分享:
分享到微信朋友圈
X
综述
心脏磁共振特征追踪技术评估自身免疫性风湿病心肌应变的研究进展
刘源超 王雯雯 高瑛瑛 祁荣兴

Cite this article as: LIU Y C, WANG W W, GAO Y Y, et al. Research progress of cardiac magnetic resonance feature tracking technique in evaluating myocardial strain in autoimmune rheumatic diseases[J]. Chin J Magn Reson Imaging, 2024, 15(8): 224-228, 234.本文引用格式:刘源超, 王雯雯, 高瑛瑛, 等. 心脏磁共振特征追踪技术评估自身免疫性风湿病心肌应变的研究进展[J]. 磁共振成像, 2024, 15(8): 224-228, 234. DOI:10.12015/issn.1674-8034.2024.08.036.


[摘要] 自身免疫性风湿病(autoimmune rheumatic diseases, ARDs)是一类由于机体免疫系统异常活化,引起由抗原抗体复合物介导的炎症反应,造成多系统损害的全身性疾病。心血管系统常受累及,长期的炎症反应引起心肌纤维化和心肌重构,导致患者预后不良。影像学检查可为ARDs患者心脏受累提供可靠依据,心脏磁共振特征追踪(cardiac magnetic resonance feature tracking, CMR-FT)技术能够定量评估心肌应变,在识别心肌损害、评估严重程度及预后方面具有重要临床价值。本文阐述了CMR-FT技术的原理以及在评估各类ARDs患者心血管受累中的应用价值,并对现有研究的进展、局限性以及未来的改进措施进行总结,旨在将CMR-FT技术投入临床实际应用中,为ARDs患者提供更可靠的影像检查。
[Abstract] Autoimmune rheumatic diseases (ARDs) are characterized by abnormal activation of the body's immune system, resulting in an inflammatory reaction mediated by antigen-antibody complexes and causing damage to multiple systems as a systemic disease. These diseases frequently involve the cardiovascular system, and long-term inflammatory reaction causes myocardial fibrosis and myocardial remodeling, which ultimately results in poor prognosis for patients. Imaging examinations can provide reliable evidence of cardiac involvement in patients with ARDs. Cardiac magnetic resonance feature tracking (CMR-FT) technology enables quantitative evaluation of myocardial strain, thus playing an important clinical role in recognizing myocardial damage and assessing its severity and prognosis. The present article provided an in-depth explanation of the principle and application value of CMR-FT technology in evaluating cardiovascular involvement in patients with ARDs. Additionally, it summarized the progress made in existing research, highlights limitations, and proposes future improvement measures. The ultimate goal is to integrate CMR-FT technology into clinical practice and provide more reliable imaging for patients with ARDs.
[关键词] 自身免疫性风湿病;心脏;特征追踪技术;心肌应变;心脏磁共振;磁共振成像
[Keywords] autoimmune rheumatic diseases;heart;feature tracking;myocardial strain;cardiac magnetic resonance;magnetic resonance imaging

刘源超 1   王雯雯 2   高瑛瑛 2   祁荣兴 1*  

1 南通大学第二附属医院影像科,南通 226001

2 南通大学第二附属医院风湿免疫科,南通 226001

通信作者:祁荣兴,E-mail:qirx0915@163.com

作者贡献声明:祁荣兴设计本研究的方案,对稿件的重要内容进行了修改,获得了江苏省卫生健康委医学科研项目的资助;刘源超起草和撰写稿件,获取、分析、解释本研究的文献;王雯雯、高瑛瑛获取、分析本研究的文献,对稿件重要内容进行了修改;王雯雯获得了国家自然科学基金项目的资助。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82302027 江苏省卫生健康委医学科研项目 Z2023048
收稿日期:2024-04-20
接受日期:2024-08-11
中图分类号:R445.2  R542.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.08.036
本文引用格式:刘源超, 王雯雯, 高瑛瑛, 等. 心脏磁共振特征追踪技术评估自身免疫性风湿病心肌应变的研究进展[J]. 磁共振成像, 2024, 15(8): 224-228, 234. DOI:10.12015/issn.1674-8034.2024.08.036.

0 引言

       自身免疫性风湿病(autoimmune rheumatic diseases, ARDs)主要包括系统性红斑狼疮(systemic lupus erythematosus, SLE)、类风湿关节炎(rheumatoid arthritis, RA)、系统性硬化症(systemic sclerosis, SSc)、特发性肌炎(idiopathic inflammatory myopathies, IIM)以及结节病(sarcoidosis, SRC)等,常引起心脏的慢性炎症反应,导致心肌、心包、心脏血管、传导系统和瓣膜受损[1, 2]。既往研究发现,在没有传统心血管风险因素的ARDs患者中,也会出现非典型心脏症状和亚临床心肌功能障碍,但传统心功能评估-左室射血分数(left ventricular ejection fraction, LVEF)仍然保持正常,表现为射血分数保留型心衰[3, 4]。如不能早期发现和干预,长期的炎症反应将导致心肌纤维化和不良重构,增加患者发生恶性心血管事件的风险[5, 6, 7]。因此,及时识别ARDs患者的心脏损害至关重要。心脏磁共振(cardiac magnetic resonance, CMR)成像是评估心肌疾病的非侵入性参考标准,能够识别心肌结构及功能改变[8, 9]。其中,CMR特征追踪(CMR-feature tracking, CMR-FT)技术作为一种新的后处理技术,从常规采集的CMR电影图像中获得心肌应变参数,可在LVEF未出现异常前,检测出心肌整体和局部运动功能障碍,既往已在多种心血管系统疾病中得到临床应用[10, 11, 12]。近年来,已有大量研究表明CMR-FT在ARDs患者心脏受累的早期检测、危险分层及预后评估中具有重要临床价值。目前有综述对CMR在ARDs中的应用进展进行了描述,并简要提及了CMR-FT技术在该类疾病中的作用[13, 14]。然而,这些综述尚未对CMR-FT应用于ARDs的研究进行汇总讨论,也未指出当前研究中存在的不足之处。为弥补这一空白,本文通过对国内外相关文献归纳总结,系统性阐述了目前CMR-FT用于评估ARDs患者心肌受累的研究成果,并提出未来的研究方向及需要解决的问题,以推动该技术在ARDs患者中的临床实际应用。

1 心肌应变概念

       心肌应变是衡量心肌形态变化的关键指标,是指心肌纤维从松弛状态到收缩状态长度变化的百分比,公式为:应变=(L1-L0)/L0,其中L0和L1分别代表舒张末期长度和收缩末期长度。并根据心肌在不同方向上的变形程度,可计算得到心肌局部或整体径向应变(global radial strain, GRS)、周向应变(global circumferential strain, GCS)和纵向应变(global longitudinal strain, GLS)值,从而反映心肌纤维在各个运动方向上的收缩力。应变率则代表了心肌变形的速率(单位:s-1[15]。心肌应变的测量在心脏功能分析中显示出比EF更高的敏感度,能够检测出早期心脏收缩及舒张功能受损[16]

2 CMR-FT技术

       CMR-FT基于电影序列采集的包括二腔心、四腔心及短轴图像,采用后处理软件(目前常用的软件有Cvi42、Medis、Tom Tec等),在短轴及长轴上自动或手动勾画出心动周期中收缩期及舒张期心内膜、心外膜边界,通过自动追踪体素的相对运动与位移,自动分析计算出心肌应变参数,该技术是当前评估心肌应变的首选影像学检查方法,无须额外的成像序列及复杂的分析[17, 18, 19]。相比于斑点追踪超声心动图(speckle tracking echocardiography, STE)声窗狭窄、空间分辨率较低及对操作者技术依赖性高等缺点,CMR-FT拥有更高的空间分辨率及组织对比度,心内膜和心外膜边界显示得更加清晰,有利于更精确地勾画,具有良好的可重复性[20, 21]

       CMR-FT技术在心肌应变的评估中已得到充分的发展,有多项研究提供了CMR-FT测量心肌应变的正常值范围,如LI等[22]通过CMR-FT提供了我国不同年龄和性别人群双心室心肌应变正常值的参考范围,其中左心室应变包括:GRS(女性42.0%±8.5%,男性33.6%±6.2%)、GCS(女性-21.2%±2.1%,男性-19.7%±2.3%)、GLS(女性-21.2%±2.1%,男性-19.7%±2.3%)。TRUONG等[23]通过CMR-FT对健康人群的左心房应变、应变率和球形指数进行了测量,提供了左心房储存、导管、泵应变的平均值,分别为:(39.13±9.27)%、(25.15±8.34)%、(13.99±4.11)%。但在临床实际应用中,目前仍缺乏广泛认可的正常值参考标准[24]。一项研究汇总了基于CMR-FT测量的健康人群4个心腔应变参数的平均值,分析发现,性别、年龄及CMR供应商对应变的测量没有影响,而后处理软件、磁共振场强以及地域之间的不同,导致心肌应变的参考值存在差异[25]。因此,未来的研究需要更规范的扫描方案及后处理技术,以便为临床实际应用提供更准确的依据。此外,多项研究表明了CMR-FT可应用于相对较薄的右心室和心房应变测量中,且与多种心血管疾病的发生发展、预后密切相关[26, 27, 28]。这些研究为CMR-FT应用于评估ARDs心肌受累提供了重要的参考依据。

3 CMR-FT评估自身免疫性风湿疾病的心肌应变

3.1 SLE

       SLE常引起多种心血管疾病的发生,心脏受累的主要机制是心肌弥漫性炎症和心肌纤维化[29, 30]。既往研究发现SLE患者早期便存在心室舒张功能障碍,但由于无明显临床症状及未采用合适的检查方法,通常只有少数SLE患者心脏受损得到诊断,导致晚期心力衰竭以及死亡率增加,因此早期发现心脏受累、及时启动免疫抑制治疗对SLE患者预后的改善至关重要[31, 32, 33]。PU等[34]研究发现,与健康对照组相比,SLE患者出现双心室应变受损,包括左心室GRS、GLS以及右心室GCS、GLS(P均<0.05),而与射血分数保留组相比,降低组患者的双心室应变受损更加明显(P均<0.05)。研究还指出右心室射血分数与左心室整体应变峰值及舒张期应变率峰值相关(b=0.406~0.715,P均<0.05),且左心室GLS是右心室功能障碍的最佳诊断指标(AUC为0.933)。此外,SLE患者双心室心肌应变受损与CMR钆对比剂延迟成像(late gadolinium enhancement, LGE)阳性、肺动脉高压、RNP抗体阳性等多项因素相关。WU等[35]的研究评估了SLE患者左心室弥漫性心肌纤维化对双心室收缩功能的影响,结果发现SLE患者左心室细胞外间质容积(extracellular volume, ECV)升高与左心室GCS(b=-0.428,P<0.001)、左心室GLS(b=0.404,P<0.001)及右心室GCS(b=-0.373,P<0.001)相关。与单独评估左心室或右心室收缩功能相比,双心室应变可为心肌受损的严重程度评估提供更全面的信息。此外,研究还发现SLE患者早期已出现左心房应变受损,存在舒张功能障碍[36]。综上研究结果,SLE患者早期存在广泛的心肌功能障碍,应考虑将CMR-FT评估的心肌应变分析纳入SLE患者的心脏评估中,为患者心肌受损的早期诊断、严重程度判断提供重要的临床依据。目前基于CMR-FT在SLE中的研究多为单中心研究,且关于预后评估方面的研究较少,未来还需要多中心、大样本队列研究进一步验证CMR-FT在SLE预后评估方面的作用。

3.2 RA

       RA是最常见的一种系统性风湿病,主要导致骨关节破坏,常见的关节外表现除肺间质纤维化,还包括心脏受累[37]。既往研究发现,RA患者通常早期左心室顺应性减低并出现舒张功能障碍,表现为射血分数保留型心衰[38, 39]。而CMR-FT评估的心肌应变可用于RA患者心脏受累的早期检测。TAŃSKI等[40]通过CMR-FT评估发现,在无心脏损害症状的RA患者中已出现左心室应变受损,RA患者的左心室纵向和周向应变峰值显著低于健康对照组,且RA患者合并高血压、抗环瓜氨酸抗体滴度及炎症标志物水平升高等危险因素会对心肌损害造成累加效应,导致整体纵向应变峰值进一步下降;合并糖尿病、吸烟史以及某些药物的使用(如甲氨蝶呤),也会影响整体周向应变峰值;而类固醇激素的使用可以减轻周向应变峰值受损。YOKOE等[41]也通过CMR-FT评估左心室整体周向、纵向和径向应变揭示了RA患者存在亚临床心肌功能障碍,还发现生物制剂治疗降低疾病活动度有助于预防左心室功能的下降。综上,通过CMR-FT评估心肌应变能够早期发现RA患者亚临床左心室功能障碍,通过应变指标还能够识别加重RA患者左室受损的相关危险因素,如RA病程、疾病活动度以及炎性标志物水平等,且对指导临床药物使用的方面也具有重要作用。目前,CMR-FT在评估RA患者右心室及心房应变方面少有文献报道,并且还缺乏RA心脏受累预后方面的相关研究,未来还需要在这些领域进一步探索。

3.3 SSc

       心脏是SSc的主要靶器官,心脏受累是造成SSc患者死亡的主要原因之一,早期通常无明显症状,但已出现心肌、心包炎症及微血管功能障碍,晚期导致心肌纤维化,最终发展为心力衰竭[42, 43]。早期检测心脏受累有助于临床强化免疫抑制治疗,预防心脏损伤的进展[44]。一项通过CMR-FT评估双心室心肌应变结合CMR-LGE的研究揭示了无心脏受累症状,且常规心脏功能指标正常的SSc患者早期已出现亚临床心脏损害,该研究指出,通过受损的左心室纵向应变可识别存在心肌纤维化和心肌梗死的亚临床患者,且SSc患者的右心室纵向应变和应变率(P<0.001和P=0.01)低于正常对照组[45]。FEHER等[46]通过Cox回归分析评估了SSc患者中双心室应变、LGE与生存率之间的关联,研究表明,与存活组相比,死亡组患者的左心室GLS明显下降(P=0.03),并且左心室GLS≥-12.8%的患者生存率更低(P=0.02);此外,左心室GLS和LGE均受损的患者生存率低于仅出现LGE或仅GLS受损的患者以及无这些特征的患者,因此左心室GLS结合LGE可作为SSc患者的预后指标。BUTCHER等[47]利用CMR-FT发现,在SSc患者中,左心房储存应变(HR为0.94,P<0.0001)和左心室GLS(HR为1.10,P=0.005)均与全因死亡率相关,当左心房储存应变<27%或左心室GLS<-20%时,患者的生存率更低。总体而言,通过CMR-FT测量的心肌应变能够发现SSc患者早期心脏受累,且应变受损程度与预后相关。因此CMR-FT不仅有助于临床早期识别和评估SSc患者的心脏问题,还可能对其改善预后产生积极影响,未来还需要开展大样本的前瞻性研究,以进一步验证这些指标在临床应用中的价值。

3.4 IIM

       IIM是一种以肌肉和血管炎症为特征的自身免疫性疾病,常出现心脏受累,导致患者心源性死亡率增加,而传统的心功能检查难以发现这些改变,因此合适的影像学检查对于早期检测IIM患者心脏受累,改善患者预后具有重要作用[48, 49]。KERSTEN等[50]通过CMR-FT发现,IIM患者的LVEF与健康人群相比差异无统计学意义(P=0.102),而左心室整体径向应变(P=0.003)、整体周向应变(P<0.001)和整体纵向应变(P<0.001)均出现下降。此外,LGE阳性患者的LVEF(P=0.016)、左心室和右心室GLS(P=0.014和P=0.005)以及整体左心室舒张期纵向应变率(P=0.001)均降低。并且在CMR随访中发现,患者的各项应变参数进一步下降。LIU等[51]也发现在LVEF正常的IIM患者中,左心室GLS峰值已显著下降,并出现左心房储存应变及导管应变受损(P均<0.05)。因此,CMR-FT测量的心肌应变有助于IIM患者早期心脏受累的检出,且CMR-FT与CMR-LGE联合评估能够更加准确地评估心肌受损的严重程度。综上,CMR-FT可作为IIM心脏受累早期诊断和随访监测的影像学检查方式,但还需要重点研究其在指导治疗及对预后评估方面的作用。

3.5 SRC

       SRC的炎症反应累及心脏可导致心肌纤维化,最终引起房室传导阻滞、室性心律失常及心源性猝死[52]。研究发现CMR-LGE可以识别SRC患者心肌纤维化的存在,并已被证明可以预测患者室性心律失常的发生率和心血管死亡率,但通常只能在已发生纤维化时检测到心脏损伤,而在出现心肌纤维化改变前检测出心肌受累对患者的预后改善至关重要[53]。DABIR等[54]通过CMR-FT研究发现左心室GLS能够识别早期无CMR-LGE病灶的心脏受累患者,且左心室GLS降低与患者不良结局相关。VARGHESE等[55]的研究表明右心室GLS是SRC患者室性心律失常和死亡率的最佳预测因子(AUC为0.85),且右心室GLS>-18.9的患者未来发生不良事件的风险较高(P=0.009)。由于CMR-LGE难以对右心室受损进行准确量化,而通过CMR-FT能够定量分析右心室受损的严重程度,对于SRC患者的风险分层和预后评估具有更重要的临床价值。但上述研究中还存在着不足,如病例数量较少、随访时间短且达到临床终点的总数量较低,影响了预后判断的准确性,未来仍需要通过更多前瞻性大样本研究确定心肌应变与SRC患者预后之间的关系。

3.6 其他

       嗜酸性肉芽肿性多血管炎(eosinophilic granulomatosis with polyangiitis, EGPA)常累及心脏,导致多种心脏异常,且与不良结局相关[56, 57]。MISZALSKI-JAMKA等[58]研究发现,与健康对照组相比,大多数EGPA患者早期出现节段性纵向、周向、径向应变受损以及LGE区域,并且各项应变参数的变化与LGE病变的空间分布相对应。但该研究样本量较小,未评估心肌应变与预后的关系,未来还需要更多的研究进一步验证。此外,抗磷脂综合征以及强直性脊柱炎等疾病也会导致心脏受累,有研究[59, 60]通过STE发现这两种患者早期已出现左心室纵向应变受损。而基于CMR-FT对心肌应变的评估对比STE更具优势,在未来的研究中,应通过CMR-FT对该类疾病的风险分层及预后评估进一步精准化。

       目前基于CMR-FT对ARDs心脏受累的相关研究很多,但大部分研究在患者的纳排标准、病例数量及随访结局等方面仍有待优化。未来应开展更多对于ARDs患者的大样本队列研究,为患者心脏受累的早期诊断、风险分层及预后评估提供更为精确和全面的临床依据。

4 总结与展望

       近年来CMR-FT对ARDs患者心肌应变的评估分析已进行了广泛的研究,证实了多种ARDs患者普遍存在心脏受累,且相关临床症状往往隐匿且缺乏特异性。非缺血性炎症导致的心肌纤维化是ARDs心脏受累中常见的病理生理改变,而心肌应变在心脏结构改变前就已经存在损伤。CMR-FT技术拥有良好的空间分辨率、测量一致性较高等优点,可无创性定量分析ARDs患者整体及局部心肌的收缩及舒张功能,对患者心脏受累的早期诊断、相关因素分析及治疗药物选择方面都有较大的应用价值。但目前的相关研究仍存在一些局限性,如缺乏大样本多中心研究、病例组的个体病程以及药物治疗效果的不同,会对研究结果的准确性造成影响,并且多数研究缺乏对疾病随访的预后评估。未来,基于CMR-FT对ARDs心肌应变的研究需要从扩大病例数、限定病程范围、进行预后随访、结合多种CMR扫描技术评估等方面进一步展开,为ARDs心脏受累的早期诊断与治疗决策提供更充分的依据,以望未来能将CMR-FT技术纳入ARDs患者的临床实际应用当中。

[1]
GOLDBLATT F, O'NEILL S G. Clinical aspects of autoimmune rheumatic diseases[J]. Lancet, 2013, 382(9894): 797-808. DOI: 10.1016/S0140-6736(13)61499-3.
[2]
PAN S Y, TIAN H M, ZHU Y, et al. Cardiac damage in autoimmune diseases: target organ involvement that cannot be ignored[J/OL]. Front Immunol, 2022, 13: 1056400 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/36483559/. DOI: 10.3389/fimmu.2022.1056400.
[3]
LØGSTRUP B B. Heart failure in rheumatic disease: secular trends and novel insights[J]. Rheum Dis Clin North Am, 2023, 49(1): 67-79. DOI: 10.1016/j.rdc.2022.08.003.
[4]
NONA P, RUSSELL C. Cardio-rheumatology: prevention of cardiovascular disease in inflammatory disorders[J]. Med Clin North Am, 2022, 106(2): 349-363. DOI: 10.1016/j.mcna.2021.11.010.
[5]
RAMAN S V, CHANDRASHEKHAR Y. Myocardial fibrosis: a viable imaging target in diastolic dysfunction and heart failure?[J]. JACC Cardiovasc Imaging, 2023, 16(6): 870-872. DOI: 10.1016/j.jcmg.2023.05.001.
[6]
ZHANG Y, ZHANG X N, WANG Y L, et al. Relationship between diffuse fibrosis assessed by CMR and depressed myocardial strain in different stages of heart failure[J/OL]. Eur J Radiol, 2023, 164: 110848 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/37156180/. DOI: 10.1016/j.ejrad.2023.110848.
[7]
ANTAR S A, ASHOUR N A, MARAWAN M E, et al. Fibrosis: types, effects, markers, mechanisms for disease progression, and its relation with oxidative stress, immunity, and inflammation[J/OL]. Int J Mol Sci, 2023, 24(4): 4004 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/36835428/. DOI: 10.3390/ijms24044004.
[8]
MAVROGENI S, PEPE A, NIJVELDT R, et al. Cardiovascular magnetic resonance in autoimmune rheumatic diseases: a clinical consensus document by the European Association of Cardiovascular Imaging[J/OL]. Eur Heart J Cardiovasc Imaging, 2022, 23(9): e308-e322 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/35808990/. DOI: 10.1093/ehjci/jeac134.
[9]
RAJIAH P S, MOORE A, BRONCANO J, et al. Diastology with cardiac MRI: a practical guide[J/OL]. Radiographics, 2023, 43(9): e220144 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/37535462/. DOI: 10.1148/rg.220144.
[10]
CAU R, BASSAREO P, SURI J S, et al. The emerging role of atrial strain assessed by cardiac MRI in different cardiovascular settings: an up-to-date review[J]. Eur Radiol, 2022, 32(7): 4384-4394. DOI: 10.1007/s00330-022-08598-6.
[11]
PEZESHKI P S, GHORASHI S M, HOUSHMAND G, et al. Feature tracking cardiac magnetic resonance imaging to assess cardiac manifestations of systemic diseases[J]. Heart Fail Rev, 2023, 28(5): 1189-1199. DOI: 10.1007/s10741-023-10321-6.
[12]
XU J, YANG W J, ZHAO S H, et al. State-of-the-art myocardial strain by CMR feature tracking: clinical applications and future perspectives[J]. Eur Radiol, 2022, 32(8): 5424-5435. DOI: 10.1007/s00330-022-08629-2.
[13]
SIERRA-GALAN L M, BHATIA M, ALBERTO-DELGADO A L, et al. Cardiac magnetic resonance in rheumatology to detect cardiac involvement since early and pre-clinical stages of the autoimmune diseases: a narrative review[J/OL]. Front Cardiovasc Med, 2022, 9: 870200 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/35911548/. DOI: 10.3389/fcvm.2022.870200.
[14]
徐源蔚, 陈玉成. 心脏磁共振在检测自身免疫性风湿疾病心脏受累中的应用进展[J]. 心血管病学进展, 2019, 40(5): 676-679. DOI: 10.16806/j.cnki.issn.1004-3934.2019.05.005.
XU Y W, CHEN Y C. Application of cardiac magnetic resonance in detecting cardiac involvement in autoimmune rheumatic disease[J]. Adv Cardiovasc Dis, 2019, 40(5): 676-679. DOI: 10.16806/j.cnki.issn.1004-3934.2019.05.005.
[15]
RAJIAH P S, KALISZ K, BRONCANO J, et al. Myocardial strain evaluation with cardiovascular MRI: physics, principles, and clinical applications[J]. Radiographics, 2022, 42(4): 968-990. DOI: 10.1148/rg.210174.
[16]
KONG H H, CAO J X, TIAN J F, et al. Evaluation of left ventricular diastolic function in patients with coronary microvascular dysfunction via cardiovascular magnetic resonance feature tracking[J]. Quant Imaging Med Surg, 2023, 13(10): 7281-7293. DOI: 10.21037/qims-23-47.
[17]
LANGE T, SCHUSTER A. Quantification of myocardial deformation applying CMR-feature-tracking-all about the left ventricle?[J]. Curr Heart Fail Rep, 2021, 18(4): 225-239. DOI: 10.1007/s11897-021-00515-0.
[18]
何健, 赵世华, 陆敏杰. 心脏磁共振特征追踪技术及其研究进展[J]. 磁共振成像, 2020, 11(6): 469-473. DOI: 10.12015/issn.1674-8034.2020.06.018.
HE J, ZHAO S H, LU M J. Cardiac magnetic resonance feature tracking technique and its progress[J]. Chin J Magn Reson Imag, 2020, 11(6): 469-473. DOI: 10.12015/issn.1674-8034.2020.06.018.
[19]
张华莹, 朱乐怡, 赵世华, 等. 2022年心脏磁共振研究进展[J]. 磁共振成像, 2023, 14(6): 133-138, 144. DOI: 10.12015/issn.1674-8034.2023.06.024.
ZHANG H Y, ZHU L Y, ZHAO S H, et al. Research progresses of cardiac magnetic resonance in 2022[J]. Chin J Magn Reson Imag, 2023, 14(6): 133-138, 144. DOI: 10.12015/issn.1674-8034.2023.06.024.
[20]
PEDRIZZETTI G, CLAUS P, KILNER P J, et al. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use[J/OL]. J Cardiovasc Magn Reson, 2016, 18(1): 51 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/27561421/. DOI: 10.1186/s12968-016-0269-7.
[21]
ZLIBUT A, COJOCARU C, ONCIUL S, et al. Cardiac magnetic resonance imaging in appraising myocardial strain and biomechanics: a current overview[J/OL]. Diagnostics, 2023, 13(3): 553 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/36766658/. DOI: 10.3390/diagnostics13030553.
[22]
LI G X, ZHANG Z, GAO Y Y, et al. Age- and sex-specific reference values of biventricular strain and strain rate derived from a large cohort of healthy Chinese adults: a cardiovascular magnetic resonance feature tracking study[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 63 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/36404299/. DOI: 10.1186/s12968-022-00881-1.
[23]
TRUONG V T, PALMER C, WOLKING S, et al. Normal left atrial strain and strain rate using cardiac magnetic resonance feature tracking in healthy volunteers[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(4): 446-453. DOI: 10.1093/ehjci/jez157.
[24]
ROMANO S, FARZANEH-FAR A. Advancing CMR feature-tracking strain: toward standardization and clinical adoption[J]. JACC Cardiovasc Imaging, 2024, 17(4): 380-381. DOI: 10.1016/j.jcmg.2023.06.019.
[25]
YANG W J, XU J, ZHU L Y, et al. Myocardial strain measurements derived from MR feature-tracking: influence of sex, age, field strength, and vendor[J]. JACC Cardiovasc Imaging, 2024, 17(4): 364-379. DOI: 10.1016/j.jcmg.2023.05.019.
[26]
VOS J L, LEINER T, VAN DIJK A P J, et al. Right atrial and ventricular strain detects subclinical changes in right ventricular function in precapillary pulmonary hypertension[J]. Int J Cardiovasc Imaging, 2022, 38(8): 1699-1710. DOI: 10.1007/s10554-022-02555-6.
[27]
李瑞, 黄钰迅, 陈梓娴, 等. 心脏磁共振特征追踪技术评估右室心肌应变的研究进展[J]. 磁共振成像, 2021, 12(10): 98-100+104. DOI: 10.12015/issn.1674-8034.2021.10.025.
LI R, HUANG Y X, CHEN Z X, et al. Evaluation of right ventricular strains by cardiac magnetic resonance feature tracking[J]. Chin J Magn Reson Imaging, 2021,12(10):98-100, 104. DOI: 10.12015/issn.1674-8034.2021.10.025.
[28]
王灵丽, 冯馨仪, 张天悦, 等. 基于心脏磁共振的左心房应变在心脏疾病中的应用进展[J]. 磁共振成像, 2023, 14(3): 179-183. DOI: 10.12015/issn.1674-8034.2023.03.033.
WANG L L, FENG X Y, ZHANG T Y, et al. The application of left atrial strain derived from cardiac magnetic resonance in cardiac diseases[J]. Chin J Magn Reson Imag, 2023, 14(3): 179-183. DOI: 10.12015/issn.1674-8034.2023.03.033.
[29]
BELLO N, MEYERS K J, WORKMAN J, et al. Cardiovascular events and risk in patients with systemic lupus erythematosus: systematic literature review and meta-analysis[J]. Lupus, 2023, 32(3): 325-341. DOI: 10.1177/09612033221147471.
[30]
AZZAM M, AWAD A, ABUGHARBYEH A, et al. Myocarditis in connective tissue diseases: an often-overlooked clinical manifestation[J]. Rheumatol Int, 2023, 43(11): 1983-1992. DOI: 10.1007/s00296-023-05428-w.
[31]
MUNGUÍA-REALPOZO P, MENDOZA-PINTO C, GARCÍA-CARRASCO M, et al. Higher body mass index and disease duration are associated with increased risk of left ventricular diastolic dysfunction in women with systemic lupus erythematosus[J]. Lupus, 2022, 31(13): 1639-1648. DOI: 10.1177/09612033221128433.
[32]
YAFASOVA A, FOSBØL E L, SCHOU M, et al. Long-term cardiovascular outcomes in systemic lupus erythematosus[J]. J Am Coll Cardiol, 2021, 77(14): 1717-1727. DOI: 10.1016/j.jacc.2021.02.029.
[33]
FANOURIAKIS A, KOSTOPOULOU M, ANDERSEN J, et al. EULAR recommendations for the management of systemic lupus erythematosus: 2023 update[J]. Ann Rheum Dis, 2024, 83(1): 15-29. DOI: 10.1136/ard-2023-224762.
[34]
PU H X, CUI B B, LIU J, et al. Characterization and clinical significance of biventricular mechanics in patients with systemic lupus erythematosus by 3T cardiovascular magnetic resonance tissue tracking[J]. Quant Imaging Med Surg, 2022, 12(2): 1079-1095. DOI: 10.21037/qims-21-520.
[35]
WU R, SHI R Y, AN D A L, et al. Biventricular tissue tracking demonstrating associations between left ventricular myocardial extracellular volume, pulmonary artery pressure, and reduced right ventricular ejection fraction in patients with systemic lupus erythematosus using cardiovascular MRI[J/OL]. Clin Radiol, 2020, 75(3): 237.e17-237.237.e25 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/31679817/. DOI: 10.1016/j.crad.2019.09.136.
[36]
PÉREZ-TOPETE S E, MIRANDA-AQUINO T, HERNÁNDEZ-DEL RÍO J E, et al. Left atrial strain in patients with systemic lupus erythematosus[J]. Reumatol Clin, 2021, 17(2): 74-81. DOI: 10.1016/j.reuma.2019.03.006.
[37]
DíAZ-GONZáLEZ F, HERNáNDEZ-HERNáNDEZ M V. Rheumatoid arthritis[J]. Med Clin (Barc), 2023, 161(12): 533-542. DOI: 10.1016/j.medcli.2023.07.014.
[38]
RODRIGUES P, FERREIRA B, FONSECA T, et al. Subclinical ventricular dysfunction in rheumatoid arthritis[J]. Int J Cardiovasc Imaging, 2021, 37(3): 847-859. DOI: 10.1007/s10554-020-02057-3.
[39]
PARK E, ITO K, IQBAL R, et al. Prospective changes in diastolic function in patients with rheumatoid arthritis[J/OL]. Arthritis Res Ther, 2022, 24(1): 184 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/35932048/. DOI: 10.1186/s13075-022-02864-0.
[40]
TAŃSKI W, GAĆ P, CHACHAJ A, et al. Left ventricular myocardial strain assessed by cardiac magnetic resonance feature tracking in patients with rheumatoid arthritis[J/OL]. Insights Imaging, 2021, 12(1): 5 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/33410952/. DOI: 10.1186/s13244-020-00948-6.
[41]
YOKOE I, KOBAYASHI H, KOBAYASHI Y, et al. Impact of biological treatment on left ventricular dysfunction determined by global circumferential, longitudinal and radial strain values using cardiac magnetic resonance imaging in patients with rheumatoid arthritis[J]. Int J Rheum Dis, 2020, 23(10): 1363-1371. DOI: 10.1111/1756-185X.13942.
[42]
GUÉDON A F, CARRAT F, MOUTHON L, et al. Heart and systemic sclerosis—findings from a national cohort study[J/OL]. Rheumatology (Oxford), 2023: kead599 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/37944039/. DOI: 10.1093/rheumatology/kead599.
[43]
MARKOUSIS-MAVROGENIS G, MAVROGENI S I. Cardiac inflammation/fibrosis in systemic sclerosis: 'a journey of a thousand Miles begins with a single step'[J]. Rheumatology, 2022, 61(6): 2215-2216. DOI: 10.1093/rheumatology/keab800.
[44]
BRUNI C, BUCH M H, DJOKOVIC A, et al. Consensus on the assessment of systemic sclerosis-associated primary heart involvement: world Scleroderma Foundation/Heart Failure Association guidance on screening, diagnosis, and follow-up assessment[J]. J Scleroderma Relat Disord, 2023, 8(3): 169-182. DOI: 10.1177/23971983231163413.
[45]
BRATIS K, LINDHOLM A, HESSELSTRAND R, et al. CMR feature tracking in cardiac asymptomatic systemic sclerosis: clinical implications[J/OL]. PLoS One, 2019, 14(8): e0221021 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/31433819/. DOI: 10.1371/journal.pone.0221021.
[46]
FEHER A, MILLER E J, PETERS D C, et al. Impaired left-ventricular global longitudinal strain by feature-tracking cardiac MRI predicts mortality in systemic sclerosis[J]. Rheumatol Int, 2023, 43(5): 849-858. DOI: 10.1007/s00296-023-05294-6.
[47]
BUTCHER S C, VOS J L, FORTUNI F, et al. Evaluation of left cardiac chamber function with cardiac magnetic resonance and association with outcome in patients with systemic sclerosis[J/OL]. Rheumatology (Oxford), 2023, 62(SI): SI20-SI31 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/35482539/. DOI: 10.1093/rheumatology/keac256.
[48]
SHAH M, SHINJO S K, DAY J, et al. Cardiovascular manifestations in idiopathic inflammatory myopathies[J]. Clin Rheumatol, 2023, 42(10): 2557-2575. DOI: 10.1007/s10067-023-06599-4.
[49]
MONDAL S, BARMAN P, VIGNESH P. Cardiovascular abnormalities in juvenile dermatomyositis: a scoping review for the clinical rheumatologists[J/OL]. Front Med, 2022, 9: 827539 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/35814777/. DOI: 10.3389/fmed.2022.827539.
[50]
KERSTEN J, GÜLEROGLU A M, ROSENBOHM A, et al. Myocardial involvement and deformation abnormalities in idiopathic inflammatory myopathy assessed by CMR feature tracking[J]. Int J Cardiovasc Imaging, 2021, 37(2): 597-603. DOI: 10.1007/s10554-020-02020-2.
[51]
LIU W Y, ZHU Y S, FENG C J, et al. Early cardiac involvement detected by cardiac magnetic resonance feature tracking in idiopathic inflammatory myopathy with preserved ejection fraction[J]. Int J Cardiovasc Imaging, 2023, 39(1): 183-194. DOI: 10.1007/s10554-022-02715-8.
[52]
KORTHALS D, BIETENBECK M, KÖNEMANN H, et al. Cardiac sarcoidosis-diagnostic and therapeutic challenges[J/OL]. J Clin Med, 2024, 13(6): 1694 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/38541919/. DOI: 10.3390/jcm13061694.
[53]
STEVENSON A, BRAY J J H, TREGIDGO L, et al. Prognostic value of late GadoliniumEnhancement detected onCardiac magnetic resonance in cardiac sarcoidosis[J]. JACC Cardiovasc Imag, 2023, 16(3): 345-357. DOI: 10.1016/j.jcmg.2022.10.018.
[54]
DABIR D, MEYER D, KUETTING D, et al. Diagnostic value of cardiac magnetic resonance strain analysis for detection of cardiac sarcoidosis[J]. Rofo, 2018, 190(8): 712-721. DOI: 10.1055/a-0598-5099.
[55]
VARGHESE B, ZGHAIB T, XIE E, et al. Right ventricular longitudinal strain on CMR predicts ventricular arrhythmias and mortality in cardiac sarcoidosis[J/OL]. Am Heart J Plus, 2022, 22: 100209 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/38558901/. DOI: 10.1016/j.ahjo.2022.100209.
[56]
BOND M, FAGNI F, MORETTI M, et al. At the heart of eosinophilic granulomatosis with polyangiitis: into cardiac and vascular involvement[J]. Curr Rheumatol Rep, 2022, 24(11): 337-351. DOI: 10.1007/s11926-022-01087-1.
[57]
BELHASSEN A, TOUJANI S, OUNI A E, et al. Characteristics of cardiac involvement in eosinophilic granulomatosis with polyangiitis[J]. Ann Cardiol Angeiol, 2022, 71(2): 95-98. DOI: 10.1016/j.ancard.2020.12.002.
[58]
MISZALSKI-JAMKA T, SZCZEKLIK W, SOKOŁOWSKA B, et al. Standard and feature tracking magnetic resonance evidence of myocardial involvement in Churg-Strauss syndrome and granulomatosis with polyangiitis (Wegener's) in patients with normal electrocardiograms and transthoracic echocardiography[J]. Int J Cardiovasc Imag, 2013, 29(4): 843-853. DOI: 10.1007/s10554-012-0158-6.
[59]
MEDINA G, GÓMEZ-BAÑUELOS E, CALDERÓN-ARANDA E, et al. Myocardial function in primary antiphospholipid syndrome using speckle-tracking echocardiography[J]. Clin Rheumatol, 2018, 37(12): 3351-3358. DOI: 10.1007/s10067-018-4088-0.
[60]
AGHDASHI M A, MIKAEILVAND A, ANSARI-RAMANDI M M, et al. Speckle tracking echocardiography in patients with ankylosing spondylitis and evaluation of subclinical involvement[J]. Mediterr J Rheumatol, 2023, 34(3): 322-326. DOI: 10.31138/mjr.20230724.ei.

上一篇 常规磁共振成像影像特征在鼻咽癌预后预测中的研究进展
下一篇 人工智能在类风湿性关节炎影像评估中的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2