分享:
分享到微信朋友圈
X
临床研究
基于MRI探索甲状腺相关性眼病眶内组织与复视的相关性
石桂凤 段勇波 黄凯 刘丹 陈海雄

Cite this article as: SHI G F, DUAN Y B, HUANG K, et al. Relationship between orbital tissues and diplopia in thyroid-associated ophthalmopathy based on MRI[J]. Chin J Magn Reson Imaging, 2024, 15(9): 53-59, 67.本文引用格式:石桂凤, 段勇波, 黄凯, 等. 基于MRI探索甲状腺相关性眼病眶内组织与复视的相关性[J]. 磁共振成像, 2024, 15(9): 53-59, 67. DOI:10.12015/issn.1674-8034.2024.09.010.


[摘要] 目的 利用MRI技术探讨甲状腺相关性眼病(thyroid-associated ophthalmopathy, TAO)患者眼外肌、眶内脂肪与TAO复视的相关性。材料与方法 研究对象包含TAO复视组(79例,157只眼)、TAO非复视组(36例,72只眼)及正常对照组(30例,60只眼)。测量眼外肌厚度、眼外肌体积(extraocular muscle volume, EMV)、眼外肌与白质信号强度比(signal intensity ratio, SIR)、眶内脂肪体积(fat volume, FV)、眼眶体积(orbital volume, OV),并收集患者临床及实验室资料,包括年龄、性别、吸烟史、促甲状腺激素(thyroid stimulating hormone, TSH)、游离三碘甲腺原氨酸(free triiodothyronine, FT3)、游离甲状腺素(free thyroxine, FT4)、甲状腺球蛋白(thyreoglobulin, TG)、甲状腺素受体抗体(thyrotropin receptor antibody, TRAb)、抗甲状腺球蛋白抗体(anti-thyroglobulin antibody, anti-TGAb)、抗甲状腺过氧化物酶自身抗体(anti-thyroid peroxidase utoantibody, anti-TPOAb)。通过单因素方差分析、Mann-Whitney U检验、Kruskal-Wallis H检验及卡方检验比较三组的基线资料、临床指标和影像学参数。再通过单因素及多因素logistic回归分析TAO复视的独立危险因素,并绘制受试者工作特征(receiver operating characteristics, ROC)曲线评估危险因素的诊断价值。结果 TAO复视组、TAO非复视组和正常对照组在年龄、上直肌厚度(superior rectus thickness, SR-T)、下直肌厚度(inferior rectus thickness, IR-T)、内直肌厚度(medial rectus thickness, MR-T)、外直肌厚度(lateral rectus thickness, LR-T)、EMV、FV/OV、SIRmean、SIRmax的差异有统计学意义(P<0.05);TAO复视组与TAO非复视组在IR-T、MR-T、FV/OV、EMV、SIRmax的分布差异有统计学意义(P<0.05),在SR-T、LR-T、SIRmean的差异无统计学意义(P>0.05);TAO复视与TAO非复视在TSH与TRAb的差异也有统计学意义(P<0.05)。单因素和多因素logistic回归分析表明,TRAb、FV/OV、EMV是TAO复视的独立危险因素,并绘制ROC曲线,分析单独及联合指标对TAO复视的诊断效能,ROC分析提示联合指标具有最好的诊断效能,AUC=0.853(95%置信区间:0.792~0.915)(P<0.001),敏感度82.7%,特异度79.6%,约登指数0.623。结论 TAO复视不仅与既往研究提到的眼外肌增大、SIR值相关,还与眶内脂肪体积密切相关。综合分析眼外肌及眶内脂肪能够为临床提供更全面客观依据,有助于临床选择合适的治疗方案。
[Abstract] Objective To explore the correlation between extraocular muscles, orbital fat, and thyroid-associated ophthalmopathy (TAO) diplopia using MRI technology.Materials and Methods The subjects of the study included the TAO diplopia group (79 cases, 157 eyes), the TAO non-diplopia group (36 cases, 72 eyes) and the normal control group (30 cases, 60 eyes). The extraocular muscle thickness, extraocular muscle volume (EMV), extraocular muscle-to-white matter signal intensity ratio (SIR), intraorbital fat volume (FV), and orbital volume (OV) of the study subjects were measured, and clinical and laboratory data were collected, including age, gender, smoking history, thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), free thyroxine (FT4), thyroglobulin (TG), thyroxine receptor antibody (TRAb), anti-thyroglobulin antibody (anti-TGAb) and anti-thyroid peroxidase utoantibody (anti-TPOAb). One-way analysis of variance, Mann-Whitney U test, Kruskal-Wallis H test and chi-square test were used to compare the baseline data, clinical indicators and imaging parameters of the three groups. Then univariate and multivariate logistic regression analysis were used to analyze the independent risk factors of TAO diplopia, and the receiver operating characteristics (ROC) curves were plotted to evaluate the diagnostic value of risk factors.Results There were statistically significant differences in age, superior rectus thickness (SR-T), inferior rectus thickness (IR-T), medial rectus thickness (MR-T), lateral rectus thickness (LR-T), EMV, FV/OV, SIRmean, and SIRmax between TAO diplopia, TAO non-diplopia, and normal control groups (P<0.05). There were statistically significant differences in the distribution of IR-T, MR-T, FV/OV, EMV, and SIRmax between TAO diplopia and TAO non-diplopia (P<0.05). There was no statistically significant difference in SR-T, LR-T, and SIRmean (P>0.05), and there was also a statistically significant difference between TAO diplopia and TAO non-diplopia in TSH and TRAb (P<0.05). Univariate and multivariate logistic regression analysis showed that TRAb, FV/OV and EMV were independent risk factors of TAO diplopia, and the receiver operating characteristic (ROC) curve was plotted to analyze the diagnostic efficacy of individual and combined indicators for TAO diplopia. The ROC analysis showed that the combined index had the best diagnostic efficacy, AUC=0.853 (95% confidence interval: 0.792-0.915) (P<0.001), sensitivity was 82.7%, and specificity was 79.6%, the Yoden index is 0.623.Conclusions TAO diplopia is not only related to the enlargement of extraocular muscles and SIR values mentioned in previous studies, but also closely related to the volume of intraorbital fat. Comprehensive analysis of extraocular muscles and orbital fat can provide a more comprehensive and objective basis for clinical practice, which is helpful for clinical selection of appropriate treatment options.
[关键词] 甲状腺相关性眼病;复视;眼外肌;脂肪体积;磁共振成像
[Keywords] thyroid-associated ophthalmopathy;diplopia;extraocular muscles;fat volume;magnetic resonance imaging

石桂凤 1, 2   段勇波 3   黄凯 1, 2   刘丹 1, 2   陈海雄 2*  

1 南方医科大学第二临床医学院,广州 510000

2 南方医科大学顺德医院(佛山市顺德区第一人民医院)放射科,佛山 528300

3 南方医科大学顺德医院(佛山市顺德区第一人民医院)眼科,佛山 528300

通信作者:陈海雄,E-mail: 13825553451@139.com

作者贡献声明::陈海雄设计本研究的方案,对稿件关键内容进行了修改,获得了广东省医学科学技术研究基金、佛山市自筹经费类科技计划项目、南方医科大学顺德医院院内科研启动计划项目(重点专科-培育项目)资助;石桂凤起草和撰写稿件,获取、分析及解释本研究的数据;黄凯、刘丹获取、分析本研究的影像数据,对稿件重要内容进行了修改;段永波获取、分析本研究的临床数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 广东省医学科学技术研究基金项目 B2022185 佛山市自筹经费类科技计划项目 2220001003987 南方医科大学顺德医院院内科研启动计划项目(重点专科-培育项目) SRSP2021037
收稿日期:2024-05-07
接受日期:2024-08-12
中图分类号:R445.2  R581.1  R771.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.09.010
本文引用格式:石桂凤, 段勇波, 黄凯, 等. 基于MRI探索甲状腺相关性眼病眶内组织与复视的相关性[J]. 磁共振成像, 2024, 15(9): 53-59, 67. DOI:10.12015/issn.1674-8034.2024.09.010.

0 引言

       甲状腺相关性眼病(thyroid-associated ophthalmopathy, TAO)又称Graves眼病(Graves' ophthalmopathy, GO),是一种器官特异的自身免疫性疾病[1, 2],位居成人眼眶疾病发病率首位[3, 4, 5]。GO的估计发病率在女性中为每年3.3~8.0/100 000人,在男性中为每年0.9~1.6/100 000人[6]。TAO临床表现复杂多样,包括眼睑退缩、眼球突出、复视、视力下降等[7, 8],其中复视是部分患者的首发表现[9, 10]。研究表明,与无复视的患者相比,复视患者的整体生活质量更差,一般残疾感的负面情绪更多[10, 11]。一般认为复视主要是因为眼外肌受累所致[12],目前主要的治疗方法包括棱镜矫正、药物治疗、放射治疗和眼外肌手术,然而这些方法的疗效并不确切[13, 14]。目前眼外肌与复视相关性客观量化的研究较少,并且未研究眼外肌体积与复视的关系[15],而且在临床工作中,我们发现眶内脂肪的改变与复视也存在一定关系,但未见相关文献报道。所以本研究旨在基于MRI量化指标探讨TAO患者眼外肌、眶内脂肪与复视之间关系,为临床评估复视提供更全面客观的影像学指标,为选择治疗方案提供帮助。

1 材料与方法

1.1 研究对象

       回顾收集2020年8月至2023年8月于南方医科大学顺德医院诊断为TAO并行眼眶MRI扫描的患者资料。收集同期因其他疾病行眼眶MRI扫描,MRI结果显示正常的受检者作为正常对照组。TAO患者纳入标准:(1)参考Bartley标准[16]并基于2022年中国甲状腺相关性眼病诊断和治疗指南[17]诊断为TAO;(2)完整眼眶MRI图像及临床资料;(3)年龄17岁及以上。根据患者是否存在复视临床症状,包括一过性复视、间歇性复视、持续性复视,将其划分为TAO复视组与TAO非复视组。正常对照组纳入标准:(1)无甲状腺功能亢进及甲状腺疾病史;(2)无眼部不适,包括眼睑退缩、眼球突出、复视、视力下降、畏光、流泪等;(3)完整眼眶MRI图像及临床资料;(4)年龄17岁及以上。

       所有受试者的排除标准:(1)患有眶后占位性病变等其他眼部疾病;(2)患有其他自身免疫性疾病;(3)患有糖尿病视网膜病变;(4)患有高血压眼底并发症;(5)既往有眼眶减压术等眼部手术史;(6)既往有眼眶放疗史。

       本研究共收集305例患者资料,根据纳入、排除标准,排除临床及影像资料不完整179例、既往有眼眶减压术等眼部手术史8例、既往有眼眶放疗史3例,最后共纳入病例资料115例,患眼共229只,其中79例(157只眼)患者作为TAO复视组;36例(72只眼)为TAO非复视组。对照组共纳入30例(60只眼)。

       收集所有受试者的临床信息,包括年龄、性别、吸烟史、促甲状腺激素(thyroid stimulating hormone, TSH)、游离三碘甲腺原氨酸(free triiodothyronine, FT3)、游离甲状腺素(free thyroxine, FT4)、甲状腺球蛋白(thyreoglobulin, TG)、甲状腺素受体抗体(thyrotropin receptor antibody, TRAb)、抗甲状腺球蛋白抗体(anti-thyroglobulin antibody, anti-TGAb)、抗甲状腺过氧化物酶自身抗体(anti-thyroid peroxidase utoantibody, anti-TPOAb)。本研究遵守《赫尔辛基宣言》,并获得了南方医科大学顺德医院伦理委员会批准,免除受试者知情同意(批准文号:KYLS20220723)。

1.2 MRI方法

       使用3.0 T MR扫描仪(西门子Skyra,德国),20通道相控阵头颅线圈进行眼眶检查,扫描范围包括眼眶及视神经。扫描序列及扫描参数如下所示。采用T2WI-Dixon和T1WI-TSE序列。T2WI-Dixon序列成像参数:TR 4000 ms,TE 91 ms,FOV 150 mm×150 mm,矩阵320×320,层厚3 mm,层间距0.6 mm,回波链21,加速因子2,翻转角150°,激励次数2,带宽381 Hz,采集时长3 min 32 s。常规序列横断面T1WI参数:TR 756 ms,TE 7.1 ms,FOV 150 mm×150 mm,矩阵256×256,层厚3 mm,层间距0.3 mm,回波链3,加速因子2,翻转角150°,激励次数3,带宽305 Hz,采集时长1 min 36 s。

1.3 图像分析

1.3.1 眼外肌厚度及SIR测量

       由两名分别具有5年和20年影像诊断经验的放射科住院医师和主任医师采用单盲法随机对图像进行测量分析。在T2WI-Dixon同相位冠状位图像上测量上直肌(superior rectus, SR)、下直肌(inferior rectus, IR)和内直肌最厚层面的厚度(图1A),T1WI-TSE横断位图像上测量外直肌(lateral rectus, LR)最厚层面的厚度(图1B),在T2WI-Dixon同相位冠状位图像上分别测量各条眼外肌肌腹最强信号强度及同侧脑白质信号强度(signal intensity, SI),计算两者比值,即信号强度比(signal intensity ratio, SIR)[式(1)][18],比值最大的计为SIRmax,再计算四条眼肌SIR的平均值,计为SIRmean,SIR值反映眼外肌的炎性水肿程度。在同侧脑白质显示最大层面测量脑白质的信号强度,感兴趣区(region of interest, ROI)为直径1 cm的圆形[19]图1D)。

图1  MRI测量眼外肌厚度、SIRmax、SIRmean。TAO复视患者:女,53岁,T2WI-Dixon序列提示眼外肌明显增粗。1A:在T2WI-Dixon同相位冠状位序列上,测量上直肌、下直肌和内直肌最厚层面的厚度值(白色线段);1B:于T1WI-TSE横断位序列上,测量外直肌最厚层面的厚度值(红色线段)。1C、1D:T2WI-Dixon同相位冠状位序列上,测量眼外肌肌腹最强信号强度(白色圆圈)及同侧脑白质信号强度(红色圆圈)。SIR=SI眼肌/SI白质。SIRmax:SIR的最大值;SIRmean:SIR的平均值;TAO:甲状腺相关性眼病;SI:信号强度。
Fig. 1  Extraocular muscle thickness, SIRmax, SIRmean were measured on MRI. TAO diplopia patient: female, 53 years old, T2WI-Dixon sequence showed significant thickening of extraocular muscles. 1A: On the T2WI-Dixon in-phase coronal sequence, the thickness values of the thickest layers of the superior, inferior, and medial rectus muscles are measured (white line). 1B: The thickness of the thickest layer of the lateral rectus muscle is measured on the T1WI-TSE transverse sequence (red line). 1C, 1D: On the T2WI-Dixon in-phase coronal sequence, the strongest signal intensity of the extraocular muscle-abdomen (white circle) and ipsilateral white matter signal intensity (red circle) are measured. SIR=SIophthalmic/SIwhitematter. SIRmax: the maximum value of the SIR; SIRmean: the average value of SIR; TAO: thyroid-associated ophthalmopathy; SI: signal intensity.

1.3.2 眼外肌、脂肪、眼眶体积测量

1.3.2.1 图像获取、分割

       将MRI图像以医学数字影像与传输格式导入到ITK-SNAP 4.0(www.itksnap.org)软件中。由1名医师使用ITK-SNAP 4.0软件沿ROI边缘手动逐层勾画眼外肌、眶内脂肪、眼眶轮廓(图2A、2B、2C)。分割结果由另一位主任医师确认,若两位医生意见不一致,通过协商达成一致。

1.3.2.2 3D显示

       由ITK-SNAP 4.0自动生成眼外肌、眶内脂肪、眼眶轮廓的3D体积感兴趣区域(volume of interest, VOI)(图2D2E2F),以NiFTI格式将其导出并存储,再自动计算VOI的体积,以TXT格式将其导出并存储。

图2  ITK-snap勾画眼外肌、眶内脂肪、眼眶轮廓。2A:在T2WI-Dixon冠状位上手动逐层勾画眼外肌轮廓,红色代表上直肌、绿色代表下直肌、蓝色代表内直肌、黄色代表外直肌;2B:在T2WI-Dixon冠状位上手动逐层勾画眶内脂肪轮廓;2C:在T1WI-TSE横断位上手动逐层勾画眼眶轮廓;2D:重建眼外肌的体积感兴趣区域(VOI);2E:重建眶内脂肪的VOI;2F:重建眼眶的VOI。
Fig. 2  ITK-snap delineates extraocular muscles, intraorbital fat, and orbital contour. 2A: Manually delineate the extraocular muscles layer by layer at the T2WI-Dixon coronal position; 2B: The orbital fat profile layer by layer at the T2WI-Dixon coronal position; 2C: The orbital contour layer by layer at the T1WI-TSE transection position; 2D: Reconstruction of volume of interest (VOI) of extraocular muscles; 2E: Reconstruction of VOI of intraorbital fat; 2F: Reconstruction of VOI of orbit.

1.4 统计学分析

       应用SPSS 27.0软件进行统计分析。采用Kolmogorov-Smirnov检验分析连续变量的正态分布,正态分布的计量资料以x¯±s表示,非正态分布的计量资料采用中位数MP25,P75)表示,计数资料以比例或百分比(%)表示。统计分析基线资料(年龄、性别、吸烟史)、临床检验指标(TSH、FT3、FT4、TRAb、TG、anti-TGAb、anti-TPOAb)、影像学参数(SR-T、IR-T、MR-T、LR-T、SIRmax、SIRmean、FV/OV、EMV)。组间比较正态分布定量资料采用单因素方差分析,非正态分布定量资料采用Mann-Whitney U检验和Kruskal-Wallis H检验,定性资料采用卡方检验。以是否复视为结局变量进行单因素logistic回归分析,其中P<0.05的参数进行多因素logistic回归分析,筛选出复视的独立危险因素,并计算其95%置信区间(confidence internal, CI)。最后,通过受试者工作特征(receiver operating characteristic, ROC)曲线分析来评估其诊断效能,最佳截断值的选择取决于约登指数。P<0.05为差异有统计学意义。

2 结果

2.1 一般资料

       TAO复视组、TAO非复视组、正常对照组的性别、吸烟史分布差异无统计学意义(P>0.05),年龄分布差异有统计学意义(P<0.05)(表1)。两两比较发现,正常对照组与TAO复视组、TAO非复视组的年龄差异均无统计学意义(P>0.05)、TAO复视组与TAO非复视组之间的年龄差异均有统计学意义(P<0.05)(图3)。

图3  年龄组间比较的箱式图。TAO:甲状腺相关性眼病。
Fig. 3  Box-plot for comparison of age among groups. TAO: thyroid-associated ophthalmopathy.
表1  研究对象一般资料比较
Tab. 1  Comparison of general data of study participants

2.2 TAO复视组与TAO非复视组甲状腺功能及抗体的比较

       TAO复视组与TAO非复视组在TSH、TRAb的分布差异有统计学意义(P<0.05),在FT3、FT4、TG、anti-TGAb、anti-TPOAb的分布差异均无统计学意义(P>0.05)(表2)。正常对照组甲状腺功能均在正常范围内,不参与甲状腺功能及相关抗体的比较。

表2  TAO复视组与TAO非复视组甲状腺功能及抗体的比较
Tab. 2  Comparison of thyroid function and antibodies between the TAO diplopia group and the TAO non-diplopia group

2.3 影像学资料

       TAO复视组、TAO非复视组及正常对照组在SR-T、IR-T、MR-T、LR-T、FV/OV、EMV、SIRmean、SIRmax的差异均有统计学意义(P<0.001)(表3)。TAO复视与TAO非复视在IR-T、MR-T、FV/OV、EMV、SIRmax的分布差异有统计学意义(P<0.05),在SR-T、LR-T、SIRmean的差异无统计学意义(P>0.05)(图4)。

图4  SR-T(4A)、IR-T(4B)、MR-T(4C)、IR-T(4D)、EMV(4E)、FV/OV(4F)、SIRmean(4G)、SIRmax(4H)的组间差异。分组1为正常对照组;分组2为TAO非复视组;分组3为TAO复视组。SR-T:上直肌厚度;IR-T:下直肌厚度;MR-T:内直肌厚度;LR-T:外直肌厚度;EMV:眼外肌体积;FV/OV:眼眶脂肪占眼眶比;SIRmean为眼外肌平均信号强度比;SIRmax为眼外肌最大信号强度比。
Fig. 4  Inter-group differences in SR-T (4A), IR-T (4B), MR-T (4C), IR-T (4D), EMV (4E), FV/OV (4F), SIRmean (4G), and SIRmax (4H). SR-T: superior rectus thickness; IR-T: inferior rectus thickness; MR-T: medial rectus thickness; LR-T: lateral rectus thickness; EMV: extraocular muscle volume; FV/OV: fat volume/ orbital volume; SIRmean: the average of signal intensity ratio; SIRmax: the maximum of signal intensity ratio.
表3  研究对象影像学参数比较
Tab. 3  Comparison of imaging parameters of study subjects

2.4 TAO复视组与TAO非复视组的独立危险因素

       单因素和多因素logistic回归分析显示TRAb、FV/OV、EMV是TAO复视的独立危险因素(表4)。

表4  TAO复视患者临床资料、检验指标及影像学参数的逻辑回归分析
Tab. 4  Logistic regression analysis of clinical data, test indexes and imaging parameters of TAO diplopia patients

2.5 判别复视的相关截断点

       用TRAb、FV/OV、EMV进行ROC曲线分析,其AUC分别为0.618、0.767、0.720,均大于0.50,有诊断意义。联合指标的AUC为0.853(0.792~0.915),高于各单一指标,敏感度82.7%,特异度79.6%,约登指数0.623,最佳截断值为0.665,该联合指标的诊断效能最优(图5表5)。

图5  TRAb、EMV、FV/OV及联合指标诊断TAO复视的ROC曲线。TRAb:甲状腺素受体抗体;EMV:眼外肌体积;FV/OV:眼眶脂肪占眼眶比;TAO:甲状腺相关性眼病;ROC:受试者工作特征。
Fig. 5  ROC curves for TRAb, EMV, FV/OV and combined index to diagnose diplopia of thyroid-associated ophthalmopathy. TRAb: thyrotropin receptor antibody; EMV: extraocular muscle volume; FV/OV: fat volume/orbital volume; TAO: thyroid-associated ophthalmopathy; ROC: receiver operating characteristics.
表5  TRAb、FV/OV、EMV单独及联合指标应用于TAO患者复视的诊断效能
Tab. 5  Diagnostic efficacy of TRAb, FV/OV, EMV alone and in combination with diplopia in TAO patients

3 讨论

       本研究通过分析TAO患者眼外肌量化指标、眶内脂肪体积、临床资料、实验室指标与复视的关系,探讨复视的客观危险因素。结果显示TRAb、EMV和FV/OV是TAO复视的独立危险因素。本研究发现了眶内脂肪与复视存在相关性,为临床治疗提供了新的方向。

3.1 Dixon技术在评估TAO中的优势

       MRI具有较高的软组织分辨率,其多参数成像能够清晰显示毗邻结构复杂、体积较小的眼眶内容物的炎症改变,已成为TAO诊断的重要影像学手段[20, 21, 22, 23]。与以往研究使用FS及STIR压脂序列显示TAO眼眶脂肪炎症不同[24],本研究使用了T2WI-Dixon序列。其具有优异的水脂分离效应,在实质脏器的水脂定量领域已经有丰富的研究和应用[25]。T2WI-Dixon序列还拥有对磁化率伪影敏感性低、对炎症变化分辨率高以及采集时间短等优点,使其非常适合眼眶成像[26, 27]。既往研究[28]也表明T2WI-Dixon水相图像质量优于T2WI-SPAIR图像,具有更强评估TAO球后组织炎性水肿的能力。

3.2 临床资料与复视的相关性

       本研究中TAO复视组的年龄大于TAO非复视组,TAO复视组患者的TRAb低于TAO非复视组。所以本研究结果表明年龄越大、TRAb水平越低的TAO患者可能更容易出现复视,黄燕舒[29]通过对105例TAO患者的临床特征进行分析,发现复视与非复视组间的年龄、TRAb差异有统计学意义,与本研究结果相符。

3.3 眼外肌、脂肪影像学参数与复视的相关性

       本研究结果提示在正常对照组、TAO非复视组、TAO复视组中各眼外肌厚度的差异均有统计学意义,其中下直肌厚度、内直肌厚度是影响复视的重要因素,推测原因可能为下直肌、内直肌是TAO最容易受累的眼外肌[30, 31, 32, 33]。本研究发现眼外肌体积在三组中的差异有统计学意义,提示TAO患者的复视症状与眼外肌增大密切相关。ZHENG等[34]研究发现眼外肌受到自身抗体攻击,促使透明质酸积聚并表达多种细胞因子,导致肌纤维间质内出现大量淋巴细胞和浆细胞浸润,加剧眼外肌炎症反应及体积增大,因此我们推测是眼外肌炎症反应影响其功能,导致眼球运动受限,从而引发复视。此外,眼外肌明显增大也相应导致眶内容积减少,进而影响眼球正常运动,导致复视的发生。

       除了眼外肌的影响外,本研究还发现脂肪的体积变化也是复视的危险因素。在TAO复视组和TAO非复视组患者之间,FV/OV存在显著差异。MEYER等[35]的研究发现,TAO的特征是成纤维细胞活化引起的眼眶炎症,眼眶成纤维细胞会表达TG、TSH和其他甲状腺相关肽,在这些分子的作用下,眼眶成纤维细胞能分化为脂肪细胞和肌成纤维细胞,促进眼眶内的脂肪增生和透明质酸合成。我们认为TAO患者眼眶脂肪的体积增加,以及脂肪的炎性浸润使其顺应性降低;导致眼眶容积相对减小,从而限制眼球运动,进而引发复视症状的出现。虽然既往缺乏TAO复视与眶内脂肪相关性的研究,但本研究结果与临床工作中,我们发现部分患者眼外肌大小形态并未出现明显异常,但仍然出现复视的情况是相符的。这一结果为理解复视的发病机制提供了新的视角,也为临床遇到复视时只关注眼外肌的治疗方法提出新的思考。

3.4 临床-影像参数对复视的诊断效能

       既往NAGY等[36]对43例出现复视的TAO患者进行眼眶MRI检查,测量眼外肌直径并与复视进行分析,结果表明95%出现复视的患者存在眼外肌增大,提示眼外肌增大与复视有一定相关性,但该研究并未联合运用临床-影像参数进行分析。考虑到临床及影像均有复视的独立危险因素,因此本研究联合了临床-影像参数,通过ROC曲线分析,显示在TAO患者复视的评估中,TRAb的敏感度优于FV/OV和EMV,而FV/OV和EMV的特异度优于TRAb,TRAb、FV/OV及EMV联合指标的敏感度和特异度均优于三者单独检测。因此在临床工作中,TRAb、FV/OV及EMV均具有一定的临床价值,不可相互替代,并且联合应用能够更好地反映TAO患者的复视情况,其敏感度82.7%,特异度79.6%,约登指数0.623,最佳截断值为0.665。该联合指标为评估复视提供了客观量化指标,并且提供了相应的数值截断点。

3.5 本研究的创新性与局限性

       本研究具有以下创新之处:首先,本研究根据临床问题展开,以往研究表明TAO复视与眼外肌增大相关,本研究发现眶内脂肪也是复视的危险因素之一;其次,本研究使用的都是影像学客观量化指标,可重复性好;最后,本研究采用3D影像评价眼外肌和眶内脂肪。

       然而,本研究仍存在一些局限性:首先,由于本研究为回顾性研究,数据可能存在选择偏倚,例如:入院率偏倚,时间相关偏倚。未来应开展前瞻性、多中心、大样本的研究,以进一步探讨TAO复视与影像学参数之间的内在联系。其次,本研究未探讨复视分层与影像学参数之间的关系,在后续研究中,我们将复视按一过性复视、间歇性复视、持续性复视分为不同层次,进一步探讨其相关因素及疗效预测,从而为临床治疗提供新的思考。

4 结论

       综上所述,TAO复视不仅与既往研究提到的眼外肌增大、SIR值相关,还与眶内脂肪体积密切相关,综合分析眼外肌及眶内脂肪能够为临床提供更全面客观依据,有助于临床选择合适的治疗方案。

[1]
HUANG J C, CHEN M, LIANG Y, et al. Integrative metabolic analysis of orbital adipose/connective tissue in patients with thyroid-associated ophthalmopathy[J/OL]. Front Endocrinol, 2022, 13: 1001349 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/36465658/. DOI: 10.3389/fendo.2022.1001349.
[2]
LI Z H, WANG M, TAN J, et al. Single-cell RNA sequencing depicts the local cell landscape in thyroid-associated ophthalmopathy[J/OL]. Cell Rep Med, 2022, 3(8): 100699 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/35896115/. DOI: 10.1016/j.xcrm.2022.100699.
[3]
BARTALENA L, PIANTANIDA E, GALLO D, et al. Epidemiology, natural history, risk factors, and prevention of Graves' orbitopathy[J/OL]. Front Endocrinol, 2020, 11: 615993 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/33329408/. DOI: 10.3389/fendo.2020.615993.
[4]
YE H J, SUN A Q, XIAO W, et al. Differential circular RNA expression profiling of orbital connective tissue from patients with type I and type Ⅱ thyroid-associated ophthalmopathy[J/OL]. Invest Ophthalmol Vis Sci, 2022, 63(12): 27 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/36409215/. DOI: 10.1167/iovs.63.12.27.
[5]
LAI K K H, ALJUFAIRI F M A A, LI C L, et al. Efficacy and safety of 6-weekly versus 12-weekly intravenous methylprednisolone in moderate-to-severe active thyroid-associated ophthalmopathy[J/OL]. J Clin Med, 2023, 12(9): 3244 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/37176682/. DOI: 10.3390/jcm12093244.
[6]
BARTALENA L, TANDA M L. Current concepts regarding Graves' orbitopathy[J]. J Intern Med, 2022, 292(5): 692-716. DOI: 10.1111/joim.13524.
[7]
SMITH T J, COCKERHAM K, LELLI G, et al. Utility assessment of moderate to severe thyroid eye disease health states[J]. JAMA Ophthalmol, 2023, 141(2): 159-166. DOI: 10.1001/jamaophthalmol.2022.3225.
[8]
LOIUDICE P, PELLEGRINI M, MARINÒ M, et al. Choroidal vascularity index in thyroid-associated ophthalmopathy: a cross-sectional study[J/OL]. Eye Vis, 2021, 8(1): 18 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/33926559/. DOI: 10.1186/s40662-021-00242-6.
[9]
BARTLEY G B, FATOURECHI V, KADRMAS E F, et al. Clinical features of Graves' ophthalmopathy in an incidence cohort[J]. Am J Ophthalmol, 1996, 121(3): 284-290. DOI: 10.1016/s0002-9394(14)70276-4.
[10]
COCKERHAM K P, PADNICK-SILVER L, STUERTZ N, et al. Quality of life in patients with chronic thyroid eye disease in the United States[J]. Ophthalmol Ther, 2021, 10(4): 975-987. DOI: 10.1007/s40123-021-00385-8.
[11]
LEE H J, KIM S J. Thyroid autoantibodies in adults with acquired binocular diplopia of unknown origin[J/OL]. Sci Rep, 2020, 10(1): 5399 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/32214213/. DOI: 10.1038/s41598-020-62451-8.
[12]
SMITH T J, JANSSEN J A M J L. Insulin-like growth factor-I receptor and thyroid-associated ophthalmopathy[J]. Endocr Rev, 2019, 40(1): 236-267. DOI: 10.1210/er.2018-00066.
[13]
SAVINO G, MATTEI R, SALERNI A, et al. Long-term follow-up of surgical treatment of thyroid-associated orbitopathy restrictive strabismus[J/OL]. Front Endocrinol, 2022, 13: 1030422 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/36440235/. DOI: 10.3389/fendo.2022.1030422.
[14]
WANG Y Y, HU H, CHEN L, et al. Observation study of using a small dose of rituximab treatment for thyroid-associated ophthalmopathy in seven Chinese patients: one pilot study[J/OL]. Front Endocrinol, 2022, 13: 1079852 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/36743915/. DOI: 10.3389/fendo.2022.1079852.
[15]
YANG M, DU B X, WANG Y J, et al. Clinical analysis of 2 170 cases of thyroid-associated ophthalmopathy involving extraocular muscles[J]. J Sichuan Univ Med Sci Ed, 2021, 52(3): 510-515. DOI: 10.12182/20210560507.
[16]
BARTLEY G B, GORMAN C A. Diagnostic criteria for Graves' ophthalmopathy[J]. Am J Ophthalmol, 1995, 119(6): 792-795. DOI: 10.1016/s0002-9394(14)72787-4.
[17]
中华医学会眼科学分会眼整形眼眶病学组, 中华医学会内分泌学分会甲状腺学组. 中国甲状腺相关眼病诊断和治疗指南(2022年)[J]. 中华眼科杂志, 2022, 58(9): 646-668. DOI: 10.3760/cma.j.cn112142-20220421-00201.
Oculoplastic and Orbital Disease Group of Chinese Ophthalmological Society of Chinese Medical Association, Thyroid Group of Chinese Society of Endocrinology of Chinese Medical Association. Chinese guideline on the diagnosis and treatment of thyroid-associated ophthalmopathy (2022)[J]. Chin J Ophthalmol, 2022, 58(9): 646-668. DOI: 10.3760/cma.j.cn112142-20220421-00201.
[18]
HU H, CHEN L, ZHANG J L, et al. T2-weighted MR imaging-derived radiomics for pretreatment determination of therapeutic response to glucocorticoid in patients with thyroid-associated ophthalmopathy: comparison with semiquantitative evaluation[J]. J Magn Reson Imaging, 2022, 56(3): 862-872. DOI: 10.1002/jmri.28088.
[19]
CHEN L, CHEN W, CHEN H H, et al. Radiological staging of thyroid-associated ophthalmopathy: comparison of T1 mapping with conventional MRI[J/OL]. Int J Endocrinol, 2020, 2020: 2575710 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/33144856/. DOI: 10.1155/2020/2575710.
[20]
HU H, CHEN L, ZHOU J, et al. Multiparametric magnetic resonance imaging for differentiating active from inactive thyroid-associated ophthalmopathy: added value from magnetization transfer imaging[J/OL]. Eur J Radiol, 2022, 151: 110295 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/35405579/. DOI: 10.1016/j.ejrad.2022.110295.
[21]
SONG C, LUO Y S, YU G F, et al. Current insights of applying MRI in Graves' ophthalmopathy[J/OL]. Front Endocrinol, 2022, 13: 991588 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/36267571/. DOI: 10.3389/fendo.2022.991588.
[22]
CHENG J Y, ZHANG X Y, LIAN J X, et al. Evaluation of activity of Graves' orbitopathy with multiparameter orbital magnetic resonance imaging (MRI)[J]. Quant Imaging Med Surg, 2023, 13(5): 3040-3049. DOI: 10.21037/qims-22-814.
[23]
LECLER A. Expanding diagnostic tools for dysthyroid optic neuropathy: how quantitative MRI can be used to visualize and measure orbital inflammation[J]. Eur Radiol, 2021, 31(10): 7417-7418. DOI: 10.1007/s00330-021-08208-x.
[24]
HIGASHIYAMA T, IWASA M, OHJI M. Quantitative analysis of inflammation in orbital fat of thyroid-associated ophthalmopathy using MRI signal intensity[J/OL]. Sci Rep, 2017, 7(1): 16874 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/29203853/. DOI: 10.1038/s41598-017-17257-6.
[25]
ZHENG Y H, YANG S S, CHEN X Y, et al. The Correlation between Type 2 Diabetes and Fat Fraction in Liver and Pancreas: a Study using MR Dixon Technique[J/OL]. Contrast Media Mol Imaging, 2022, 2022: 7073647 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/36685051/. DOI: 10.1155/2022/7073647.
[26]
OLLITRAULT A, CHARBONNEAU F, HERDAN M L, et al. Dixon-T2WI magnetic resonance imaging at 3tesla outperforms conventional imaging for thyroid eye disease[J]. Eur Radiol, 2021, 31(7): 5198-5205. DOI: 10.1007/s00330-020-07540-y.
[27]
CHEN L, HU H, CHEN H H, et al. Usefulness of two-point Dixon T2-weighted imaging in thyroid-associated ophthalmopathy: comparison with conventional fat saturation imaging in fat suppression quality and staging performance[J/OL]. Br J Radiol, 2021, 94(1118): 20200884 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/33353397/. DOI: 10.1259/bjr.20200884.
[28]
黄凯, 林晓鑫, 罗耀升, 等. Dixon与SPAIR技术在甲状腺相关性眼病中应用的对比研究[J]. 磁共振成像, 2023, 14(7): 51-57. DOI: 10.12015/issn.1674-8034.2023.08.008.
HUANG K, LIN X X, LUO X S, et al. Comparative study on the application of Dixon and SPAIR in thyroid-associated ophthalmopathy[J]. Chin J Magn Reson Imag, 2023, 14(7): 51-57. DOI: 10.12015/issn.1674-8034.2023.08.008.
[29]
黄燕舒. 探索Graves眼病患者的临床特征及MRI对其的评估价值[D]. 广州: 南方医科大学, 2023. DOI: 10.27003/d.cnki.gojyu.2023.000725.
HUANG Y S. To explore the clinical characteristics of Graves ophthalmopathy patients and the evaluation value of MRI[D].Guangzhou: Southern Medical University, 2023. DOI: 10.27003/d.cnki.gojyu.2023.000725.
[30]
KIM J A, VELEZ F G, PINELES S L. Strabismus surgery in patients with ocular neuromyotonia: potential unmasking of the condition and effective management tool[J]. J Neuroophthalmol, 2016, 36(3): 259-263. DOI: 10.1097/WNO.0000000000000371.
[31]
PADUNGKIATSAGUL T, JINDAHRA P, POONYATHALANG A, et al. Bilateral oculomotor ocular neuromyotonia: a case report[J/OL]. BMC Neurol, 2018, 18(1): 137 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/30176815/. DOI: 10.1186/s12883-018-1142-0.
[32]
CHATZISTEFANOU K I, BROUZAS D, ASPROUDIS I, et al. Strabismus surgery for diplopia in chronic progressive external ophthalmoplegia[J]. Int Ophthalmol, 2019, 39(1): 213-217. DOI: 10.1007/s10792-017-0781-2.
[33]
LI R, LI J, WANG Z C. Diffusion tensor imaging technology to quantitatively assess abnormal changes in patients with thyroid-associated ophthalmopathy[J/OL]. Front Hum Neurosci, 2022, 15: 805945 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/35185495/. DOI: 10.3389/fnhum.2021.805945.
[34]
ZHENG J Y, DUAN H H, YOU S F, et al. Research progress on the pathogenesis of Graves' ophthalmopathy: based on immunity, noncoding RNA and exosomes[J/OL]. Front Immunol, 2022, 13: 952954 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/36081502/. DOI: 10.3389/fimmu.2022.952954.
[35]
MEYER P, DAS T, GHADIRI N, et al. Clinical pathophysiology of thyroid eye disease: the Cone Model[J]. Eye, 2019, 33(2): 244-253. DOI: 10.1038/s41433-018-0302-1.
[36]
NAGY E V, TOTH J, KALDI I, et al. Graves' ophthalmopathy: eye muscle involvement in patients with diplopia[J]. Eur J Endocrinol, 2000, 142(6): 591-597. DOI: 10.1530/eje.0.1420591.

上一篇 美沙酮维持治疗对海洛因依赖者大脑度中心性影响的静息态fMRI研究
下一篇 基于组织特征追踪的心脏磁共振左房应变分析在肥厚型心肌病左室舒张功能障碍评估中的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2