分享:
分享到微信朋友圈
X
特别关注
产前MRI对法洛氏四联症胎儿脑深层灰质体积的量化评估
任婧雅 董素贞

Cite this article as: REN J Y, DONG S Z. Prenatal MRI quantified the deep gray matter volume of the fetal brain in tetralogy of Fallot[J]. Chin J Magn Reson Imaging, 2024, 15(9): 29-32, 40.本文引用格式:任婧雅, 董素贞. 产前MRI对法洛氏四联症胎儿脑深层灰质体积的量化评估[J]. 磁共振成像, 2024, 15(9): 29-32, 40. DOI:10.12015/issn.1674-8034.2024.09.006.


[摘要] 目的 探讨通过产前MRI量化评估法洛氏四联症(tetralogy of Fallot, TOF)胎儿脑深层灰质(deep gray matter, DGM)体积与正常对照组胎儿的差异和价值。材料与方法 60名孕龄(gestational age, GA)19~33周单胎妊娠孕妇接受产前胎儿MRI检查,其中30例TOF胎儿的平均GA为(25.30±3.65)周(其中15例<26周,15例≥26周);30例脑发育正常胎儿(对照组)的平均GA为(25.83±3.98)周(其中15例<26周,15例≥26周)。采用单次激发快速自旋回波(single-shot turbo spin echo, SSTSE)序列采集胎儿脑MRI,经图像后处理后手动分割大脑,测量胎儿脑左右两侧DGM三维体积。分别对两组胎儿脑DGM体积与GA进行回归分析,并比较两组胎儿脑DGM体积的差异以及左右侧DGM体积是否具有对称性。结果 比较分析发现两组胎儿左右侧脑DGM体积差异均无统计学意义。GA<26周TOF组胎儿脑DGM体积小于对照组(t=2.90,P=0.007);GA≥26周TOF组DGM体积也较对照组脑DGM体积减小(t=2.11,P=0.04),差异均有统计学意义。结论 TOF组胎儿脑DGM体积在妊娠早中期发育轨迹较正常胎儿已出现了差异,并在妊娠中晚期随着胎儿脑体积的快速增长,两者发育轨迹的差异依旧存在,可为产前量化评估TOF胎儿脑发育异常提供参考。
[Abstract] Objective To quantitatively evaluate the difference of deep gray matter (DGM) volume in fetuses with tetralogy of Fallot (TOF) compared with normal fetuses by prenatal MRI.Materials and Methods Sixty single pregnant women with gestational age (GA) of 19-33 weeks received prenatal fetal MRI examination, of which 30 fetuses with TOF had an average GA of (25.30±3.65) weeks, including 15 cases GA<26 weeks and 15 cases GA≥26 weeks. The average GA (25.83±3.98) weeks was normal in 30 cases (control group), including 15 cases GA<26 weeks and 15 cases GA≥26 weeks. Fetal MRI was collected using single-shot turbo spin echo (SSTSE) sequence. After image post-processing, the brain was manually divided and the three-dimensional volume of DGM on both sides of the fetal brain was measured. The DGM volume and GA of fetal brain were analyzed by regression, and the difference of DGM volume and the symmetry of left and right DGM volume between the two groups were compared.Results There was no significant difference in DGM volume between the two groups. The fetal DGM volume of GA<26 weeks TOF group was lower than that of normal control group (t=2.90, P=0.007). DGM volume of the TOF group with GA≥26 weeks was also decreased compared with the normal control group (t=2.11, P=0.04), and the differences were statistically significant.Conclusions Fetal DGM volume in the TOF group was different from that of normal fetuses in the first and second trimester of pregnancy, and the difference still existed in the second and third trimester of pregnancy with the rapid growth of fetal brain volume, which could provide reference for quantitative prenatal assessment of fetal brain development abnormalities of TOF.
[关键词] 胎儿;大脑;磁共振成像;法洛氏四联症;深层灰质体积
[Keywords] fetus;brain;magnetic resonance imaging;tetralogy of Fallot;deep gray matter volume

任婧雅    董素贞 *  

上海交通大学医学院附属上海儿童医学中心放射科,上海 200127

通信作者:董素贞,E-mail: dongsuzhen@126.com

作者贡献声明::董素贞设计本研究的方案,对稿件重要内容进行了修改,获得了国家自然科学基金项目、上海市2023年度“科技创新行动计划”医学创新研究专项项目和中央高校基本科研业务费专项资金的资助;任婧雅起草和撰写稿件,获取、分析和解释本研究的数据;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 81971582 上海市2023年度“科技创新行动计划”医学创新研究专项项目 23Y11907800 中央高校基本科研业务费专项资金 YG2023ZD22
收稿日期:2023-12-04
接受日期:2024-03-15
中图分类号:R445.2  R541.1 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.09.006
本文引用格式:任婧雅, 董素贞. 产前MRI对法洛氏四联症胎儿脑深层灰质体积的量化评估[J]. 磁共振成像, 2024, 15(9): 29-32, 40. DOI:10.12015/issn.1674-8034.2024.09.006.

0 引言

       法洛氏四联症(tetralogy of Fallot, TOF)是一种最常见的紫绀型先天性心脏病,以室间隔缺损(ventricular septal defect, VSD)、主动脉骑跨、肺动脉狭窄、继发性右心室肥厚为特点,发生率约1/3500,占所有先天性心脏畸形的7%~10%[1, 2]。在TOF胎儿中,因为存在右至左分流和左心室输出量增加导致大脑动脉氧饱和度持续降低和脑血管阻力升高[3]。已有研究发现先天性心脏病(congenital heart disease, CHD;以下简称先心病)胎儿的大脑皮层、皮层下脑实质、小脑及脑干体积在妊娠早中期即较对照组胎儿减小[4, 5],但目前研究未对不同具体类型紫绀型心脏病分类研究,也较少针对胎儿脑深层灰质(deep gray matter, DGM)体积进行分割对比。因此,本研究利用图像运动校正及三维分割脑体积方法对TOF胎儿脑DGM体积进行量化,对照分析TOF胎儿脑DGM体积与正常对照组胎儿的差异,为产前量化评估TOF胎儿脑发育异常提供参考。

1 材料与方法

1.1 一般资料

       本研究遵守《赫尔辛基宣言》,经上海交通大学医学院附属上海儿童医学中心伦理委员会批准,免除受试者知情同意,批准文号:SCMCIRB-YG2023022。所有研究方法均按照相关指南和规定进行。回顾性分析2018年8月至2023年10月在我院进行产前MRI检查孕妇的病例资料,其中TOF组的胎儿30例(GA<26周者15例,GA≥26周者15例,GA:19~33周),对照组胎儿30例(GA<26周者15例,GA≥26周者15例,GA:19~33周),GA分布及例数见图1

       TOF组纳入标准:(1)单胎妊娠;(2)孕周明确;(3)产前心脏超声检查已诊断并且产后超声心动图或/和心脏磁共振证实胎儿患有TOF合并肺动脉狭窄(n=20)、TOF合并肺动脉闭锁(n=10)。对照组纳入了由于以下原因来我院进行胎儿脑MRI检查的单胎妊娠孕妇:产妇腹壁脂肪较厚、子宫肌瘤、胎位不佳、羊水过少(最大垂直深度<2 cm或羊水指数<5 cm)等造成超声检查图像质量不佳,后续胎儿脑MRI未发现胎儿大脑结构异常。

       排除标准:(1)胎儿贫血;(2)各种原因导致MRI图像伪影或信噪比过低而影响疾病诊断和图像测量;(3)合并循环系统外畸形、存在染色体异常、合并心律失常、母体可能影响胎儿血流动力学的情况,如糖尿病、甲状腺疾病或先兆子痫等。

图1  法洛氏四联症(TOF)组和对照组胎儿孕周(GA)分布及例数。
Fig. 1  Distribution and number of gestational age (GA) in tetralogy of Fallot (TOF) group and control group.

1.2 仪器与方法

       使用Philips Achieva 1.5 T MRI扫描仪(60 mT/ms梯度场强度和16通道体部线圈)。成像序列为单次激发快速自旋回波(single-shot turbo spin echo, SSTSE)序列。SSTSE序列参数:TR 12 000 ms,TE 120 ms,矩阵236×220,FOV 260 mm×355 mm,翻转角90°,层厚2 mm,间隔0 mm。

       孕妇采用仰卧位或者左侧卧位,平静呼吸,不使用对比剂或者镇静剂,足先进采集胎儿脑轴位、矢状位及冠状位图像。

1.3 图像后处理及分割

       从获得的原始二维SSTSE图像三个正交平面(矢状面、冠状面和轴面)重建三维胎儿脑图像。首先使用dcm2nii软件(https://www.nitrc.org/projects/dcm2nii/)将获得的数据从DICOM(医学数字通信成像)格式转换为NIfTI(神经成像信息)格式。通过定义胎儿颅腔的感兴趣区域(region of interest, ROI),采用手工分割的方法从子宫内组织中提取胎儿大脑的掩膜;然后在Linux工作站上采用Slice to volume reconstruction toolkit工具包(https://github.com/SVRTK)对所有图像进行散点数据插值(scattered data interpolation, SDI)和切片-体积配准(slice-to-volume registration, SVR)[6, 7, 8, 9],然后采用非参数非均匀强度归一化(Non-parametric; Non-uniform intensity; Normalization, N3)算法对胎儿脑进行非均匀性强度校正[10, 11]以消除二维切片之间的相对运动伪影。最后,利用Gauss-Seidel和超分辨率重建方法[12]从配准的原始低分辨率和低信噪比二维切片重建出高分辨率(super-resolution reconstruction method)三维成像[13, 14]。由一名具有胎儿MRI 5年学习经验的研究生使用ITK-SNAP(version3.8, http:// www.itksnap)手工分割胎儿脑重建三维图像,在冠状面及轴面上分别进行左右两侧DGM体积分割。总DGM包括两侧丘脑及豆状核和后出现的内囊。总DGM体积是通过计算分割ROI图像中的体素数量乘以体素大小(0.5 mm×0.5 mm×0.5 mm)得到的(图2)。在最初测量时间大约2个月后,同一名观察人员在不参考原始数据的前提下随机抽取30例不同GA的病例进行重复测量,以检验观察者内部的可重复性。由两名具有15年胎儿磁共振诊断经验的放射科医生随机抽取20例不同GA的病例重新分割以研究观察者间的一致性。

图2  孕周(GA)25及33周胎儿脑重建及分割示意图。A1~A3:GA 25周大脑原始二维横、冠及矢状位图;B1~B3:GA 25周经过运动伪影校正后得到的高分辨率大脑三维横、冠及矢状位图;C:GA 25周胎儿脑左右侧深层灰质(DGM)分割示意图;D1~D3:GA 33周大脑原始二维横、冠及矢状位图;E1~E3:GA 33周经过运动伪影校正后得到的高分辨率大脑三维横、冠及矢状位图;F:GA 33周胎儿脑左右侧DGM分割示意图。红色:右侧;绿色:左侧。
Fig. 2  Gestational age (GA) 25 and 33 weeks fetal brain reconstruction and segmentation diagram. A1-A3: GA 25 weeks brain original two-dimensional transverse, coronal and sagittal bitmap; B1-B3: High-resolution three-dimensional transverse, coronal and sagittal bitmaps of the brain after motion artifact correction at week GA 25; C: Schematic diagram of deep gray matter (DGM) segmentation on the left and right sides of fetal brain at GA 25 weeks; D1-D3: The original two-dimensional transverse, coronal and sagittal bitmaps of the brain at week GA33; E1-E3: High-resolution three-dimensional transverse, coronal and sagittal brain bitmaps obtained after motion artifact correction at week GA 33; F: DGM segmentation diagram of the left and right sides of the fetal brain at GA 33 weeks. Red: right side; Green: left side.

1.4 统计学分析

       采用SPSS 22.0软件,配对t检验比较左右半球DGM体积。通过分析两组GA与DGM体积之间的相关性,得到拟合回归曲线。并使用t检验比较两组匹配GA间的DGM体积差异(GA分为<26周组和≥26周组)。计算组内相关系数(intra-class correlation coefficient, ICC)以评估分割方法观察者内部和观察者之间的一致性(ICC的值介于0~1之间:0.50~0.75表示一致性中等;0.75~0.90表示一致性较好;>0.90表示一致性极好)。P<0.05为差异有统计学意义。

2 结果

       TOF组和对照组GA分别为(25.30±3.65)周、(25.83±3.98)周,两者之间差异无统计学意义(P=0.59)。观察者内及观察者间分析显示胎儿脑DGM分割的一致性较好(所有ICC>0.88)。TOF组左右两侧DGM体积差异无统计学意义(P=0.94),对照组左右两侧DGM体积差异也无统计学意义(P=0.99),进而比较两组间匹配GA的DGM体积差异时取左右侧总和。

       使用回归模型建立得出TOF组和对照组总DGM体积随GA变化的最佳拟合公式分别为:DGM体积(TOF=0.07GA2-2.89GA+30.65(R2=0.9661);DGM体积对照=0.07GA2-2.59GA+26.98 (R2=0.9684)(图3)。

       t检验发现在GA<26周时,TOF组总DGM体积较对照组显著减小(TOF组:2.39,对照组:3.28;t=2.90,P=0.007);GA≥26周时,TOF组总DGM体积较对照组仍减小(TOF组:6.95,对照组:9.43;t=2.11,P=0.04),两者差异均有统计学意义(图4)。

图3  法洛氏四联症(TOF)组和对照组总深层灰质(DGM)体积随孕周(GA)变化的回归曲线图。蓝色圆点:TOF组;红色方块:对照组。
Fig. 3  Regression curve of total deep gray matter (DGM) volume change with gestational age (GA) between tetralogy of Fallot (TOF) group and control group. Blue dots: TOF group; Red square: control group.
图4  法洛氏四联症(TOF)组胎儿(蓝色圆点)与对照组(红色方块)总深层灰质(DGM)体积的分位数框图。每组按孕周(GA)分为< 26 GA和≥26 GA。
Fig. 4  Quantile block diagram of total deep gray matter (DGM) volume of fetuses in tetralogy of Fallot (TOF) group (blue dots) and control group (red squares). Each group was divided into <26 GA and ≥26 GA by gestational age (GA).

3 讨论

       本研究利用产前MRI技术及图像后处理技术三维分割胎儿脑DGM体积,对照分析TOF胎儿脑DGM体积与对照组胎儿的差异。结果发现TOF组DGM体积在GA<26周时较对照组出现了显著减小,并在妊娠中晚期随着胎儿脑体积的快速增长,两者发育轨迹的差异依旧存在。我们首次发现了TOF组胎儿从妊娠早中期DGM体积发育轨迹即发生了改变,可为产前量化评估TOF胎儿脑发育异常提供参考。

3.1 CHD胎儿脑发育研究基础

       神经发育障碍是CHD患儿中常见的并发症,可存在认知、语言或运动发育受损,如能早期发现诊断神经发育异常,可能会改善CHD患儿预后[15]。发育中的胎儿大脑高度依赖脑氧气/营养物质的输送,当胎儿心脏结构和或功能发生异常时,势必会引起胎儿全身血液循环的变化,而大脑则是受血流动力学改变影响最为显著的器官[16, 17, 18]。近年来,随着MRI成像技术的发展,越来越多的研究表明CHD胎儿在宫内已经存在大脑结构和或功能发育的异常[16, 19]

3.2 TOF胎儿脑发育研究创新点

       目前的国内外文献研究集中于特定类型复杂CHD,如完全性大动脉转位(transposition of the great arteries, TGA)和左心发育不良综合征(hypoplastic left heart syndrome, HLHS)[20]。研究发现患有HLHS和TGA的胎儿脑发育受影响最为严重,脑体积较正常胎儿减小也最为显著[21, 22]。而目前关于TOF产前胎儿脑发育的研究仍尚少,TOF胎儿中存在右向左分流和左心室输出量增加导致脑动脉氧饱和度不足,从而使TOF胎儿也有产前低氧性脑损伤的风险。

       大脑发育的主要步骤发生在妊娠的早期和中期,许多大脑发育的关键步骤已经在妊娠中期(GA 26周)完成,如神经元迁移和树突形成、突触形成和少突胶质细胞成熟[23, 24]。而之前的研究多集中在妊娠晚期[5, 25],这可能与图像质量与病例采集时间有关,而本院胎儿MRI检查的采集时间多为孕妇大畸形筛查时期即GA 25~26周左右,所以本研究队列GA多集中在孕中期。在本研究中我们采取了SSTSE序列层厚为2 mm的方法对胎儿脑进行扫描,可更好地描绘胎儿脑较小组织的解剖结构,并且通过SVR技术来校正胎儿运动伪影,以清楚显示出在原始厚层扫描图像中不明显的相关解剖结构边界,这些方法使我们能够进行更为精确地对胎儿脑体积进行分割测量。ANDESCAVAGE等[26]使用自动分割方法分割DGM体积,与本研究结果在相同GA上相一致,但目前国内对于胎儿脑自动分割的大样本研究较少,尚未确认中国胎儿脑分割模板,所以我们仍采用了手动分割方法。

3.3 研究结果的理论意义及临床价值

       本课题组之前的研究发现,CHD胎儿大脑体积并不是均匀减少,而是呈特异性区域模式,其中易受低氧或底物输送影响的结构区域受影响最大[4, 27]。本研究发现在妊娠早中期TOF组胎儿DGM体积即较对照组胎儿减小,这和先前SCHELLEN等[28]的结果一致,说明TOF胎儿脑DGM在妊娠早中期的发育轨迹即发生了改变。有研究表明在妊娠中晚期会有大脑保留机制的出现[29, 30],由于胎儿慢性缺氧和营养物质供应减少可引起心输出量的重新分配,相对于其他器官的生长更倾向于保护大脑,通过减少脑血管阻力和增加心输出量来维持大脑的供血供氧。但本研究结果表明,在妊娠中晚期TOF组DGM体积仍较对照组胎儿明显减小,这表明这一机制的出现在这一妊娠阶段尚不能完全代偿TOF组胎儿脑DGM的正常生长发育需要。但本研究队列的最大胎龄GA为33周,对于妊娠晚期大脑保留机制的代偿机制是否能够确保胎儿脑DGM的正常生长发育仍有待研究,因为晚孕期胎儿大脑体积发育迅速增长,大脑各物质代谢活动加强,对营养物质及氧气的需求也在快速增加[31, 32]

3.4 局限性

       本研究存在一定的局限性。TOF组胎儿纳入的样本量较少,未涵盖晚孕期的病例。胎儿三维脑体积MRI研究的另一个限制因素是颅内结构较小,人工分割耗时耗力[33, 34],因此我们后续的研究技术重点在胎儿脑的自动分割及校正[35, 36]。主要局限性在于没有在TOF患儿中进行长期神经发育纵向队列研究,这将在后续的研究中进一步跟进和改善。

4 结论

       本研究表明,TOF胎儿在宫内的DGM体积较正常胎儿已发生了减小,可以在妊娠中期通过三维体积MRI检测到,这弥补了之前研究中对于DGM研究报道的不足。此发现可作为TOF胎儿妊娠早中期脑发育异常的早期标志物,进而可成为预测妊娠晚期胎儿脑生长滞后或脑损伤风险升高的早期标志。

[1]
WISE-FABEROWSKI L, ASIJA R, MCELHINNEY D B. Tetralogy of fallot: Everything you wanted to know but were afraid to ask[J]. Paediatr Anaesth, 2019, 29(5): 475-482. DOI: 10.1111/pan.13569.
[2]
DOWNING T E, KIM Y Y. Tetralogy of fallot: General principles of management[J]. Cardiol Clin, 2015, 33(4): 531-541, vii-viii. DOI: 10.1016/j.ccl.2015.07.002.
[3]
WIPUTRA H, CHEN C K, TALBI E, et al. Human fetal hearts with tetralogy of Fallot have altered fluid dynamics and forces[J/OL]. Am J Physiol Heart Circ Physiol, 2018, 315(6): H1649-H1659 [2023-12-04]. https://pubmed.ncbi.nlm.nih.gov/30216114/. DOI: 10.1152/ajpheart.00235.2018.
[4]
REN J Y, ZHU M, DONG S Z. Three-dimensional volumetric magnetic resonance imaging detects early alterations of the brain growth in fetuses with congenital heart disease[J]. J Magn Reson Imaging, 2021, 54(1): 263-272. DOI: 10.1002/jmri.27526.
[5]
PEYVANDI S, ROLLINS C. Fetal brain development in congenital heart disease[J]. Can J Cardiol, 2023, 39(2): 115-122. DOI: 10.1016/j.cjca.2022.09.020.
[6]
NI Q, ZHANG Y, WEN T, et al. A sparse volume reconstruction method for fetal brain mri using adaptive kernel regression[J/OL]. Biomed Res Int, 2021, 2021: 6685943 [2023-12-04]. https://pubmed.ncbi.nlm.nih.gov/33748279/. DOI: 10.1155/2021/6685943.
[7]
TOURBIER S, VELASCO-ANNIS C, TAIMOURI V, et al. Automated template-based brain localization and extraction for fetal brain MRI reconstruction[J]. Neuroimage, 2017, 155: 460-472. DOI: 10.1016/j.neuroimage.2017.04.004.
[8]
UUS A, ZHANG T, JACKSON L H, et al. Deformable slice-to-volume registration for motion correction of fetal body and placenta MRI[J]. IEEE Trans Med Imaging, 2020, 39(9): 2750-2759. DOI: 10.1109/tmi.2020.2974844.
[9]
UUS A U, GRIGORESCU I, VAN POPPEL M P M, et al. Automated 3D reconstruction of the fetal thorax in the standard atlas space from motion-corrupted MRI stacks for 21-36 weeks GA range[J/OL]. Med Image Anal, 2022, 80: 102484 [2023-12-04]. https://pubmed.ncbi.nlm.nih.gov/35649314/. DOI: 10.1016/j.media.2022.102484.
[10]
KIM K, HABAS P, RAJAGOPALAN V, et al. Non-iterative relative bias correction for 3D reconstruction of in utero fetal brain MR imaging[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2010, 2010: 879-882. DOI: 10.1109/iembs.2010.5627876.
[11]
KIM K, HABAS P A, RAJAGOPALAN V, et al. Bias field inconsistency correction of motion-scattered multislice MRI for improved 3D image reconstruction[J]. IEEE Trans Med Imaging, 2011, 30(9): 1704-1712. DOI: 10.1109/tmi.2011.2143724.
[12]
SINGH A, SALEHI S S M, GHOLIPOUR A. Deep predictive motion tracking in magnetic resonance imaging: Application to fetal imaging[J]. IEEE Trans Med Imaging, 2020, 39(11): 3523-3534. DOI: 10.1109/tmi.2020.2998600.
[13]
KUKLISOVA-MURGASOVA M, QUAGHEBEUR G, RUTHERFORD M A, et al. Reconstruction of fetal brain MRI with intensity matching and complete outlier removal[J]. Med Image Anal, 2012, 16(8): 1550-1564. DOI: 10.1016/j.media.2012.07.004.
[14]
DEPREST T, FIDON L, DE KEYZER F, et al. Application of automatic segmentation on super-resolution reconstruction MR images of the abnormal fetal brain[J]. AJNR Am J Neuroradiol, 2023, 44(4): 486-491. DOI: 10.3174/ajnr.A7808.
[15]
YANG M, LIU Y, MA S, et al. Altered brain structure in preschool-aged children with tetralogy of Fallot[J]. Pediatr Res, 2023, 93(5): 1321-1327. DOI: 10.1038/s41390-022-01987-z.
[16]
ORTINAU C M, MANGIN-HEIMOS K, MOEN J, et al. Prenatal to postnatal trajectory of brain growth in complex congenital heart disease[J]. Neuroimage Clin, 2018, 20: 913-922. DOI: 10.1016/j.nicl.2018.09.029.
[17]
LAURIDSEN M H, ULDBJERG N, HENRIKSEN T B, et al. Cerebral oxygenation measurements by magnetic resonance imaging in fetuses with and without heart defects[J/OL]. Circ Cardiovasc Imaging, 2017, 10(11): e006459 [2023-12-04]. https://pubmed.ncbi.nlm.nih.gov/29141840/. DOI: 10.1161/circimaging.117.006459.
[18]
DE ASIS-CRUZ J, ANDESCAVAGE N, LIMPEROPOULOS C. Adverse prenatal exposures and fetal brain development: Insights from advanced fetal magnetic resonance imaging[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2022, 7(5): 480-490. DOI: 10.1016/j.bpsc.2021.11.009.
[19]
KHALIL A, BENNET S, THILAGANATHAN B, et al. Prevalence of prenatal brain abnormalities in fetuses with congenital heart disease: a systematic review[J]. Ultrasound Obstet Gynecol, 2016, 48(3): 296-307. DOI: 10.1002/uog.15932.
[20]
CROMB D, UUS A, VAN POPPEL M P M, et al. Total and regional brain volumes in fetuses with congenital heart disease[J/OL]. J Magn Reson Imaging, 2023 [2023-12-04]. https://pubmed.ncbi.nlm.nih.gov/37846811/. DOI: 10.1002/jmri.29078.
[21]
ROLLINS C K, ORTINAU C M, STOPP C, et al. Regional Brain Growth Trajectories in Fetuses with Congenital Heart Disease[J]. Ann Neurol, 2021, 89(1): 143-157. DOI: 10.1002/ana.25940.
[22]
ALSAIED T, TSENG S, KING E, et al. Effect of fetal hemodynamics on growth in fetuses with single ventricle or transposition of the great arteries[J]. Ultrasound Obstet Gynecol, 2018, 52(4): 479-487. DOI: 10.1002/uog.18936.
[23]
PAPAIOANNOU G, GAREL C. The fetal brain: migration and gyration anomalies - pre- and postnatal correlations[J]. Pediatr Radiol, 2023, 53(4): 589-601. DOI: 10.1007/s00247-022-05458-9.
[24]
KHANDELWAL A, AGGARWAL A, SHARMA A, et al. Magnetic resonance imaging of malformations of cortical development-a comprehensive review[J]. World Neurosurg, 2022, 159: 70-79. DOI: 10.1016/j.wneu.2021.12.011.
[25]
LEE F T, SEED M, SUN L, et al. Fetal brain issues in congenital heart disease[J]. Transl Pediatr, 2021, 10(8): 2182-2196. DOI: 10.21037/tp-20-224.
[26]
ANDESCAVAGE N N, DU PLESSIS A, MCCARTER R, et al. Complex trajectories of brain development in the healthy human fetus[J]. Cereb Cortex, 2017, 27(11): 5274-5283. DOI: 10.1093/cercor/bhw306.
[27]
张霞, 朱铭, 董素贞. 产前MRI对法洛四联症胎儿心血管结构和脑发育的评估[J]. 中华放射学杂志, 2022, 56(5): 488-493. DOI: 10.3760/cma.j.cn112149-20210630-00617.
ZHANG X, ZHU M, DONG S Z. Prenatal assessment of the cardiovascular structure and brain development of fetuses with tetralogy of Fallot on fetal MRI[J]. Chin J Radiol, 2022, 56(5): 488-493. DOI: 10.3760/cma.j.cn112149-20210630-00617.
[28]
SCHELLEN C, ERNST S, GRUBER G M, et al. Fetal MRI detects early alterations of brain development in Tetralogy of Fallot[J/OL]. Am J Obstet Gynecol, 2015, 213(3): 392.e1-7 [2023-12-04]. https://pubmed.ncbi.nlm.nih.gov/26008177/. DOI: 10.1016/j.ajog.2015.05.046.
[29]
GIUSSANI D A. The fetal brain sparing response to hypoxia: physiological mechanisms[J]. J Physiol, 2016, 594(5): 1215-1230. DOI: 10.1113/jp271099.
[30]
CAHILL L S, HOGGARTH J, LERCH J P, et al. Fetal brain sparing in a mouse model of chronic maternal hypoxia[J]. J Cereb Blood Flow Metab, 2019, 39(6): 1172-1184. DOI: 10.1177/0271678x17750324.
[31]
SADHWANI A, WYPIJ D, ROFEBERG V, et al. Fetal brain volume predicts neurodevelopment in congenital heart disease[J]. Circulation, 2022, 145(15): 1108-1119. DOI: 10.1161/circulationaha.121.056305.
[32]
BRADY D, SCHLATTERER S D, WHITEHEAD M T. Fetal brain MRI: neurometrics, typical diagnoses, and resolving common dilemmas[J/OL]. Br J Radiol, 2023, 96(1147): 20211019 [2023-12-04]. https://pubmed.ncbi.nlm.nih.gov/35604645/. DOI: 10.1259/bjr.20211019.
[33]
KHALILI N, LESSMANN N, TURK E, et al. Automatic brain tissue segmentation in fetal MRI using convolutional neural networks[J]. Magn Reson Imaging, 2019, 64: 77-89. DOI: 10.1016/j.mri.2019.05.020.
[34]
WU J, YU B, WANG L, et al. Longitudinal Chinese Population Structural Fetal Brain Atlases Construction: toward precise fetal brain segmentation[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021: 2745-2749. DOI: 10.1109/embc46164.2021.9630514.
[35]
SOBOTKA D, EBNER M, SCHWARTZ E, et al. Motion correction and volumetric reconstruction for fetal functional magnetic resonance imaging data[J/OL]. Neuroimage, 2022, 255: 119213 [2023-12-04]. https://pubmed.ncbi.nlm.nih.gov/35430359/. DOI: 10.1016/j.neuroimage.2022.119213.
[36]
LI H, YAN G, LUO W, et al. Mapping fetal brain development based on automated segmentation and 4D brain atlasing[J]. Brain Struct Funct, 2021, 226(6): 1961-1972. DOI: 10.1007/s00429-021-02303-x.

上一篇 新生儿脑白质损伤时空分布规律的病灶概率映射研究
下一篇 体素内不相干运动成像在阿尔茨海默病临床诊断中的价值探讨
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2