如图1A1B所示。并将重建所得的MAGiC T2WI图像保存并上传到ADW 4.7工作站。同样将扫描所获T2mapping图像上传至ADW 4.7工作站,点击Readyview进入后处理程序,利用T2mapping伪彩图绘制ROI,得到T2值,如图1C所示。将冈上肌腱从肱骨大结节附着部位至盂肱关节水平分为三等分,分别为外侧亚区(指冈上肌肌腱纤维远侧肱骨大结节附着部位)、中间亚区(指外侧部位和内侧部位的中心部位)及内侧亚区(指高于肱骨头软骨的内侧区域)[15],如图2A所示。评估MAGiC T2WI和T2mapping序列第一个回波图像质量并绘制ROI计算信号噪声比(signal noise ratio, SNR)、对比噪声比(contrast to noise ratio, CNR)[16]:SNR肌腱=I肌腱/D肌腱,CNR=(I骨髓-I肌腱)/D平均,其中I为信号值,D肌腱为ROI肌腱的标准差,D平均为ROI骨髓与肌腱标准差的均值[17],肌腱信号值及标准差均为三个亚区平均值。两位医师测量时遵守以下原则:肱骨头骨髓ROI放置的原则是肱骨头中心部位的骨髓组织,冈上肌腱ROI放置在各亚区中心部位,在每个ROI上手动放置一个13~16 mm2的ROI,并确保处于ROI的组织内。测量时避开血管、滑膜、关节液,以减少对组织信号平均值及标准差测量的影响,如图2B2C所示。间隔至少两周后重复测量数据,最终的结果为两名医师4次测量结果的平均值。

图1  男,45 岁,冈上肌腱炎。1A:磁共振集合序列T2mapping 伪彩图示冈上肌腱外侧亚区、中间亚区、内侧亚区T2 值分别为38 ms、58 ms、53 ms;1B:磁共振集合序列T1mapping 伪彩图示冈上肌腱外侧亚区、中间亚区、内侧亚区T1 值分别为812 ms、763 ms、711 ms;1C:T2mapping 伪彩图示冈上肌腱外侧亚区、中间亚区、内侧亚区T2 平均值分别为27.94 ms、38.57 ms、36.74 ms。
图2  女,30 岁,冈上肌腱炎。2A:T2WI 斜冠状位图像冈上肌肌腱分区示意图。将冈上肌肌腱从肱骨大结节附着部位至盂肱关节水平分为三等分,分别为外侧亚区(指冈上肌肌腱纤维远侧肱骨大结节附着部位)、中间亚区(指外侧部位和内侧部位的中心部位)及内侧亚区(指高于肱骨头软骨的内侧区域);2B:T2mapping 序列第一回波图像及ROI 绘制;2C:磁共振集合序列T2WI 图像及ROI 绘制。ROI:感兴趣区。
Fig. 1  A 45-year-old man with supraspinatus tendonitis. 1A: The magnetic resonance image compilation T2mapping pseudo-color image shows that the average T2 values in the lateral, middle, and medial subregions of the supraspinatus tendon are 38 ms, 58 ms, and 53 ms, respectively; 1B: The magnetic resonance image compilation T1mapping pseudo-color image shows that the average T1 values in the lateral, middle, and medial subregions of the supraspinatus tendon are 812 ms, 763 ms, and 711 ms, respectively; 1C: T2mapping pseudo-color image shows that the average T2 values ​​of the lateral subregion, middle subregion, and medial subregion of the supraspinatus tendon are 27.94 ms, 38.57 ms, and 36.74 ms respectively.
Fig. 2  A 30-year-old female with supraspinatus tendonitis. 2A: Schematic diagram of the supraspinatus tendon partition of the T2WI oblique coronal image. The supraspinatus tendon was divided into three parts from the horizontal site of the large tuberosity to the glenohumeral joint, including the lateral subregion (the distal site of the large tuberosity), the middle subregion (referring to the lateral and medial sites) and the medial subregion (above the humeral head cartilage); 2B: T2mapping sequence first echo image and ROI drawing; 2C: Magnetic resonance image compilation T2WI image and ROI drawing. ROI: region of interest.

1.4 图像质量评价

       由两名放射科主治、副主任医师(分别具有5、10年以上骨肌系统诊断经验)独立阅片,对图像质量行主观评分。两位观察者对T2mapping序列第一回波图像和MAGiC T2WI图像的图像质量采用四分法[18, 19]进行独立评价。评价指标包括肩袖肌腱信号的均匀性(信号均匀1分,信号不均匀0分)、肩袖肌腱边缘组织对比(组织对比好或较好1分,组织对比不佳0分)和肩袖肌腱肱骨附着端显示情况(显示清或尚清1分,显示不清0分)。同时在MAGiC T2WI图像和T2mapping序列第一回波图像的冈上肌腱不同亚区及肱骨头绘制ROI,如图2B2C,并计算SNR、CNR。

1.5 统计学分析

       采用SPSS 21.0统计分析软件对所有数据进行统计分析。用组内相关系数(intra-class correlation coefficient, ICC)评价2名医师测量值的一致性,ICC值大于0.75认为测量结果一致性较好。对计量资料进行正态性检验,符合正态分布的数据用(x¯±s)表示,采用独立样本t检验;偏态分布的数据用MQ1,Q3)表示,采用Mann-Whitney U检验。比较两组不同亚区之间T1、T2值的差异,对所有差异有统计学意义的参数绘制受试者工作特征(receiver operating characteristic, ROC)曲线,通过约登指数找出相对应的阈值,评价其诊断肌腱炎的效能。使用Pearson相关系数评估MAGiC序列和T2mapping序列的T2值在冈上肌腱不同亚区之间的相关性,r=1.0为完全相关,0.8<r<1.0为极强相关,0.6<r≤0.8为强相关,0.4<r≤0.6为中等相关,0.2<r≤0.4为弱相关,r≤0.2为极弱相关[20]。采用Med Calc 20.022软件生成Bland-Altman图评价MAGiC序列和T2mapping序列在冈上肌腱不同亚区T2值的一致性,得出2种序列T2值差值的均值和95%一致限(limits of agreement, LoA)。检验水准α=0.05;P<0.05为差异有统计学意义。

2 结果

2.1 一般临床资料

       最终肌腱炎组纳入30例冈上肌腱炎病例,其中男12例,女18例,年龄26~68(49.47±11.11)岁;对照组纳入健康志愿者26例,其中男10例,女16例,年龄27~66(47.69±12.67)岁。两组研究对象的年龄、性别、侧别及身体质量指数(body mass index, BMI)相比,差异均无统计学意义(P均>0.05),如表2所示。

表2  对照组与肌腱炎组一般临床资料结果比较
Tab. 2  Comparison of the general clinical data results between the control group and the tendonitis group

2.2 观察者主观评分及测量参数的一致性检验

       观察者间及观察者内部在不同序列中的主观评分、SNR、CNR以及定量参数T1、T2值的一致性较好(表3)。

表3  观察者评估图像质量及测量冈上肌肌腱各亚区T1、T2值的一致性检验
Tab. 3  Agreement of observers assessing image quality and measuring T1, T2 values in supraspinatus tendon

2.3 图像质量主观评分比较

       2名观察者分别对MAGiC T2WI和T2mapping第一回波图像进行主观评分(表4),两者主观评分差异无统计学意义(P>0.05),但T2mapping图像评分稍高。

表4  MAGiC T2WI与T2mapping序列第一回波图像质量评分比较
Tab. 4  Comparison of first echo image quality scores between MAGiC T2WI and T2mapping sequence

2.4 图像质量客观评价比较

       T2mapping序列第一回波图像SNR[5.82(5.16,7.44)]高于MAGiC序列MAGiC T2WI图像[2.49(2.16,2.71)],Z=-0.609,P<0.001。T2mapping序列第一回波图像CNR[9.94(8.74,12.23)]低于MAGiC T2WI图像[15.45(12.76,20.46)],Z=-2.473,P<0.001,详见表5

表5  MAGiC T2WI与T2mapping序列第一回波图像SNR、CNR值比较
Tab. 5  Comparison of SNR and CNR values between MAGiC T2WI and first echo images of T2mapping sequence

2.5 肌腱炎组与对照组不同亚区之间T2mapping T2值及MAGiC序列T1、T2值的比较

       肌腱炎组外侧亚区的MAGiC T1、T2值、T2mapping T2值及内侧亚区的MAGiC T2值、T2mapping T2值均高于对照组,差异有统计学意义(P均<0.05);肌腱炎组中间亚区的MAGiC T1、T2值、T2mapping T2值与对照组差异均无统计学意义(P>0.05);肌腱炎组内侧亚区的MAGiC T1与对照组差异无统计学意义(P>0.05),详见表6

表6  肌腱炎组与对照组的定量值结果比较
Tab. 6  Results of quantitative values between the tendonitis group and the control group

2.6 T2mapping T2值与MAGiC序列T1、T2值对慢性冈上肌肌腱炎的诊断效能

       外侧亚区T2mapping T2值与MAGiC T1、T2值诊断冈上肌腱炎的AUC分别为0.822、0.663、0.799;内侧亚区T2mapping T2值与MAGiC序列T2值诊断冈上肌腱炎的AUC分别为0.711,0.762。外侧亚区T2mapping T2值与MAGiC T1、T2值判断正常肌腱与肌腱炎的阈值分别为31.83 ms、1088.5 ms与42.5 ms;内侧亚区T2mapping T2值与MAGiC T2值判断正常肌腱与肌腱炎的阈值分别为37.525 ms、46.5 ms(图3)。

图3  外侧亚区T1、T2值及内侧亚区T2值对慢性冈上肌肌腱炎诊断的ROC曲线。AUC:曲线下面积;ROC:受试者工作特征。
图4  冈上肌腱外侧亚区(4A)、中间亚区(4B)、内侧亚区(4C)T2值的Bland-Altman图。y轴和x轴分别表示磁共振集合序列和T2mapping序列之间的差值和平均值。蓝线表示差异的平均值,而95%的置信区间用红色虚线对表示。MAGiC:磁共振集合序列。
Fig. 3  ROC curves of T1 and T2 values in the lateral and medial subregions for the diagnosis of chronic supraspinatus tendonitis. AUC: area under the curve; ROC: receiver operating characteristic.
Fig. 4  Bland-Altman plots of T2 values in the lateral subregion (4A), middle subregion (4B), and medial subregion (4C) of the supraspinatus tendon. The y- and x-axes represent the difference and average value between the magnetic resonance image compilation sequence and the T2mapping sequence respectively. The blue line represents the mean of the differences, while the 95% confidence interval is represented by the pair of red dashed lines. MAGiC: magnetic resonance image compilation.

2.7 冈上肌腱不同亚区MAGiC序列与T2mapping序列T2值的相关性

       肌腱炎组与对照组冈上肌腱外、中、内侧亚区的MAGiC序列T2值均高于T2mapping序列T2值,两者在冈上肌腱外侧亚区、中间亚区及内侧亚区呈正相关(r值分别为0.736,0.437,0.464;表7)。Bland-Altman分析显示,冈上肌腱外侧亚区T2值平均差异为8.0 ms,95% LOA为-1.0~17.0 ms;冈上肌腱中间亚区T2值平均差异为11.5 ms,95% LOA为-1.7~24.8 ms;冈上肌腱外侧亚区T2值平均差异为15.0 ms,95% LOA为1.1~28.8 ms(图4)。

表7  冈上肌腱不同亚区MAGiC和T2mapping序列T2值相关性
Tab. 7  Comparison of T2 values of MAGiC and T2mapping sequences in different subregions of supraspinatus tendon

3 讨论

       本研究探讨了T2mapping与MAGiC两种定量技术在诊断慢性冈上肌腱炎中的价值,并分析两者的图像质量及冈上肌腱各亚区T2值的相关性,结果显示MAGiC与T2mapping的T2值在冈上肌腱炎组外侧亚区、内侧亚区均高于对照组;MAGiC序列的T1值在肌腱炎组外侧亚区高于对照组,有助于慢性冈上肌腱炎的诊断。两序列的图像质量主观评分差异并无统计学意义。T2mapping序列的SNR较MAGiC序列高,CNR则低。MAGiC T2值普遍高于T2mapping T2值,但在各亚区T2值都具有相关性。

3.1 MAGiC序列与T2mapping序列在临床中的应用

       T2mapping成像采用多回波自旋回波序列获取T2加权系列图像,应用特定软件测量ROI的T2值,对组织成分进行量化分析[21]。T2mapping最早应用于关节软骨中,在分子水平对关节软骨进行分析,量化其早期的改变和追踪治疗效果[22, 23],也能定量评估椎间盘成分与退变等[24, 25]。近年来,已有研究用其评估关节镜术后肌腱愈合情况[26],但由于扫描耗时过长,无法广泛应用于临床诊断。MAGiC作为一种新兴定量扫描技术,一次扫描可重建出多组不同对比度图像和定量图谱[27],根据疾病的不同类型合成具有诊断价值的图像,为临床疾病的定性、定量研究提供了可靠的基础。已有学者将其应用于半月板、关节软骨损伤及乳腺癌的研究中,结果显示MAGiC的T2值与T2mapping的T2值呈显著正相关,证实了其在膝关节半月板、关节软骨及乳腺癌定量评估中的可行性[28, 29, 30]。本研究也显示MAGiC序列T2值与T2mapping T2值呈正相关,在诊断慢性冈上肌腱炎中具有重要价值。

3.2 MAGiC与T2mapping定量参数在冈上肌腱炎与正常肌腱的差异

       本研究发现冈上肌腱炎时MAGiC序列与T2mapping序列的T2值在外侧亚区、内侧亚区明显升高,这与既往研究结果相似[9, 31, 32]。肌腱主要由富含胶原纤维的细胞外基质及散在的腱细胞组成,正常肌腱胶原纤维网络结构连续且致密,呈有序排列,具有都很强的韧性,可承受较大的张力,当出现过度劳损、轻微外伤或受寒后肌腱逐渐退行性变。外侧亚区主要是肱骨大结节附着处的肌腱,该部位为明显“乏血供区”,在上肢上举、外展时,易与肩峰撞击,导致肌腱受损,内部出现炎性细胞浸润,组织超微结构杂乱,肌腱出现水肿、充血,甚至脂肪浸润,在定量MRI上表现为T2弛豫时间明显延长,T2值增高[7, 8]。另外,本研究发现MAGiC序列在冈上肌腱炎的外侧亚区T1值明显增高。T1值是组织大分子浓度、结合水及组织含水量、脂肪含量的生物标志物,既往用于心肌组织水肿和纤维化程度的定量研究[33, 34],以及骨髓水肿的程度的定量分析。国内外已有多项研究将其用于跟腱、股四头肌腱等肌腱病理变化分析[35, 36],表明T1弛豫时间可作为一种生物标志物评估肌腱病理变化。本研究通过比较健康与病理肌腱,进一步证实了T1弛豫时间可以反映肌腱的内部微观变化。

3.3 MAGiC序列与T2mapping序列的冈上肌腱炎图像质量及不同亚区T2值的相关性

       本研究中,MAGiC序列较T2mapping序列扫描时间缩短35%,对无法长时间配合MRI扫描的患者,通过应用MAGiC序列缩短扫描时间可以提升患者舒适度及减少运动伪影,提高扫描成功率。但也有研究指出MAGiC序列缩短扫描时间会降低图像质量[37]。本研究通过对比分析两种扫描技术的图像质量及冈上肌腱炎患者冈上肌腱各亚区T2值的相关性,发现两者主观图像质量差异并无统计学意义,MAGiC T2WI的图像质量得分略低。T2mapping第一回波图像质量的SNR较MAGiC T2WI高,CNR则低。另外,MAGiC T2值普遍高于T2mapping T2值,T2值在外侧亚区、中间亚区及内侧亚区都具有相关性,但相关性逐渐减弱。分析其中原因可能由于MAGiC序列与T2mapping序列的成像原理及获取T2值的方式不同。MAGiC序列有别于传统的MRI加权成像方式,是根据弛豫率与质子密度的定量信息实现弛豫率成像并通过智能后处理,自动重建十种对比图和五种定量图谱,并且能通过后参数设定,重建出任意所需TR、TE、TI参数的组织对比图像。对这些图像中每个像素的信号强度进行最小二乘拟合,计算得到纵向弛豫时间(T1)、横向弛豫时间(T2)、纵向弛豫率(R1)、横向弛豫率(R2)、PD值和射频(B1)场的振幅,最终获得相应组织参数的定量分布图,从而实现以像素为单位组织的弛豫时进行定量分析。而T2mapping技术使用固定的TR和TE,在单TR内采集两个或多个自旋回波,为了提高精确度,我们在3.0 T扫描仪上采用8个回波,根据T2弛豫曲线上不同信号强度,通过单指数拟合计算出T2值[21]。因此,我们推测这种图像获取方式及T2值的不同获取机制可能是导致T2值及两图像CNR、SNR不同的主要原因,而且噪声、部分体积效应和B1效应等因素均可能会导致系统误差,也会影响T2弛豫时间的准确性[30]。另外,由于冈上肌腱外侧亚区及中间亚区多为肌腱成分,由平行的紧密胶原纤维构成,大约只有30%的水,其余为胶原蛋白、蛋白多糖等成分,且肌腱内血供较少[38],而内侧亚区多为肌腱-肌腹连接处,此区域肌肉较多,主要由肌纤维构成,骨骼肌内含有丰富的毛细血管,因此组织异质性特征可能导致不同亚区MAGiC T2和T2mapping T2值之间具有更大差异,使两者的T2值在外侧亚区、中间亚区及内侧亚区的相关性逐渐减弱。

3.4 MAGiC序列与T2mapping序列对冈上肌腱炎的诊断效能比较

       本研究采用ROC曲线评估MAGiC定量参数T1、T2值及T2mapping序列T2值对冈上肌腱炎的诊断效能。结果显示,冈上肌腱外侧亚区MAGiC T1、T2值、T2mapping T2值与内侧亚区T2mapping T2值、MAGiC T2值对冈上肌腱炎的诊断均有一定的价值。其中冈上肌腱外侧亚区T2mapping T2值的诊断效能最高,其次为外侧亚区MAGiC T2值。这可能是因为外侧亚区的成分主要是肱骨大结节附着处的肌腱,由平行且致密的胶原纤维构成,是明显的“乏血供区”,当肌腱由炎性浸润、水肿发展为充血变性,纤维蛋白分子结构破坏,T2弛豫时间明显延长。但由于MAGiC序列有别于传统的T2mapping序列成像方式,噪声、部分体积效应等因素可能会导致系统误差,影响T2弛豫时间的准确性,因此,相较于T2mapping序列诊断效能略低。外侧亚区MAGiC T1值对肌腱炎的诊断效能较低,因其不受胶原纤维排列方向的影响,直观反映肌腱内的含水量[39],敏感性较T2值低。但MAGiC序列较T2mapping序列有一定的优势,其可通过一站式扫描获得T1mapping、T2mapping、PDmapping等多组定量图谱,反映组织物理性质,且MAGiC序列较T2mapping序列扫描时间减少,对无法长时间配合MRI扫描的患者,通过应用MAGiC序列缩短扫描时间在一定程度上可减少运动伪影概率。因此,MAGiC序列可以用于临床实践,它具有与传统T2mapping序列相似的诊断准确性,且比T2mapping减少了扫描时间,在无法长时间制动患者中可以选择MAGiC序列替代传统T2mapping序列。

3.5 本研究局限性

       本研究尚存在一定的局限性:(1)本研究的样本量不大,应进一步收集病例,对现有的结论进行验证;(2)本研究未对年龄、性别及职业进行分组比较,可能会使研究结果产生一定偏差。

4 结论

       综上所述,MAGiC定量图谱的T1、T2值与T2mapping T2值能够有效评估冈上肌腱内部成分的异质性,反映慢性冈上肌腱炎与正常肌腱内部成分的差异及肌腱自身的区域性差异,为临床对冈上肌腱变性提供量化的客观依据。

[1]
KIM D H, BAE K C, CHOI J H, et al. Chronicity is associated with the glenohumeral synovitis in patients with a rotator cuff tear[J]. J Orthop Res, 2021, 39(10): 2226-2233. DOI: 10.1002/jor.24941.
[2]
LOCKARD C A, NOLTE P C, GAWRONSKI K M B, et al. Quantitative T2 mapping of the glenohumeral joint cartilage in asymptomatic shoulders and shoulders with increasing severity of rotator cuff pathology[J/OL]. Eur J Radiol Open, 2021, 8: 100329[2022-11-25]. https://pubmed.ncbi.nlm.nih.gov/33644264/. DOI: 10.1016/j.ejro.2021.100329.
[3]
MILLER R M, THUNES J, MAITI S, et al. Effects of tendon degeneration on predictions of supraspinatus tear propagation[J]. Ann Biomed Eng, 2019, 47(1): 154-161. DOI: 10.1007/s10439-018-02132-w.
[4]
邢秋娟, 赵东峰, 戴薇薇, 等. 冈上肌部分损伤对肌腱应力分布影响的有限元分析[J]. 实用骨科杂志, 2018, 24(6): 519-522.
XING Q J, ZHAO D F, DAI W W, et al. Effect of partial-thickness tear of supraspinatus on the distribution of tendon stress: finite element analysis[J]. J Pract Orthop, 2018, 24(6): 519-522.
[5]
ZOGA A C, KAMEL S I, HYNES J P, et al. The evolving roles of MRI and ultrasound in first-line imaging of rotator cuff injuries[J]. AJR Am J Roentgenol, 2021, 217(6): 1390-1400. DOI: 10.2214/AJR.21.25606.
[6]
SARAGAGLIA D, BARTHOMEUF C, BANIHACHEMI J J. Deciphering acute shoulder trauma with normal initial X-ray: contributions of ultrasonography and MRI[J/OL]. Orthop Traumatol Surg Res, 2021, 107(5): 102965 [2023-09-30]. https://pubmed.ncbi.nlm.nih.gov/34033918/. DOI: 10.1016/j.otsr.2021.102965.
[7]
LONGO U G, MAZZOLA A, MAGRÌ F, et al. Histological, radiological and clinical analysis of the supraspinatus tendon and muscle in rotator cuff tears[J/OL]. BMC Musculoskelet Disord, 2023, 24(1): 127 [2024-03-30]. https://pubmed.ncbi.nlm.nih.gov/36797741/. DOI: 10.1186/s12891-023-06237-9.
[8]
ZELLERS J A, EDALATI M, EEKHOFF J D, et al. Quantative MRI predicts tendon mechanical behavior, collagen composition, and organization[J]. J Orthop Res, 2023, 41(10): 2329-2338. DOI: 10.1002/jor.25471.
[9]
ECE B, YIGIT H, ERGUN E, et al. Quantitative analysis of supraspinatus tendon pathologies via T2/T2* mapping techniques with 1.5 T MRI[J/OL]. Diagnostics, 2023, 13(15): 2534 [2024-03-15]. https://pubmed.ncbi.nlm.nih.gov/37568898/. DOI: 10.3390/diagnostics13152534.
[10]
崔峰, 王聪, 王娅, 等. MAGiC技术的基本原理及临床研究进展[J]. 临床放射学杂志, 2021, 40(12): 2434-2437. DOI: 10.13437/j.cnki.jcr.2021.12.039.
CUI F, WANG C, WANG Y, et al. Basic principle and clinical research progress of MAGiC technology[J]. J Clin Radiol, 2021, 40(12): 2434-2437. DOI: 10.13437/j.cnki.jcr.2021.12.039.
[11]
陈爽, 欧阳汉. 集成MRI在临床诊断中的应用价值[J]. 磁共振成像, 2020, 11(9): 833-836. DOI: 10.12015/issn.1674-8034.2020.09.027.
CHEN S, OUYANG H. The application value of synthetic MRI in diagnosis[J]. Chin J Magn Reson Imag, 2020, 11(9): 833-836. DOI: 10.12015/issn.1674-8034.2020.09.027.
[12]
VASISHTA A, KELKAR A, JOSHI P, et al. The value of sonoelastography in the diagnosis of supraspinatus tendinopathy-a comparison study[J/OL]. Br J Radiol, 2019, 92(1095): 20180951 [2024-03-15]. https://pubmed.ncbi.nlm.nih.gov/30689398/. DOI: 10.1259/bjr.20180951.
[13]
JAIN N B, COLLINS J, NEWMAN J S, et al. Reliability of magnetic resonance imaging assessment of rotator cuff: the ROW study[J]. PM R, 2015, 7(3): 245-254. DOI: 10.1016/j.pmrj.2014.08.949.
[14]
REDDY P K, DEY J, JOSHI Y S. Effect of ultrasound therapy with cryokinetics versus ultrasound therapy with soft tissue massage (deep friction massage) in acute supraspinatus tendinitis - A comparative study[J]. Int J Health Sci Res, 2021, 11(7): 249-256. DOI: 10.52403/ijhsr.20210734.
[15]
ANZ A W, LUCAS E P, FITZCHARLES E K, et al. MRI T2 mapping of the asymptomatic supraspinatus tendon by age and imaging plane using clinically relevant subregions[J]. Eur J Radiol, 2014, 83(5): 801-805. DOI: 10.1016/j.ejrad.2014.02.002.
[16]
STERN N, RADUNSKY D, BLUMENFELD-KATZIR T, et al. Mapping of magnetic resonance imaging's transverse relaxation time at low signal-to-noise ratio using Bloch simulations and principal component analysis image denoising[J/OL]. NMR Biomed, 2022, 35(12): e4807 [2024-01-24]. https://pubmed.ncbi.nlm.nih.gov/35899528/. DOI: 10.1002/nbm.4807.
[17]
占颖莺, 姜云萍, 张珂, 等. MAGiC序列应用于青年志愿者骶髂关节扫描的可行性研究[J]. 磁共振成像, 2020, 11(7): 568-572. DOI: 10.12015/issn.1674-8034.2020.07.018.
ZHAN Y Y, JIANG Y P, ZHANG K, et al. Feasibility study on application of MAGiC sequence in sacroiliac joint of young volunteers[J]. Chin J Magn Reson Imag, 2020, 11(7): 568-572. DOI: 10.12015/issn.1674-8034.2020.07.018.
[18]
曹俊涛, 涂慧娟, 钱平康, 等. 3.0 T MRI三维多回波恢复梯度回波序列应用于肩袖成像的图像质量分析[J]. 中国医学计算机成像杂志, 2023, 29(04): 405-411. DOI: 10.19627/j.cnki.cn31-1700/th.2023.04.007.
CAO J T, TU H J, QIAN P K, et al. Image Quality Analysis of Rotator Cuff lmaging by 3D Multi-echo Recalled Gradient Echo Sequence on 3.0 T MRI[J]. Chin Comput Med Imag, 2023, 29(04): 405-411. DOI: 10.19627/j.cnki.cn31-1700/th.2023.04.007.
[19]
HAHN S, YI J, LEE H J, et al. Image quality and diagnostic performance of accelerated shoulder MRI with deep learning-based reconstruction[J]. AJR Am J Roentgenol, 2022, 218(3): 506-516. DOI: 10.2214/AJR.21.26577.
[20]
PARK S, KWACK K S, LEE Y J, et al. Initial experience with synthetic MRI of the knee at 3T: comparison with conventionalT1 imagingTweighted2 mapping[J/OL]. Br J Radiol, 2017, 90(1080): 20170350 [2024-03-15]. https://pubmed.ncbi.nlm.nih.gov/28934866/. DOI: 10.1259/bjr.20170350.
[21]
ZHU L H, LU W H, WANG F N, et al. Study of T2 mapping in quantifying and discriminating uterine lesions under different magnetic field strengths: 1.5vsT. 3.0T[J/OL]. BMC Med Imaging, 2023, 23(1): 1 [2024-02-24]. https://pubmed.ncbi.nlm.nih.gov/36600192/. DOI: 10.1186/s12880-022-00960-w.
[22]
赵惠钰. 基于T2 mapping定量技术对膝关节软骨T2值及退变分布的特征分析[D]. 沈阳: 沈阳医学院, 2022.
ZHAO H Y. Characteristic analysis of T2 value and degeneration distribution of knee cartilage based on T2 mapping quantitative technique[D].Shenyang: Shenyang Medical College, 2022.
[23]
KIM B R, YOO H J, CHAE H D, et al. Fat-suppressed T2 mapping of human knee femoral articular cartilage: comparison with conventional T2 mapping[J/OL]. BMC Musculoskelet Disord, 2021, 22(1): 662 [2024-01-13]. https://pubmed.ncbi.nlm.nih.gov/34372797/. DOI: 10.1186/s12891-021-04542-9.
[24]
罗慕晴, 李宏伟, 向辉春, 等. 3.0T MR T1ρ及T2 mapping评估兔股骨内侧髁关节软骨退变[J]. 中国医学影像技术, 2022, 38(10): 1446-1451. DOI: 10.13929/j.issn.1003-3289.2022.10.002.
LUO M Q, LI H W, XIANG H C, et al. 3.0T MR T1ρ and T2 mapping for evaluating articular cartilage degeneration of medial femoral condyle in rabbits[J]. Chin J Med lmaging Technol, 2022, 38(10): 1446-1451. DOI: 10.13929/j.issn.1003-3289.2022.10.002.
[25]
YANG L, SUN C, GONG T, et al. T1ρ, T2 and T2* mapping of lumbar intervertebral disc degeneration: a comparison study[J/OL]. BMC Musculoskelet Disord, 2022, 23(1): 1135 [2023-08-11]. https://pubmed.ncbi.nlm.nih.gov/36575488/. DOI: 10.1186/s12891-022-06040-y.
[26]
XIE Y X, LIU S H, QIAO Y, et al. Quantitative T2 mapping-based tendon healing is related to the clinical outcomes during the first year after arthroscopic rotator cuff repair[J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29(1): 127-135. DOI: 10.1007/s00167-019-05811-w.
[27]
JIANG Y P, LI W J, ZHENG J, et al. Magnetic resonance image compilation sequence to quantitatively detect active sacroiliitis with axial spondyloarthritis[J]. Quant Imaging Med Surg, 2022, 12(7): 3666-3678. DOI: 10.21037/qims-21-972.
[28]
边文瑾. SyMRI及T2 mapping对盘状半月板及其损伤的定量评估价值初探[D]. 太原: 山西医科大学, 2021.
BIAN W J. Preliminary study on quantitative evaluation value of SyMRI and T2 mapping in discoid meniscus and its injury[D].Taiyuan: Shanxi Medical University, 2021.
[29]
LEE S H, LEE Y H, SONG H T, et al. Quantitative T2 mapping of knee cartilage: comparison between the synthetic MR imaging and the CPMG sequence[J]. Magn Reson Med Sci, 2018, 17(4): 344-349. DOI: 10.2463/mrms.tn.2017-0121.
[30]
JUNG Y, GHO S M, BACK S N, et al. The feasibility of synthetic MRI in breast cancer patients: comparison of T2 relaxation time with multiecho spin echo T2 mapping method[J/OL]. Br J Radiol, 2019, 92(1093): 20180479 [2023-08-11]. https://pubmed.ncbi.nlm.nih.gov/30215550/. DOI: 10.1259/bjr.20180479.
[31]
倪亚博, 田兆荣, 杨建平, 等. MR集成序列在慢性冈上肌肌腱炎中的应用研究[J]. 磁共振成像, 2022, 13(9): 53-57, 68. DOI: 10.12015/issn.1674-8034.2022.09.010.
NI Y B, TIAN Z R, YANG J P, et al. Magnetic resonance image compilation in the assessment of chronic supraspinatus tendinitis[J]. Chin J Magn Reson Imag, 2022, 13(9): 53-57, 68. DOI: 10.12015/issn.1674-8034.2022.09.010.
[32]
丁伯平, 胡大成, 史鹏鹏, 等. MR集成序列诊断慢性冈上肌肌腱炎的临床价值研究[J]. 浙江创伤外科, 2023, 28(7): 1384-1386. DOI: 10.3969/j.issn.1009-7147.2023.07.057.
DING B P, HU D C, SHI P P, et al. Clinical value of MR integrated sequence in the diagnosis of chronic supraspinatus tendinitis[J]. Zhejiang J Trauma Surg, 2023, 28(7): 1384-1386. DOI: 10.3969/j.issn.1009-7147.2023.07.057.
[33]
PUNTMANN V O, PEKER E, CHANDRASHEKHAR Y, et al. T1 mapping in characterizing myocardial disease: a comprehensive review[J]. Circ Res, 2016, 119(2): 277-299. DOI: 10.1161/CIRCRESAHA.116.307974.
[34]
PALMISANO A, BENEDETTI G, FALETTI R, et al. Early T1 myocardial MRI mapping: value in detecting myocardial hyperemia in acute myocarditis[J]. Radiology, 2020, 295(2): 316-325. DOI: 10.1148/radiol.2020191623.
[35]
MCNISH R, LOHSE K, PRUTHI S, et al. Achilles tendon assessment on quantitative MRI: sources of variability and relationships to tendinopathy[J/OL]. Scand J Med Sci Sports, 2024, 34(5): e14650 [2023-08-11]. https://pubmed.ncbi.nlm.nih.gov/38712745/. DOI: 10.1111/sms.14650.
[36]
KRÄMER M, MAGGIONI M B, BRISSON N M, et al. T1 and T2* mapping of the human quadriceps and patellar tendons using ultra-short echo-time (UTE) imaging and bivariate relaxation parameter-based volumetric visualization[J]. Magn Reson Imaging, 2019, 63: 29-36. DOI: 10.1016/j.mri.2019.07.015.
[37]
GIULIANO F D, MINOSSE S, PICCHI E, et al. Comparison between synthetic and conventional magnetic resonance imaging in patients with multiple sclerosis and controls[J]. MAGMA, 2020, 33(4): 549-557. DOI: 10.1007/s10334-019-00804-9.
[38]
ZHANG S C, JU W, CHEN X Y, et al. Hierarchical ultrastructure: an overview of what is known about tendons and future perspective for tendon engineering[J]. Bioact Mater, 2022, 8: 124-139. DOI: 10.1016/j.bioactmat.2021.06.007.
[39]
田兆荣, 张莉萍, 田博, 等. MRI集成序列在强直性脊柱炎骶髂关节病变活动性评估中的诊断价值[J]. 磁共振成像, 2023, 14(12): 78-84. DOI: 10.12015/issn.1674-8034.2023.12.013.
TIAN Z R, ZHANG L P, TIAN B, et al. Quantitative evaluation of sacroiliac arthritis activity in ankylosing spondylitis based on magnetic resonance image compilation sequences[J]. Chin J Magn Reson Imag, 2023, 14(12): 78-84. DOI: 10.12015/issn.1674-8034.2023.12.013.

上一篇 T2WI影像组学鉴别卵巢成人型颗粒细胞瘤与DWI高信号纤维-卵泡膜细胞肿瘤
下一篇 人工智能辅助压缩感知与并行采集技术在肩关节MRI中的对比研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2