分享:
分享到微信朋友圈
X
综述
扩散张量成像定量分析在胶质瘤分级及分子分型的研究进展
韩鑫 卢洁

Cite this article as: HAN X, LU J. Research advances in the quantitative analysis based on diffusion tensor imaging for grading and molecular typing of gliomas[J]. Chin J Magn Reson Imaging, 2024, 15(8): 201-206.本文引用格式:韩鑫, 卢洁. 扩散张量成像定量分析在胶质瘤分级及分子分型的研究进展[J]. 磁共振成像, 2024, 15(8): 201-206. DOI:10.12015/issn.1674-8034.2024.08.032.


[摘要] 胶质瘤在成人原发恶性脑肿瘤约占80%,术前对其精准分级及分子分型能协助临床制订个体化治疗方案,延长患者生存期。扩散张量成像(diffusion tensor imaging, DTI)是一种可以利用水分子扩散改变反映组织结构变化的MRI技术,能无创在体评价肿瘤内水分子扩散速度及各向异性,进而为无创预测胶质瘤术前分级、基因表型预测提供影像学指标。本文就扩散张量成像的扩散系数及各向异性等定量参数在预测胶质瘤分级及分子分型的临床研究进行综述,旨在为术前精准预测胶质瘤分级及分子分型提供可靠的影像学指标,从而为胶质瘤患者精准治疗提供帮助。
[Abstract] Gliomas represent approximately 80% of primary malignant brain tumors in adults. Accurate preoperative grading and molecular classification of gliomas can aid in formulating personalized treatment plans and extending the survival period of patients. Diffusion tensor imaging, a magnetic resonance imaging technique, evaluates water molecule diffusion to reflect alterations in tissue structure. This method can non-invasively evaluates water molecule diffusion rate and anisotropy within tumors in vivo, offering imaging metrics for predicting preoperative glioma grading and genotyping. This article provides a comprehensive review of the clinical studies of diffusion tensor imaging with quantitative parameters such as diffusion coefficient and anisotropy in the prediction of glioma grading and molecular classification, with the aim of providing reliable imaging indices for the accurate prediction of glioma grading and molecular typing before surgery, thus assisting in the accurate treatment of glioma patients.
[关键词] 胶质瘤;扩散张量成像;磁共振成像;肿瘤分级;分子分型
[Keywords] glioma;diffusion tensor imaging;magnetic resonance imaging;neoplasm grading;molecular typing

韩鑫 1, 2   卢洁 1, 2*  

1 首都医科大学宣武医院放射与核医学科,北京 100053

2 磁共振成像脑信息学北京市重点实验室,北京 100053

通信作者:卢洁,E-mail:imaginglu@hotmail.com

作者贡献声明:卢洁设计并构思了本综述的方案,对稿件重要内容进行了修改,对文章的知识性内容作批判性审阅,获得了国家重点研发计划基金项目的资助;韩鑫设计并构思了本综述的方案,起草和撰写稿件,获取、分析及解释本综述的文献;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家重点研发计划项目 2022YFC2406900
收稿日期:2024-04-18
接受日期:2024-08-08
中图分类号:R445.2  R730.264 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.08.032
本文引用格式:韩鑫, 卢洁. 扩散张量成像定量分析在胶质瘤分级及分子分型的研究进展[J]. 磁共振成像, 2024, 15(8): 201-206. DOI:10.12015/issn.1674-8034.2024.08.032.

0 引言

       胶质瘤是成人最常见的中枢神经系统原发恶性肿瘤,发病率约为6.6/10万,其中约57%为异柠檬酸脱氢酶(isocitrate dehydrogenase, IDH)野生型胶质母细胞瘤,平均5年生存率仅7%[1, 2]。治疗前无创评估胶质瘤分级及分子分型能够评估患者预后,并且靶向分子分型的个体化综合治疗能延长患者14.6至25.8个月的预后生存期[3, 4]。磁共振扩散张量成像(diffusion tensor imaging, DTI)技术通过无创定量评估肿瘤及周围脑组织水分子各向异性扩散及平均扩散速率,能反映不同分子分型及分级的胶质瘤在水分子扩散层面的组织生物学差异[5]。DTI中常用的参数图像包括各向异性分数(fractional anisotropy, FA)和平均扩散率(mean diffusivity, MD),FA是扩散各向异性占总扩散的比值,可以量化水分子在组织中扩散方向的一致性,而MD可以反映扩散运动的快慢[6, 7, 8]。DTI后处理参数在术前预测胶质瘤的分级、分子分型及预后评估等研究方面均有所进展,并且通过纤维束追踪能可视化胶质瘤与周围纤维束的关系,对胶质瘤的外科切除治疗及放疗提供术前定位参考[9, 10, 11, 12]。本文将就DTI定量扩散参数在脑胶质瘤分级及分子分型方面的临床研究进行综述,以期提供术前预测肿瘤分级及分子分型的无创影像学指标,从而助力胶质瘤个性化精准治疗。

1 DTI定量分析在胶质瘤术前分级的应用

       世界卫生组织(World Health Organization, WHO)中枢神经系统肿瘤分类指南根据胶质瘤不同分级的预后、治疗方案差异,将其分为高级别胶质瘤(high grade glioma, HGG;WHO分级为3、4级)和低级别胶质瘤(low grade glioma, LGG;WHO分级为1、2级)[13]。HGG的预后平均生存时间约14个月[13],而LGG生存时间差异较大,受肿瘤分子特征、治疗方式等因素影响可为2年至10年不等[14]。因此,低级别胶质瘤主要采用手术切除的治疗方式[15],高级别胶质瘤的治疗则采用手术结合分子分型指导的放化疗的新型综合治疗方案[16]。目前,在胶质瘤术前分级方面的诊断研究,主要是应用DTI后处理的FA、MD、径向扩散率(radial diffusion, RD)和轴向扩散率(axial diffusion, AD)等参数进行不同级别胶质瘤的组间差异比较及预测分析。

1.1 FA参数的应用价值

       在对不同级别的胶质瘤的FA参数比较研究方面,大部分研究报道了HGG中肿瘤实性区域的FA值大于LGG[17, 18],POGOSBEKIAN等[19]对50例2~4级胶质瘤的肿瘤和水肿区域的FA值进行组间比较,发现HGG实性区域的FA值高于LGG(P<0.05),其在区分LGG和HGG的AUC为0.77,但肿瘤水肿区域的FA值没有显著差异。然而,GOEBELL 等[20]发现2级和3级胶质瘤的肿瘤核心区域FA参数无显著差异(P=0.97),但2级胶质瘤的肿瘤边缘区FA值和相对FA值均高于3级胶质瘤(P=0.01),可能是由于HGG边缘区域通常伴有周围纤维束的完全破坏,纤维束对水分子扩散方向的约束降低,因此LGG边缘区域的FA值高于HGG[21]。上述两项研究在肿瘤实性区域的结果差异可能是源于纳入的胶质瘤病理分级组成不同。此外,也有研究初步探索了FA参数组学特征的胶质瘤分级智能预测模型应用价值,WANG等[22]通过前瞻性招募103名胶质瘤患者进行常规MRI及DTI,发现整合肿瘤位置、钙化、水肿与FA直方图特征的机器学习模型鉴别高、低级别胶质瘤表现最好,在内部验证集及31例前瞻测试集的AUC分别为0.94和0.88。

1.2 MD参数的应用价值

       肿瘤细胞的细胞密度可以影响水分子的扩散快慢,所以随着肿瘤级别的增高,肿瘤组织中水分子扩散受限更加明显,MD参数值也会随之降低[6]。SERVER等[23]发现肿瘤实性区域的MD参数值在2级与3级胶质瘤组间、LGG与HGG组间均存在显著差异(P<0.0001),并且MD值与肿瘤分级呈显著负相关(r=-0.739,P<0.0001)。RAJA等[24]的研究中进一步分别对2、3、4级胶质瘤实性区域的MD图的纹理特征并进行了组间比较,发现不同级别胶质瘤组间MD参数图的纹理特征存在显著差异,且纹理特征中的熵特征在区分2、3级胶质瘤方面的AUC达到了0.94,提示了DTI参数图的纹理特征可以更好反映不同级别胶质瘤的异质性信息,基于此特征构建预测模型的性能也随之提高。LIN等[25]的研究中也发现相较于MD值的二维感兴趣区定量参数,纳入了MD图形态学和高阶影像组学特征的模型可使预测高、低级别胶质瘤的准确率从61%提高到83%。

1.3 RD和AD参数的应用价值

       RD和AD分别代表了神经纤维髓鞘和轴突的完整性[26]。POGOSBEKIAN等[19]的研究发现HGG实性区域的RD、AD值低于LGG(P<0.05);其中RD值在鉴别高、低级别胶质瘤的效能最好(AUC=0.80),AD值在区分高、低级别胶质瘤方面的AUC为0.78,这与RAJA等[24]的报道是相符的,该研究中发现RD值和AD值随着肿瘤分级的升高而显著降低。但JIANG等[17]的研究中却报道了LGG和HGG之间肿瘤实性区的AD值差异具有统计学意义(P=0.046),而RD值没有显著差异(P=0.573)。上述研究结果的不同可能是不同中心之间DTI参数后处理过程差异所致。

1.4 DTI参数联合应用的价值

       SEOW等[27]通过比较15例LGG与27例HGG的实性增强区域和非增强区域DTI参数,发现两组之间的实性非增强区域的FA、RD、纯各向异性扩散、扩散张量总值、相对各向异性、平面各向异性及球形各向异性差异均存在统计学意义(P<0.05),而增强区域中只有MD、RD及纯各向同性扩散在两组之间差异存在统计学意义(P<0.05)。研究发现胶质瘤非增强区域的肿瘤细胞占比高于增强区域(89% vs. 60%)[28],因此非增强区域的DTI参数在高、低级别胶质瘤的差异更显著,提示了对多种DTI参数值进行组间横向比较可以更全面体现不同级别胶质瘤间不同区域的扩散特点。随着影像组学的人工智能研究的开展,基于DTI多参数影像组学的胶质瘤分级智能预测模型也进行了初步的研究。LIN等[25]提取了100例胶质瘤的常规MR序列及MD图、FA图的直方图特征、形态特征及高阶组学特征,发现结合DTI和常规MRI的影像组学模型预测胶质分级的AUC高于常规MRI序列的影像组学模型(0.97 vs. 0.92)。此外,深度学习卷积神经网络的引入进一步提高了预测模型的效能,ZHANG等[29]将108例胶质瘤患者的FA和MD图纹理特征、形态学特征与卷积神经网络的深度学习特征结合,建立的支持向量机模型鉴别HGG和LGG的AUC为0.93,鉴别3级和4级胶质瘤的AUC为0.99。

       DTI定量参数通过反映胶质瘤水分子扩散改变能够在术前精准鉴别肿瘤分级,并且使用影像组学方法构建智能化预测模型能够进一步提高分级准确性。但对不同分级胶质瘤内部的强化、非强化及周围水肿区域水分子扩散异常改变的生物学机制仍需要进一步探索,且未来仍需多中心前瞻性队列研究以进一步验证预测模型的可重复性及临床应用转化价值。

2 DTI定量分析在胶质瘤分子分型的应用

       2021版WHO中枢神经系统肿瘤分类强调分子分型对胶质瘤诊断、个体化治疗以及预后评估的价值[30, 31]。IDH、1号染色体短臂和19号染色体长臂的联合缺失(1p/19q co-del)、端粒酶逆转录酶(telomerase reverse transcriptase, TERT)以及O6-甲基鸟嘌呤-DNA-甲基转移酶(O6-methylguanine-DNA-methyltransferase, MGMT)是胶质瘤分子分型的关键生物标志物[32]。目前胶质瘤分子分型仍依靠活检或术后病理作为金标准[33],缺乏术前无创诊断胶质瘤分子分型的影像标志物,而DTI定量参数通过反映肿瘤扩散速度及各向异性,能够识别与分子分型相关的胶质瘤细胞密度改变、细胞外基质特征及微血管密度等,有助于无创预测胶质瘤分子分型[34, 35]

2.1 DTI定量分析预测IDH突变及1p/19q共缺失的价值

       IDH突变与1p/19q联合缺失将成人弥漫性胶质瘤分为胶质母细胞瘤(glioblastoma, GBM)(IDH野生型)、星形细胞瘤(diffuse astrocytoma, DA)(IDH突变不伴1p/19q共缺失)及少突胶质细胞瘤(oligodendroglioma, OG)(IDH突变伴1p/19q共缺失),三种分型胶质瘤对扩大手术切除范围的疗效、放化疗敏感性及预后生存时间存在显著差异,其中以IDH野生型胶质母细胞瘤预后最差,平均生存期仅约为6到15个月[36];而IDH突变型胶质瘤患者可受益于扩大切除[37];IDH突变伴1p/19q共缺失型少突胶质细胞瘤比非1p/19q共缺失型胶质瘤对放化疗敏感性更高[38]。目前DTI定量分析在胶质瘤IDH突变及1p/19q共缺失的研究,主要集中在扩散张量成像常规定量参数和影像组学定量分析两个方面。

       一些研究发现IDH野生型胶质瘤的FA值高于IDH突变型胶质瘤,但MD值低于IDH突变型胶质瘤[39, 40]。XIONG等[41]通过回顾性分析84例胶质瘤的肿瘤实性区域的FA和MD参数,发现IDH突变型胶质瘤实质区域的最大FA值及相对最大FA值均低于IDH野生型(P值分别为0.009、0.004);IDH突变型的最小MD值及相对最小MD值则显著高于IDH野生型组(P值分别为0.001、0.002),最小MD比值鉴别IDH突变的准确性最高(AUC=0.83)。但AUGELLI等[42]对高级别胶质瘤的IDH亚型的DTI参数分析发现不同的结果,高级别胶质瘤IDH突变型与非突变型的FA值差异无统计学意义(P=0.376),而IDH突变型胶质瘤肿瘤实性区域的MD最小值(P=0.005)和MD平均值(P=0.018)大于非突变型胶质瘤且差异存在统计学意义。近期,HALILIBRAHIMOĞLU等[43]进一步分析了不同基因型胶质瘤患者脑内正常表现白质(normal appearing white matter, NAWM)的多种DTI参数组间差异,该团队发现在比较全脑NAWM的DTI参数时,IDH突变型的MD、RD值显著低于IDH野生型(P<0.05),而FA、RA值显著高于IDH野生型(P<0.05),全脑NAWM的FA和RA值预测IDH状态的性能最好,AUC均为0.765。DTI定量参数能够鉴别胶质瘤IDH基因突变状态,但研究发现DTI参数无法对胶质瘤1p/19q共缺失进行有效鉴别,WANG等[44]的研究中发现不同1p/19q共缺失状态胶质瘤实性区域的FA和MD参数值没有组间差异,有研究认为可能是因为1p/19q共缺失状态与肿瘤细胞增殖无生物学相关性[41]

       研究发现基于FA和MD图提取的直方图特征比测量的肿瘤FA和MD值鉴别IDH基因突变的准确性更高(AUC=0.93),IDH野生型胶质瘤FA直方图的偏度低于IDH突变型(P=0.025),而MD直方图的偏度则高于IDH突变组(P=0.008)[45]。并且1p/19q共缺失型胶质瘤MD直方图的25百分位数、75百分位数均低于非共缺失组(P值分别为0.007、0.002),而1p/19q共缺失型直方图的偏度和峰度高于1p/19q非共缺失型(P值分别为0.002、0.019),MD直方图75百分位数诊断胶质瘤1p/19q共缺失准确性最高(AUC=0.783)[45]。GAO等[46]对比了87例IDH突变型与128例IDH野生型胶质瘤的FA、MD的直方图特征却没有得到相似的结果,但发现联合FA直方图与MD直方图的均方根能预测胶质瘤IDH突变(AUC=0.76);并且联合AD直方图的四分位数间距、峰度特征及RD直方图的中位数能够预测IDH突变胶质瘤的1p/19q 共缺失(AUC=0.83)。PARK等[47]发现基于随机森林算法将FA、MD与常规MR解剖图像的影像组学特征联合,构建多参数影像组学机器学习模型预测胶质瘤IDH的准确性能进一步提高(AUC=0.90,P=0.006)。YUAN等[48]的研究中进一步探索了深度学习组学特征预测IDH基因型的潜力,该团队提取了206例胶质瘤患者术前T1WI、T2WI、液体衰减反转恢复序列及FA、MD参数图的多卷积层深度组学特征,并基于支持向量机构建预测模型,结果证明了联合DTI参数组学特征的模型性能优于单独使用常规结构MRI组学特征的模型(AUC分别为0.847、0.730)。

2.2 DTI定量分析预测TERT突变的价值

       TERT是端粒酶的逆转录酶催化亚基,其突变会导致端粒酶逆转录酶过度表达从而使端粒延长,是肿瘤发生发展的重要细胞生物学事件,IDH野生型胶质瘤合并TERT突变的胶质瘤中位总生存期比TERT未突变的胶质瘤减少约4.9个月[49]

       PARK等[50]通过比较21例TERT突变型与19例TERT野生型胶质瘤的DTI定量参数,发现TERT野生型与突变型胶质瘤的平均MD值、FA值差异均无统计学意义(P=0.411、P=0.223)。然而,有研究发现TERT突变型岛叶胶质瘤的平均FA值、FA直方图第25百分位数和第75百分位数均高于TERT野生型岛叶胶质瘤,TERT突变型岛叶胶质瘤的平均MD值、MD直方图第25百分位数和第75百分位数低于TERT野生型岛叶胶质瘤,结合FA直方图和MD直方图的机器学习模型能预测岛叶胶质瘤TERT突变(AUC=0.84)[45]。近来,HALILIBRAHIMOĞLU等[43]发现不同TERT突变会引起肿瘤周围白质区域微观水分子扩散改变,通过对比37例TERT突变型与33例TERT野生型胶质瘤患侧与对侧脑白质区域的FA、MD、相对各向异性(relative anisotropy, RA)及RD差值(ΔFA、ΔMD、ΔRA及ΔRD),发现TERT突变胶质瘤的ΔFA(P=0.01)和ΔRA(P=0.02)高于TERT野生型胶质瘤。

2.3 DTI定量分析预测MGMT甲基化的价值

       MGMT启动子甲基化能够增强氮芥类化疗药物对肿瘤细胞的杀伤作用,降低肿瘤细胞的增殖及修复,延长患者预后生存期[51]。尤其胶质母细胞瘤MGMT启动子甲基化型对替莫唑胺等化疗药物更加敏感,能延长6.4个月的总生存期[52]。因此,无创评价胶质瘤MGMT甲基化对指导个体化化疗药物筛选至关重要。

       DTI定量参数在鉴别胶质瘤MGMT甲基化的研究结果尚存在争议。有研究发现MGMT甲基化胶质瘤强化区域的FA 值、相对 FA值显著低于非甲基化组(P=0.006和0.007),而相对MD值则高于非甲基化组(P=0.032)[53]。但LATYSHEVA等[54]通过分析42例GBM的DTI定量参数发现肿瘤增强区域FA和MD参数在MGMT甲基化与非甲基化之间无显著差异,与之前结论矛盾的原因可能是该研究的胶质瘤DTI参数测量基于3D感兴趣区域,而既往研究多采用2D最大层面测量肿瘤DTI参数,胶质瘤异质性导致基于2D层面测量的扩散信息不足以反映肿瘤整体的水分子扩散改变。此外,HUANG等[45]的研究中也发现MGMT甲基化胶质瘤与MGMT非甲基化胶质瘤的肿瘤整体区域FA、MD直方图特征无显著差异。TAN等[55]则是发现将MD直方图特征与纹理特征结合能预测星形细胞瘤MGMT启动子甲基化状态(AUC=0.835),将影像组学特征与水肿程度、强化程度等半定量MR特征结合后模型预测MGMT甲基化的预测效能进一步提高(AUC=0.859)。除了以整体肿瘤为感兴趣区进行研究外,焦凯剑等[56]进一步提取纳入了胶质瘤的三个生境亚区(增强区域、坏死区域和水肿区域)的术前常规MRI及FA参数组学特征,并基于极限梯度提升构建预测模型,其多区域多模态的组合模型在训练集和测试集上的AUC分别为0.874和0.899。

       DTI参数及组学特征能够无创预测胶质瘤IDH基因突变,但对1p/19q共缺失、TERT突变及MGMT甲基化的判定价值仍存在争议。本质可能由于IDH基因改变导致胶质瘤细胞密度改变及水分子扩散更为直接[57],因此DTI扩散参数能够反映IDH基因突变状态;但其他分子分型则可能是间接性导致胶质瘤内水分子扩散速率及方向改变。因此,DTI参数在分析其他分子分型改变时需要进一步关注肿瘤及瘤周区域的间接水分子扩散改变,制订统一的标注及参数提取方案,有助于提升DTI参数预测其他分子分型的价值。

3 局限性

       上述研究已证明了DTI参数定量分析可以在实现术前精准预测胶质瘤分级和基因型方面提供一定帮助,但目前研究仍存在一些局限性:(1)DTI扫描序列参数缺乏统一标准,以及不同中心之间DTI参数后处理背景不同导致的参数差异仍无法避免,未来仍需探索DTI扫描序列及参数后处理过程的标准化流程;(2)胶质瘤内部异质性区域水分子扩散异常背后的生物学机制仍不明确,导致解释DTI参数的组间差异存在困难,未来仍需探究胶质瘤不同区域的微观组织改变特点;(3)DTI参数组学特征的提取多基于人工勾画肿瘤区域,导致肿瘤区域的标注存在一定主观性,未来仍需要更加客观的智能分割胶质瘤模型的开发应用。

4 总结与展望

       DTI可以通过量化胶质瘤水分子扩散速率及各向异性表征肿瘤生物学特征,对于胶质瘤的分级、分子分型预测研究方面有着重大的意义。虽然目前存在扫描参数差异、后处理模型限制以及肿瘤不同区域扩散改变的生物学机制不明,但随着大规模前瞻性队列的开展、图像后处理规范化以及运用深度学习智能分割胶质瘤区域的研究,DTI定量分析有望为脑胶质瘤术前评估做出更精准的诊断,为胶质瘤临床精准诊疗提供影像学依据。

[1]
OSTROM Q T, PRICE M, NEFF C, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015-2019[J/OL]. Neuro-Oncol, 2022, 24(Suppl 5): v1-v95 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/36196752/. DOI: 10.1093/neuonc/noac202.
[2]
MILLER K D, OSTROM Q T, KRUCHKO C, et al. Brain and other central nervous system tumor statistics, 2021[J]. CA: Cancer J Clin, 2021, 71(5): 381-406. DOI: 10.3322/caac.21693.
[3]
SZYLBERG M, SOKAL P, ŚLEDZIŃSKA P, et al. MGMT promoter methylation as a prognostic factor in primary glioblastoma: A single-institution observational study[J/OL]. Biomedicines, 2022, 10(8): 2030 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/36009577/. DOI: 10.3390/biomedicines10082030.
[4]
WONG Q H W, LI K K W, WANG W W, et al. Molecular landscape of IDH-mutant primary astrocytoma Grade IV/glioblastomas[J]. Mod Pathol, 2021, 34(7): 1245-1260. DOI: 10.1038/s41379-021-00778-x.
[5]
MARTÍN-NOGUEROL T, MOHAN S, SANTOS-ARMENTIA E, et al. Advanced MRI assessment of non-enhancing peritumoral signal abnormality in brain lesions[J/OL]. Eur J Radiol, 2021, 143: 109900 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/34412007/. DOI: 10.1016/j.ejrad.2021.109900.
[6]
LI Y, ZHANG W. Quantitative evaluation of diffusion tensor imaging for clinical management of glioma[J]. Neurosurg Rev, 2020, 43(3): 881-891. DOI: 10.1007/s10143-018-1050-1.
[7]
RAMEH V, VAJAPEYAM S, ZIAEI A, et al. Correlation between multiparametric MR imaging and molecular genetics in pontine pediatric high-grade glioma[J]. AJNR Am J Neuroradiol, 2023, 44(7): 833-840. DOI: 10.3174/ajnr.A7910.
[8]
MARTUCCI M, RUSSO R, SCHIMPERNA F, et al. Magnetic resonance imaging of primary adult brain tumors: State of the art and future perspectives[J/OL]. Biomedicines, 2023, 11(2): 364 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/36830900/. DOI: 10.3390/biomedicines11020364.
[9]
YEH F C, IRIMIA A, BASTOS D C D A, et al. Tractography methods and findings in brain tumors and traumatic brain injury[J/OL]. NeuroImage, 2021, 245: 118651 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/34673247/. DOI: 10.1016/j.neuroimage.2021.118651.
[10]
LATINI F, FAHLSTRÖM M, BEHÁŇOVÁ A, et al. The link between gliomas infiltration and white matter architecture investigated with electron microscopy and diffusion tensor imaging[J/OL]. NeuroImage: Clin, 2021, 31: 102735 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/34247117/. DOI: 10.1016/j.nicl.2021.102735.
[11]
WANG Z, GUAN F, DUAN W, et al. Diffusion tensor imaging-based machine learning for IDH wild-type glioblastoma stratification to reveal the biological underpinning of radiomic features[J]. CNS neurosci ther, 2023, 29(11): 3339-3350. DOI: 10.1111/cns.14263.
[12]
TIEFENBACH J, LU V M, METZLER A R, et al. The use of advanced neuroimaging modalities in the evaluation of low-grade glioma in adults: a literature review[J/OL]. Neurosurg Focus, 2024, 56(2): E3 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/38301240/. DOI: 10.3171/2023.11.FOCUS23649.
[13]
DU P, CHEN H, LV K, et al. A Survey of Radiomics in Precision Diagnosis and Treatment of Adult Gliomas[J/OL]. J Clin Med, 2022, 11(13): 3802 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/35807084/. DOI: 10.3390/jcm11133802.
[14]
CAO J, YAN W, ZHAN Z, et al. Epidemiology and risk stratification of low-grade gliomas in the United States, 2004-2019: A competing-risk regression model for survival analysis[J/OL]. Front Oncol, 2023, 13: 1079597 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/36937393/. DOI: 10.3389/fonc.2023.1079597.
[15]
TOADER C, EVA L, COSTEA D, et al. Low-grade gliomas: histological subtypes, molecular mechanisms, and treatment strategies[J/OL]. Brain Sci, 2023, 13(12): 1700 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/38137148/. DOI: 10.3390/brainsci13121700.
[16]
SHIKALOV A, KOMAN I, KOGAN N M. Targeted Glioma Therapy-Clinical Trials and Future Directions[J/OL]. Pharmaceutics, 2024, 16(1): 100 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/38258110/. DOI: 10.3390/pharmaceutics16010100.
[17]
JIANG L, XIAO CY, XU Q, et al. Analysis of DTI-derived tensor metrics in differential diagnosis between low-grade and high-grade gliomas[J/OL]. Front Aging Neurosci, 2017, 9: 271 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/28848428/. DOI: 10.3389/fnagi.2017.00271.
[18]
SMITHA KA, KUMAR GUPTA A, JAYASREE R S. Total magnitude of diffusion tensor imaging as an effective tool for the differentiation of glioma[J]. Eur J Radiol, 2013, 82(5): 857-861. DOI: 10.1016/j.ejrad.2012.12.027.
[19]
POGOSBEKIAN E L, PRONIN I N, ZAKHAROVA N E, et al. Feasibility of generalised diffusion kurtosis imaging approach for brain glioma grading[J]. Neuroradiology, 2021, 63(8): 1241-1251. DOI: 10.1007/s00234-020-02613-7.
[20]
GOEBELL E, PAUSTENBACH S, VAETERLEIN O, et al. Low-grade and anaplastic gliomas: Differences in architecture evaluated with diffusion-tensor MR imaging[J]. Radiology, 2006, 239(1): 217-222. DOI: 10.1148/radiol.2383050059.
[21]
LU S, AHN D, JOHNSON G, et al. Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumor infiltration index[J]. Radiology, 2004, 232(1): 221-228. DOI: 10.1148/radiol.2321030653.
[22]
WANG P, XIE S, WU Q, et al. Model incorporating multiple diffusion MRI features: development and validation of a radiomics-based model to predict adult-type diffuse gliomas grade[J]. Eur Radiol, 2023, 33(12): 8809-8820. DOI: 10.1007/s00330-023-09861-0.
[23]
SERVER A, GRAFF B A, JOSEFSEN R, et al. Analysis of diffusion tensor imaging metrics for gliomas grading at 3 T[J/OL]. Eur J Radiol, 2014, 83(3): e156-e165 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/24457139/. DOI: 10.1016/j.ejrad.2013.12.023.
[24]
RAJA R, SINHA N, SAINI J, et al. Assessment of tissue heterogeneity using diffusion tensor and diffusion kurtosis imaging for grading gliomas[J]. Neuroradiology, 2016, 58(12): 1217-1231. DOI: 10.1007/s00234-016-1758-y.
[25]
LIN K, CIDAN W, QI Y, et al. Glioma grading prediction using multiparametric magnetic resonance imaging-based radiomics combined with proton magnetic resonance spectroscopy and diffusion tensor imaging[J]. Med Phys, 2022, 49(7): 4419-4429. DOI: 10.1002/mp.15648.
[26]
WINSTON G P. The physical and biological basis of quantitative parameters derived from diffusion MRI[J]. Quant Imaging Med Surg, 2012, 2(4): 254-265. DOI: 10.3978/j.issn.2223-4292.2012.12.05.
[27]
SEOW P, HERNOWO A T, NARAYANAN V, et al. Neural fiber integrity in high- versus low-grade glioma using probabilistic fiber tracking[J]. Acad Radiol, 2021, 28(12): 1721-1732. DOI: 10.1016/j.acra.2020.09.007.
[28]
EIDEL O, BURTH S, NEUMANN J O, et al. Tumor infiltration in enhancing and non-enhancing parts of glioblastoma: A correlation with histopathology[J/OL]. PloS One, 2017, 12(1): e0169292 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/28103256/. DOI: 10.1371/journal.pone.0169292.
[29]
ZHANG Z, XIAO J, WU S, et al. Deep convolutional radiomic features on diffusion tensor images for classification of glioma grades[J]. J Digit Imaging, 2020, 33(4): 826-837. DOI: 10.1007/s10278-020-00322-4.
[30]
LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro-Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
[31]
JAMSHIDI P, BRAT D J. The 2021 WHO classification of central nervous system tumors: what neurologists need to know[J]. Curr Opin Neurol, 2022, 35(6): 764-771. DOI: 10.1097/WCO.0000000000001109.
[32]
PENKOVA A, KUZIAKOVA O, GULAIA V, et al. Comprehensive clinical assays for molecular diagnostics of gliomas: the current state and future prospects[J/OL]. Front Mol Biosci, 2023, 10: 1216102 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/37908227/. DOI: 10.3389/fmolb.2023.1216102.
[33]
WOLTER M, FELSBERG J, MALZKORN B, et al. Droplet digital PCR-based analyses for robust, rapid, and sensitive molecular diagnostics of gliomas[J/OL]. Acta Neuropathol Commun, 2022, 10(1): 42 [2024-04-18]. DOI: 10.1186/s40478-022-01335-6.
[34]
TAN Y, ZHANG H, WANG X, et al. Comparing the value of DKI and DTI in detecting isocitrate dehydrogenase genotype of astrocytomas[J]. Clin Radiol, 2019, 74(4): 314-320. DOI: 10.1016/j.crad.2018.12.004.
[35]
LI Y, QIN Q, ZHANG Y, et al. Noninvasive determination of the IDH status of gliomas using MRI and MRI-Based radiomics: Impact on diagnosis and prognosis[J]. Curr Oncol, 2022, 29(10): 6893-6907. DOI: 10.3390/curroncol29100542.
[36]
ERICES J I, BIZAMA C, NIECHI I, et al. Glioblastoma microenvironment and invasiveness: New insights and therapeutic targets[J/OL]. Int J Mol Sci, 2023, 24(8): 7047 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/37108208/. DOI: 10.3390/ijms24087047.
[37]
ALSHIEKH NASANY R, DE LA FUENTE M I. Therapies for IDH-Mutant gliomas[J]. Curr Neurol Neurosci Rep, 2023, 23(5): 225-233. DOI: 10.1007/s11910-023-01265-3.
[38]
KESSLER T, ITO J, WICK W, et al. Conventional and emerging treatments of astrocytomas and oligodendrogliomas[J]. J Neuro-Oncol, 2023, 162(3): 471-478. DOI: 10.1007/s11060-022-04216-z.
[39]
FIGINI M, RIVA M, GRAHAM M, et al. Prediction of isocitrate dehydrogenase genotype in brain gliomas with MRI: Single-shell versus multishell diffusion models[J]. Radiology, 2018, 289(3): 788-796. DOI: 10.1148/radiol.2018180054.
[40]
ZHAO J, WANG Y L, LI X B, et al. Comparative analysis of the diffusion kurtosis imaging and diffusion tensor imaging in grading gliomas, predicting tumour cell proliferation and IDH-1 gene mutation status[J]. J Neuro-Oncol, 2019, 141(1): 195-203. DOI: 10.1007/s11060-018-03025-7.
[41]
XIONG J, TAN W, WEN J, et al. Combination of diffusion tensor imaging and conventional MRI correlates with isocitrate dehydrogenase 1/2 mutations but not 1p/19q genotyping in oligodendroglial tumours[J]. Eur Radiol, 2016, 26(6): 1705-1715. DOI: 10.1007/s00330-015-4025-4.
[42]
AUGELLI R, CICERI E, GHIMENTON C, et al. Magnetic resonance diffusion-tensor imaging metrics in high grade gliomas: Correlation with IDH1 gene status in WHO 2016 era[J]. Eur J Radiol, 2019, 116: 174-179. DOI: 10.1016/j.ejrad.2019.04.020.
[43]
HALILIBRAHIMOĞLU H, POLAT K, KESKIN S, et al. Associating IDH and TERT mutations in glioma with diffusion anisotropy in normal-appearing white matter[J]. Am J Neuroradiol, 2023, 44(5): 553-561. DOI: 10.3174/ajnr.A7855.
[44]
WANG P, HE J, MA X, et al. Applying MAP-MRI to identify the WHO grade and main genetic features of adult-type diffuse gliomas: A comparison of three diffusion-weighted MRI models[J]. Acad Radiol, 2023, 30(7): 1238-1246. DOI: 10.1016/j.acra.2022.10.009.
[45]
HUANG Z, LU C, LI G, et al. Prediction of lower grade insular glioma molecular pathology using diffusion tensor imaging metric-based histogram parameters[J/OL]. Front Oncol, 2021, 11: 627202 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/33777772/. DOI: 10.3389/fonc.2021.627202.
[46]
GAO A, ZHANG H, YAN X, et al. Whole-tumor histogram analysis of multiple diffusion metrics for glioma genotyping[J]. Radiology, 2022, 302(3): 652-661. DOI: 10.1148/radiol.210820.
[47]
PARK C J, CHOI Y S, PARK Y W, et al. Diffusion tensor imaging radiomics in lower-grade glioma: improving subtyping of isocitrate dehydrogenase mutation status[J]. Neuroradiology, 2020, 62(3): 319-326. DOI: 10.1007/s00234-019-02312-y.
[48]
YUAN J, SIAKALLIS L, LI H B, et al. Structural- and DTI- MRI enable automated prediction of IDH Mutation Status in CNS WHO Grade 2-4 glioma patients: a deep radiomics approach[J/OL]. BMC Med Imaging, 2024, 24(1): 104 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/38702613/. DOI: 10.1186/s12880-024-01274-9.
[49]
ARITA H, ICHIMURA K. Prognostic significance of TERT promoter mutations in adult-type diffuse gliomas[J]. Brain Tumor Pathol, 2022, 39(3): 121-129. DOI: 10.1007/s10014-021-00424-z.
[50]
PARK Y W, AHN S S, PARK C J, et al. Diffusion and perfusion MRI may predict EGFR amplification and the TERT promoter mutation status of IDH-wildtype lower-grade gliomas[J]. Eur Radiol, 2020, 30(12): 6475-6484. DOI: 10.1007/s00330-020-07090-3.
[51]
LIN K, GUEBLE SE, SUNDARAM RK, et al. Mechanism-based design of agents that selectively target drug-resistant glioma[J]. Sci, 2022, 377(6605): 502-511. DOI: 10.1126/science.abn7570.
[52]
DELLA MONICA R, CUOMO M, BUONAIUTO M, et al. MGMT and whole-genome DNA methylation impacts on diagnosis, prognosis and therapy of glioblastoma multiforme[J/OL]. Int J Mol Sci, 2022, 23(13): 7148 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/35806153/. DOI: 10.3390/ijms23137148.
[53]
MOON W J, CHOI J W, ROH H G, et al. Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging[J]. Neuroradiology, 2012, 54(6): 555-563. DOI: 10.1007/s00234-011-0947-y.
[54]
LATYSHEVA A, GEIER O M, HOPE T R, et al. Diagnostic utility of Restriction Spectrum Imaging in the characterization of the peritumoral brain zone in glioblastoma: Analysis of overall and progression-free survival[J/OL]. Eur J Radiol, 2020, 132: 109289 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/33002815/. DOI: 10.1016/j.ejrad.2020.109289.
[55]
TAN Y, MU W, WANG X C, et al. Whole-tumor radiomics analysis of DKI and DTI may improve the prediction of genotypes for astrocytomas: A preliminary study[J/OL]. Eur J Radiol, 2020, 124: 108785 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/32004731/. DOI: 10.1016/j.ejrad.2019.108785.
[56]
焦凯剑, 杨波, 陈文, 等. 基于多模态MRI影像组学的胶质母细胞瘤生境亚区预测MGMT启动子甲基化表达[J]. 磁共振成像, 2023, 14(11): 25-30, 76. DOI: 10.12015/issn.1674-8034.2023.11.005.
JIAO K J, YANG B, CHEN W, et al. Prediction of habitat subregions of the glioblastoma microenvironment based on multimodal MRI radiomics for MGMT promoter methylation expression[J]. Chin J Magn Reson Imaging, 2023, 14(11): 25-30, 76. DOI: 10.12015/issn.1674-8034.2023.11.005.
[57]
ALZIAL G, RENOULT O, PARIS F, et al. Wild-type isocitrate dehydrogenase under the spotlight in glioblastoma[J]. Oncogene, 2022, 41(5): 613-621. DOI: 10.1038/s41388-021-02056-1.

上一篇 前列腺癌患者神经微环境潜在磁共振成像影像标志物的研究现状
下一篇 磁共振扩散加权成像鉴别颅内孤立性纤维瘤和不同级别脑膜瘤的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2