分享:
分享到微信朋友圈
X
临床研究
基于组织特征追踪的心脏磁共振左房应变分析在肥厚型心肌病左室舒张功能障碍评估中的价值
岳炫彤 杨凯 李静惠 尹刚 赵世华 陆敏杰

Cite this article as: YUE X T, YANG K, LI J H, et al. Value of cardiac magnetic resonance left atrial strain analysis based on tissue feature tracking in the assessment of left ventricular diastolic dysfunction in hypertrophic cardiomyopathy[J]. Chin J Magn Reson Imaging, 2024, 15(9): 60-67.本文引用格式:岳炫彤, 杨凯, 李静惠, 等. 基于组织特征追踪的心脏磁共振左房应变分析在肥厚型心肌病左室舒张功能障碍评估中的价值[J]. 磁共振成像, 2024, 15(9): 60-67. DOI:10.12015/issn.1674-8034.2024.09.011.


[摘要] 目的 探索磁共振左心房应变(left atrial strain, LAS)在肥厚型心肌病(hypertrophic cardiomyopathy, HCM)左室舒张功能障碍(left ventricular diastolic dysfunction, LVDD)诊断中的价值。材料与方法 回顾性分析2021年2月至2022年8月中国医学科学院阜外医院诊断的103例HCM住院患者的临床资料、超声心动图、心脏磁共振(cardiac magnetic resonance, CMR)基本参数、基于组织特征追踪的左室应变(left ventricular strain, LVS)及LAS参数,根据超声心动图结果将上述患者分为28例LVDD组(A组)以及75例无明显LVDD组(B组)。采用独立样本t检验、非参数检验、卡方检验等统计方法,分别比较A组与B组的临床基线资料、CMR基本参数、LVS及LAS参数,同时采用logistic回归分析筛选LVDD的独立相关因素。结果 A组患者的年龄更大[中位年龄为53.0(43.2,66.8)岁]、纽约心功能分级(New York Heart Association, NYHA)Ⅲ~Ⅳ(60.7%)更高,出现晕厥(32.1%)、猝死家族史(32.1%)等临床症状的比例更高。与B组比较,A组左房前后径(left atrial anteroposterior diameter, LAD-AP)、左心室收缩末期容积指数(left ventricular end-systolic volume index, ESVi)、左心室质量指数(left ventricular mass index, LVMi)及左室流出道梗阻(left ventricular outflow tract obstruction, LVOTO)的比例均显著增高(P值均<0.05),被动应变(passive strain, εe)、峰值正应变率(peak positive strain rate, SRs)、峰值早期负应变率(peak early negative strain rate, SRe)及峰值晚期负应变率(peak late negative strain rate, SRa)均显著降低(P均<0.05)。多因素logistic回归分析显示LVOTO [优势比(odds ratio, OR)=4.127,95%置信区间(confidence interval, CI):1.488~11.450,P=0.006]及SRa(OR=4.672,95% CI:1.624~13.441,P=0.004)与LVDD独立相关,且SRa具有较高的诊断效能,其区分LVDD的受试者工作特征(receiver operator characteristic, ROC)曲线下面积(area under the curve, AUC)为0.717。结论 磁共振LAS可反映HCM患者的LVDD。SRa对LVDD有一定的诊断效能,是一个具有潜在价值的诊断指标。
[Abstract] Objective To explore the value of cardiac magnetic resonance (CMR) left atrial strain (LAS) in the diagnosis of left ventricular diastolic dysfunction (LVDD) in hypertrophic cardiomyopathy (HCM).Materials and Methods The clinical data, echocardiography and CMR parameters of 103 patients with HCM diagnosed in Beijing Fuwai Hospital from February 2021 to August 2022 were retrospectively analyzed. According to the results of echocardiography, the patients were divided into 28 patients with LVDD group (group A) and 75 patients with no obvious LVDD group (group B). Independent sample t test, non-parametric test, Chi-square test and other statistical methods were mainly used to compare clinical baseline data, basic parameters of CMR, left ventricular strain (LVS) and LAS parameters of group A and group B, respectively. Meanwhile, logistic regression analysis was used to screen independent related factors of LVDD.Results Patients in group A were older [median age 53.0 (43.2, 66.8) years], had higher rates of New York Heart Association (NYHA) Ⅲ-Ⅳ (60.7%), and higher rates of clinical symptoms such as syncope (32.1%) and sudden cardiac death (32.1%). Compared with group B, left atrial anteroposterior diameter (LAD-AP), left ventricular end-systolic volume index (ESVi), left ventricular mass index (LVMi) and the proportion of left ventricular outflow tract obstruction (LVOTO) were significantly increased in group A (P<0.05). The passive strain (εe), peak positive strain rate (SRs), early peak negative strain rate (SRe) and late peak negative strain rate (SRa) were significantly decreased (P<0.05). Multivariate logistic regression analysis showed that LVOTO [odds ratio (OR)=4.127, 95% confidence interval (CI): 1.488-11.450, P=0.006] and SRa (OR=4.672, 95% CI: 1.624-13.441, P=0.004) were independently correlated with LVDD, and SRa had high diagnostic efficacy, the area under the curve (AUC) of the receiver operator characteristic (ROC) that distinguishes LVDD is 0.717.Conclusions CMR LAS can reflect LVDD in patients with HCM. SRa has a certain diagnostic efficacy for LVDD, which is a potential diagnostic index.
[关键词] 肥厚型心肌病;应变;磁共振成像;特征追踪技术;左室舒张功能
[Keywords] hypertrophic cardiomyopathy;strain;magnetic resonance imaging;feature tracking;left ventricular diastolic function

岳炫彤 1, 2   杨凯 1   李静惠 1   尹刚 1   赵世华 1   陆敏杰 1*  

1 中国医学科学院 北京协和医学院 国家心血管病中心 心血管疾病重点实验室 阜外医院磁共振影像科,北京 100037

2 四川省科学城医院放射科,绵阳 621000

通信作者:陆敏杰,E-mail: coolkan@163.com

作者贡献声明::陆敏杰设计本研究的方案,对稿件重要内容进行了修改;岳炫彤起草和撰写稿件,获取、分析并解释本研究的数据;杨凯、李静惠统计分析本研究的数据,对稿件重要内容进行了补充和修改;尹刚获取图像及后处理分析,对稿件重要内容进行了修改;赵世华获得了国家自然科学基金项目(编号:81930044)资助;陆敏杰获得了国家自然科学基金项目(编号:82471973)、中央高水平医院临床科研业务费及国家科技重大专项资助。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家科技重大专项 2023ZD0504502 中央高水平医院临床科研业务费 2022-GSP-QZ-5 国家自然科学基金项目 82471973,81930044
收稿日期:2024-04-20
接受日期:2024-09-10
中图分类号:R445.2  R542.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.09.011
本文引用格式:岳炫彤, 杨凯, 李静惠, 等. 基于组织特征追踪的心脏磁共振左房应变分析在肥厚型心肌病左室舒张功能障碍评估中的价值[J]. 磁共振成像, 2024, 15(9): 60-67. DOI:10.12015/issn.1674-8034.2024.09.011.

0 引言

       肥厚型心肌病(hypertrophic cardiomyopathy, HCM)是一种常染色体显性遗传、以心肌肥厚及纤维化为主要特征的非缺血性心肌病,患病率高达1/200人[1, 2, 3]。HCM大多数表型与左心室高充盈压力及左室舒张功能障碍(left ventricular diastolic dysfunction, LVDD)相关。目前临床实践中评估LVDD仍然以超声心动图为标准,美国超声心动图学会(American Society of Echocardiography, ASE)指南建议使用多个基于超声心动图的参数来评估LVDD,但是超声评价LVDD的指标较多且存在操作手法差异,导致临床实际应用存在一定的局限性[4]。左心房作为左室舒张功能的风向标,可间接反映LVDD,既往研究[5]表明左房前后径(left atrial anteroposterior diameter, LAD-AP)、左房容积指数与LVDD密切相关。新近发展的左心房应变(left atrial strain, LAS)已被证明是一种很有前景且无创的功能指标[6, 7],左房通过三种功能调节左心室充盈功能:(1)心室收缩期的心房储备功能;(2)心室舒张期早期的心房导管功能;(3)心室舒张期晚期的心房泵功能。LAS异常往往发生在左房增大之前,比传统的容积分析评估心房力学的改变更敏感[5, 6]。仅凭左房大小、面积及体积等形态学指标不足以描述HCM中左房功能的复杂性[6]。基于常规电影图像的心脏磁共振特征追踪技术(cardiac magnetic resonance feature tracking, CMR-FT)可以定量全面评估左房力学功能,在HCM中具有极好的诊断和预后价值[8, 9, 10]。目前,基于CMR-FT的LAS分析在HCM患者左室舒张功能中的诊断价值鲜有报道[7, 11]。既往研究主要基于左房、左室的大小、心肌质量及容积相关指标进行评价,这些形态及体积指标的改变晚于早期心肌力学改变。本研究同时包含LAS及左心室应变(left ventricular strain, LVS)及应变率(strain rate, SR)多个参数,且以临床最为常用的超声作为对照,较之前的研究更加全面、系统。当然也有其他技术评价左室舒张功能,如钆对比剂延迟增强(late gadolinium enhancement, LGE)和心脏磁共振(cardiac magnetic resonance, CMR)定量成像技术如纵向弛豫时间定量成像(T1 mapping)、细胞外容积分数(extracellular volume fraction, ECV)以及四维心血管磁共振血流成像(four-dimensional cardiovascular magnetic resonance flow imaging, 4D Flow CMR)技术,上述技术需要注射对比剂或基本序列外额外的扫描序列,成像时间长、图像后处理要求高,而本研究仅需无创的常规电影序列,方便获得。因此,我们利用CMR-FT这种非侵入性大视野、软组织分辨率高等优势成像方法分析应变和SR等左房功能参数,探索LAS对LVDD的诊断价值,为临床评估左室舒张功能提供更多无创、简便的诊断指标。

1 材料与方法

1.1 研究对象

       回顾性分析2021年2月至2022年8月中国医学科学院阜外医院诊断的103例HCM住院患者的临床资料、超声心动图、CMR基本参数、LVS及LAS特征,根据超声心动图结果将上述患者分为28例LVDD组(A组)及75例无明显LVDD组(B组)。HCM诊断和纳入标准:(1)心室舒张末期室间隔或左室壁厚度≥15 mm或者有明确HCM家族史且室壁厚度≥13 mm(2020年美国心脏协会指南),且没有其他疾病可能导致左室肥厚[2];(2)有完整的临床、超声心动图及CMR检查资料。排除标准:(1)超声心动图与CMR检查时间超过一周且CMR图像质量欠佳;(2)合并冠状动脉疾病、心肌梗死、心肌炎、瓣膜病、房颤及左室射血分数(left ventricular ejection fraction, LVEF)<50%,既往行外科手术或射频消融治疗的患者。分组标准:ASE/欧洲心血管影像学协会(European Association of Cardiovascular Imaging, EACVI)指南判断LVDD有4项参数,分别是:(1)二尖瓣间隔侧流速e'<7 cm/s或二尖瓣侧壁侧流速e'<10 cm/s;(2)E/e'>14;(3)三尖瓣反流流速>2.8 m/s;(4)左房容积指数>34 mL/m2。其中A组需满足三项及以上[4],其他归为B组。通过医院病历系统收集患者的基础临床资料,包括性别、年龄、症状、家族史、相关危险因素、实验室指标、心电图及超声心动图资料等。本研究遵守《赫尔辛基宣言》,经阜外医院伦理委员会批准,免除受试者知情同意,批准文号:2017-932。

1.2 CMR图像采集与分析

       采用3.0 T美国通用电器公司MR750、荷兰飞利浦公司Ingenia及德国西门子公司Skyra超导磁共振仪,选择原机自带的18通道相控体部线圈行CMR检查。常规扫描包括采用单次激发快速自旋回波(half-Fourier acquisition single-shot turbo spin-echo, HASTE)黑血序列,观察心脏血管形态及结构;采用回顾性心电门控快速小角度激发(fast low angle shot, FLASH)或真实稳态进动快速成像(true fast imaging with steady precession, True FISP)亮血序列行心脏功能电影成像,层厚8 mm,层间距4 mm,TR 2次心跳,TE 40 ms,矩阵大小224×192,FOV 340 mm×280 mm,时间分辨率30~55 ms(依赖于心率),包括左室长轴2腔、4腔、3腔及9层短轴电影。

       利用CVI42软件(Circle Cardiovascular Imaging, Calgary, Canada)在特定模块中分别分析左室3个长轴及1个短轴电影图像,软件自动勾画左房及左室心内膜和心外膜边界,手动调整使其与心肌厚度一致,然后运行软件程序,分别计算出LAS、LVS及SR。LAS的具体参数包括总应变(total strain, εs)、主动应变(active strain, εa)和被动应变(passive strain, εe)及三个SR参数:峰值正应变率(peak positive strain rate, SRs)、峰值早期负应变率(peak early negative strain rate, SRe)及峰值晚期负应变率(peak late negative strain rate, SRa)。LVS及SR的具体参数包括整体径向应变(global radial strain, GRS)、径向收缩期应变率(radial systolic strain rate, RSSR)、径向舒张早期应变率(radial early diastolic strain rate, REDSR)、径向舒张晚期应变率(radial late diastolic strain rate, RLDSR)、整体周向应变(global circumferential strain, GCS)、周向收缩期应变率(circumferential systolic strain rate, CSSR)、周向舒张早期应变率(circumferential early diastolic strain rate, CEDSR)、周向舒张晚期应变率(circumferential late diastolic strain rate, CLDSR)、整体纵向应变(global longitudinal strain, GLS)、纵向收缩期应变率(longitudinal systolic strain rate, LSSR)、纵向舒张早期应变率(longitudinal early diastolic strain rate, LEDSR)、纵向舒张晚期应变率(longitudinal late diastolic strain rate, LLDSR)[12]

1.3 统计学分析

       采用IBM SPSS 21.0软件进行统计学分析。对统计变量先进行正态性及方差齐性检验,对正态分布的连续定量用x¯±s表示,组间比较采用两独立样本t检验;对非正态分布的定量资料以中位数及四分位数(Q1,Q3)表示,组间比较采用Mann-Whitney U非参数检验。分类变量以频数(百分比)表示,两组间比较采用卡方检验或Fisher精确检验。采用向前自变量筛选法进行多因素logistic回归分析。在全部患者中随机选出22例患者,由两名工作10年以上的高级职称医师对左心房应变参数进行组内及组间的一致性评价。组内一致性评价:同一名医师于1个月后重新测量该批患者。组间一致性评价:另外一名医师测量同批患者且对之前的测量结果不知情。组内及组间一致性评价采用Bland-Altman图:即直观观察测量数据散点图是否基本分布在1.96±标准差(standard deviation, SD)范围内,即95%一致性界限(95% limits of agreement, 95% LoA),当绝大多数数值位于该区间内,则可以认为两次测量具有较好的一致性。P<0.05表示差异具有统计学意义。采用MedCalc 20.0.22软件绘制受试者工作特征(receiver operator characteristic, ROC)曲线及Bland-Altman图。

2 结果

2.1 临床基线资料

       103例HCM患者中男性占64.1%,中位年龄为53.0(40.0,63.0)岁(范围:15.0~79.0岁)。NYHA心功能分级Ⅰ~Ⅱ级59例(57.3%),Ⅲ~Ⅳ级44例(42.7%)。常见临床症状为头晕19例(18.4%)、黑矇20例(19.4%)、晕厥15例(14.6%)、胸部不适26例(25.2%)及呼吸困难4例(3.9%),其他19例(18.4%)为体检发现,无明显临床症状。有HCM家族史20例(19.4%)、猝死家族史19例(18.4%)。同B组比较,A组患者的年龄较大,纽约心功能分级(New York Heart Association, NYHA)心功能分级Ⅲ~Ⅳ级、晕厥、猝死家族史的比例更高,两组间差异具有统计学意义(P<0.05),其余临床基线资料差异均无统计学意义,详见表1

表1  患者临床基线资料
Tab. 1  Clinical baseline data of patients

2.2 CMR基本参数

       103例HCM患者的CMR参数如表2所示,其中52例(50.49%)患者合并左室流出道梗阻(left ventricular outflow tract obstruction, LVOTO),81例(78.64%)患者LGE阳性,LGE百分比为2.63%(0.72%,5.41%)。与B组比较,A组在LAD-AP、左心室收缩末期容积指数(left ventricular end-systolic volume index, ESVi)、左心室质量指数(left ventricular mass index, LVMi)及LVOTO比例均明显增高,且两组间差异具有统计学意义(P<0.05),详见表2

表2  CMR基本参数及左心应变参数
Tab. 2  CMR basic parameters and left ventricular and atrial strain parameters

2.3 CMR左心应变参数

       103例HCM患者的LVS及LAS详见表2。A、B两组患者在LVS及SR方面差异均无统计学意义(P均>0.05)。在LAS方面,A、B两组患者在εs、εa两组间的差异无统计学意义(P>0.05),但A组患者的εe、SRs、SRe和SRa均较B组减低,且两组间差异有统计学意义(P<0.05)(图1)。纳入年龄、LAD-AP、ESVi、LVMi、LVOTO、εe、SRs、SRe、SRa进行单因素及多因素logistic回归分析,结果显示LVOTO及SRa与HCM的LVDD均独立相关,多因素logistic回归分析显示LVOTO[优势比(odds ratio, OR)=4.127,95%置信区间(confidence interval, CI):1.488~11.450,P=0.006]及SRa(OR=4.672,95% CI:1.624~13.441,P=0.004)(详见表3表4)。对此进一步行ROC曲线分析显示LVOTO及SRa评价HCM患者LVDD的曲线下面积(area under the curve, AUC)分别为0.668和0.717(图2)。

图1  左房应变示意图。1A~1C为A组一例56岁女性HCM并LVDD患者的两腔心、四腔心及三腔心收缩期电影序列图像,可见左房增大并伪彩显示出左房应变的大小;1D~1E分别为CVI42后处理工作站做出的左房应变及应变率曲线。1F~1H为B组一例54岁男性HCM并未见明显LVDD患者的两腔心、四腔心及三腔心收缩期电影序列图像,1I~1J为左房应变及应变率曲线。与B组比较,A组εe、SRs、SRe和SRa均降低。HCM:肥厚型心肌病;LVDD:左室舒张功能障碍;εe:被动应变、SRs:峰值正应变率;SRe:峰值早期负应变率;SRa:峰值晚期负应变率。
Fig. 1  Left atrial strain diagram. 1A-1C is A film sequence of two-, four-, and three-cavity systolic cardiac images of a 56-year-old female patient with HCM and LVDD in group A. The left atrial enlargement and pseudo-color display of left atrial strain were observed. 1D-1E are left atrial strain and strain rate curves made by CVI42 post-processing workstation respectively. 1F-1H is a two-cavity, four-cavity, and three-cavity film sequence image of a 54-year-old male HCM patient in group B with no obvious LVDD, and 1I-1J are left atrial strain and strain rate curves. εe, SRs, SRe and SRa decreased in group A compared with group B. HCM: hypertrophic cardiomyopathy; LVDD: left ventricular diastolic dysfunction; εe: passive strain; SRs: peak positive strain rate; SRe: early peak negative strain rate; SRa: late peak negative strain rate.
图2  LAD-AP、LVOTO及SRa区分左室舒张功能障碍的ROC曲线。AUC值分别为0.684、0.668及0.717,其中SRa的AUC值最大,诊断效能最高。LAD-AP:左房前后径;LVOTO:左室流出道梗阻;ROC:受试者工作特征;AUC:曲线下面积。
Fig. 2  ROC curves of LAD-AP, LVOTO and SRa to distinguish left ventricular diastolic dysfunction. The AUC values of SRa are 0.684, 0.668 and 0.717, among which the AUC value of SRA is the highest and the diagnostic efficiency is the highest. LAD-AP: left anterior and posterior atrium diameter; LVOTO: left ventricular outflow tract obstruction; ROC: receiver operating characteristic; AUC: area under the curve.
表3  单因素logistic回归分析
Tab. 3  Univariate logistic regression analysis
表4  多因素logistic回归分析
Tab. 4  Multivariate logistic regression analysis

2.4 组内及组间一致性评价

       在103例HCM患者中随机选取22例患者,通过Bland-Altman图法分析显示组内及组间的数据基本都在1.96 SD范围内,即95% LoA,符合临床诊断要求,均具有较好的一致性(图3)。

图3  组内及组间一致性评价。3A~3F为组内一致性检验,3G~3L为组间一致性检验。储备功能为总应变(εs);泵功能为主动应变(εa);导管功能为被动应变(εe)。SRs:峰值正应变率;SRe:峰值早期负应变率;SRa:峰值晚期负应变率;数字1、2代表不同医师。
Fig. 3  Intra-group and inter-group consistency evaluation. 3A-3F is the intra-group consistency test, 3G-3L is the inter-group consistency test. Reserve function is total strain (εs). The pump function is active strain (εa). The conduit function is passive strain (εe). SRs: peak positive strain rate; SRe: peak early negative strain rate; SRa: peak late negative strain rate. The numbers 1 and 2 represent different physicians.

3 讨论

       本研究回顾性分析了103例HCM患者的临床基础资料、CMR常规功能及应变参数特征,重点探索了LAS参数对LVDD的诊断价值。首次根据超声心动图结果将上述患者分为28例LVDD组(A组)及75例无明确LVDD组(B组)。研究结果显示A组患者的年龄更大、NYHA心功能分级更高,出现晕厥、猝死家族史的比例也更多。与B组比较,A组LAD-AP、ESVi、LVMi、LVOTO比例均显著增高,εe、SRs、SRe和SRa均显著降低。其中,LVOTO和SRa与LVDD独立相关,但SRa的诊断效能更高,可以无创简便地判断左室舒张功能是否受损,说明CMR在心室舒张功能评估中具有重要的临床应用价值。

3.1 CMR常规参数对左室舒张功能的评估价值

       由于左心室肥厚、间质纤维化和心肌缺血,HCM患者的舒张功能障碍比收缩功能障碍更常见[13],本研究结果显示舒张功能受损的患者LAD-AP较对照组增大,与之前研究结果一致[14, 15, 16],HCM主要表现心肌细胞肥大和间质纤维化增多。左心房主动收缩在左心室顺应性降低的患者补偿心室早期充盈的减少[17],这些因素导致左房和肺血管压力升高,最终导致左房扩大和功能恶化[14, 16, 18]。但是LAD-AP的增大提示左心室舒张受损时间较长且较严重,不适于早期诊断。一些研究已经评估了HCM患者舒张功能与最大左室壁厚度和LVMi的关系,显示舒张功能与左心室肥厚之间没有明确的相关性,还需进一步分析肥厚的程度及节段分布特征,但对重大终点事件预测有意义[19]。本研究结果显示舒张功能受损的患者LVMi较对照组显著增加,而最大室壁厚度差异无统计学意义,与之前的研究结果基本一致,也说明常规CMR参数评价左室舒张功能效果不佳。此外,本研究结果显示,LVOTO与左室舒张功能障碍独立相关,提示LVOTO是导致左室舒张功能障碍的原因之一。LVOTO会引起左室排空不全,心肌负荷增加及顺应性减低,导致左室舒张末期压力上升,最终导致左室舒张功能受损。CMR中的LGE是组织病理学异常的反映,包括心肌细胞紊乱、异常代谢物质沉积和心肌纤维化。ALIS等[20]发现,LGE与舒张功能障碍存在强负相关,另外,研究发现室间隔右室下插入部的纤维化与导致左室充盈压力和左房容积指数的增加相关[21],但与超声参数E/e´无相关性[20]。上述研究说明LGE与心室纤维化有关但与心室舒张功能关系不明确,与本研究结果基本一致,且LGE评估需要使用对比剂,对于有过敏或肾功能受损患者不适用。有研究通过左心室及左房的容量参数评估左心室舒张功能分级,但研究中缺乏与超声对比,其一致性、扫描范围大、扫描时间与后处理时间较长及分析软件参数较多等因素导致临床实际应用有限[22, 23]

3.2 CMR-FT对心室舒张功能的评估价值

       CMR-FT相对于传统的CMR心功能参数,可以进一步提供无创的基于心肌内部力学及形变的研究手段。CMR-FT应用于标准的CMR电影序列而不需要专门的采集和复杂的后处理。以往研究中,CMR-FT显示出良好的重现性及与心动周期心肌标记良好的相关性[24]。在HCM患者中,CMR-FT可以在LVEF保留的情况下早期识别心肌功能障碍[25, 26, 27]。相比收缩功能,左房功能与左室舒张功能更加相关[26, 28]。左室舒张功能不全表明心肌力学性能异常,包括心肌缓慢或延迟的舒张、左心室扩张异常和左心室充盈受损。CMR-FT可早期识别左房功能障碍和形变,在左房扩大前显示左房储备和导管功能障碍,可以比左房常规参数,如LAD-AP增大之前提示左房功能受损[26, 27, 28]。在HCM中,多数研究显示左房储备和导管功能降低,左房储备与导管功能的降低与左房、左室顺应性降低、左室基底部下移及左室纵向应变、舒张功能相关。左房泵功能主要与左房纤维化相关,而不同研究对HCM患者的左房泵功能结果不同、意见不一致[29, 30, 31],推测原因可能与样本选择及分组标准不同有关,而且之前的研究并没有专门针对基于超声标准的左心室舒张功能的分组研究。本研究以目前常规无创超声检查参数作为分组标准,探索磁共振应变参数对左室舒张功能的诊断价值,CMR由于其多层面成像能力和更高的组织及空间分辨率,在评估左室前壁、后间隔和心尖部等部位室壁肥厚优于超声心动图,磁共振具有更多可以帮助诊断的参数、新的成像技术和后处理方法都可以为左室舒张功能的诊断提供新的思路和方法。这是一个创新且有意义的新思路,研究显示可以通过εe、SRs、SRe和SRa值的降低反映HCM左房应变的降低,且与左心室舒张功能相关,其中代表左心房泵功能的SRa值的降低强烈提示左心室舒张功能受损。

3.3 本研究的局限性

       本研究的局限性有:(1)研究样本量小,可能存在选择偏倚;(2)未对左房、左室各节段的应变及应变率进行分析,考虑的原因为样本量较小、各节段的应变或应变率不具有普遍性;(3)没有加入左房血流动力学相关参数,可能评价结果欠完善;(4)由于其侵入性,未进行心导管检查,因此未获得心房、心室压力等心脏生理参数。在未来的研究中还需要进一步增加样本量及舒张功能分级进行亚组分析。

4 结论

       综上,基于CMR-FT技术的LAS可反映HCM患者的LVDD。其中,SRa与LVDD独立相关,可以无创简便地判断LVDD,是一个具有潜在价值的诊断指标。

[1]
OTTAVIANI A, MANSOUR D, MOLINARI L V, et al. Revisiting diagnosis and treatment of hypertrophic cardiomyopathy: current practice and novel perspectives[J/OL]. J Clin Med, 2023, 12(17): 5710 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/37685777/. DOI: 10.3390/jcm12175710.
[2]
OMMEN S R, MITAL S, BURKE M A, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: executive summary: a report of the American college of cardiology/american heart association joint committee on clinical practice guidelines[J]. J Am Coll Cardiol, 2020, 76(25): 3022-3055. DOI: 10.1016/j.jacc.2020.08.044.
[3]
AUTHORS/TASK FORCE MEMBERS, ELLIOTT P M, ANASTASAKIS A, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC)[J]. Eur Heart J, 2014, 35(39): 2733-2779. DOI: 10.1093/eurheartj/ehu284.
[4]
NAGUEH S F, SMISETH O A, APPLETON C P, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American society of echocardiography and the European association of cardiovascular imaging[J]. Eur Heart J Cardiovasc Imaging, 2016, 17(12): 1321-1360. DOI: 10.1093/ehjci/jew082.
[5]
CAU R, BASSAREO P, SURI J S, et al. The emerging role of atrial strain assessed by cardiac MRI in different cardiovascular settings: an up-to-date review[J]. Eur Radiol, 2022, 32(7): 4384-4394. DOI: 10.1007/s00330-022-08598-6.
[6]
WANG J X, MA X, ZHAO K K, et al. Association between left atrial myopathy and sarcomere mutation in patients with hypertrophic cardiomyopathy: insights into left atrial strain by MRI feature tracking[J]. Eur Radiol, 2024, 34(2): 1026-1036. DOI: 10.1007/s00330-023-10128-x.
[7]
ZHOU D, YANG W J, YANG Y X, et al. Left atrial dysfunction may precede left atrial enlargement and abnormal left ventricular longitudinal function: a cardiac MR feature tracking study[J/OL]. BMC Cardiovasc Disord, 2022, 22(1): 99 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/35282817/. DOI: 10.1186/s12872-022-02532-w.
[8]
RAMAN B, SMILLIE R W, MAHMOD M, et al. Incremental value of left atrial booster and reservoir strain in predicting atrial fibrillation in patients with hypertrophic cardiomyopathy: a cardiovascular magnetic resonance study[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 109 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/34635131/. DOI: 10.1186/s12968-021-00793-6.
[9]
YANG F Y, WANG L L, WANG J, et al. Prognostic value of fast semi-automated left atrial long-axis strain analysis in hypertrophic cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 36 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/33761947/. DOI: 10.1186/s12968-021-00735-2.
[10]
SHI R, SHI K, HUANG S, et al. Association between heart failure with preserved left ventricular ejection fraction and impaired left atrial phasic function in hypertrophic cardiomyopathy: evaluation by cardiac MRI feature tracking[J]. J Magn Reson Imaging, 2022, 56(1): 248-259. DOI: 10.1002/jmri.28000.
[11]
XU J, YANG W J, ZHAO S H, et al. State-of-the-art myocardial strain by CMR feature tracking: clinical applications and future perspectives[J]. Eur Radiol, 2022, 32(8): 5424-5435. DOI: 10.1007/s00330-022-08629-2.
[12]
杨凯, 李常城, 徐杨飞, 等. Fabry病左室应变特征及其在肥厚型心肌病中的鉴别诊断价值[J]. 磁共振成像, 2022, 13(12): 13-19, 25. DOI: 10.12015/issn.1674-8034.2022.12.003.
YANG K, LI C C, XU Y F, et al. Characteristics of the left ventricular myocardial strain in Fabry disease and its value in differential diagnosis of hypertrophic cardiomyopathy[J]. Chin J Magn Reson Imaging, 2022, 13(12): 13-19, 25. DOI: 10.12015/issn.1674-8034.2022.12.003.
[13]
SOLOMON T, FILIPOVSKA A, HOOL L, et al. Preventative therapeutic approaches for hypertrophic cardiomyopathy[J]. J Physiol, 2021, 599(14): 3495-3512. DOI: 10.1113/JP279410.
[14]
NAGUEH S F. Left ventricular diastolic function: understanding pathophysiology, diagnosis, and PrognosisWithEchocardiography[J]. JACC Cardiovasc Imaging, 2020, 13(1Pt 2): 228-244. DOI: 10.1016/j.jcmg.2018.10.038.
[15]
SILVA M R, SAMPAIO F, BRAGA J, et al. Left atrial strain evaluation to assess left ventricle diastolic dysfunction and heart failure with preserved ejection fraction: a guide to clinical practice: left atrial strain and diastolic function[J]. Int J Cardiovasc Imaging, 2023, 39(6): 1083-1096. DOI: 10.1007/s10554-023-02816-y.
[16]
CHUNG H, CHOI E Y. Multimodality imaging in patients with hypertrophic cardiomyopathy and atrial fibrillation[J/OL]. Diagnostics, 2023, 13(19): 3049 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/37835790/. DOI: 10.3390/diagnostics13193049.
[17]
FERKH A, CLARK A, THOMAS L. Left atrial phasic function: physiology, clinical assessment and prognostic value[J]. Heart, 2023, 109(22): 1661-1669. DOI: 10.1136/heartjnl-2022-321609.
[18]
HUSSAIN K, NSO N, TSOURDINIS G, et al. A systematic review and meta-analysis of left atrial strain in hypertrophic cardiomyopathy and its prognostic utility[J/OL]. Curr Probl Cardiol, 2024, 49(1Pt C): 102146 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/37863460/. DOI: 10.1016/j.cpcardiol.2023.102146.
[19]
DOHY Z, SZABO L, TOTH A, et al. Prognostic significance of cardiac magnetic resonance-based markers in patients with hypertrophic cardiomyopathy[J]. Int J Cardiovasc Imaging, 2021, 37(6): 2027-2036. DOI: 10.1007/s10554-021-02165-8.
[20]
ALIS D, GULER A, ASMAKUTLU O, et al. The association between the extent of late gadolinium enhancement and diastolic dysfunction in hypertrophic cardiomyopathy[J]. Indian J Radiol Imaging, 2021, 31(2): 284-290. DOI: 10.1055/s-0041-1734333.
[21]
BRAVO P E, LUO H C, POZIOS I, et al. Late gadolinium enhancement confined to the right ventricular insertion points in hypertrophic cardiomyopathy: an intermediate stage phenotype?[J]. Eur Heart J Cardiovasc Imaging, 2016, 17(3): 293-300. DOI: 10.1093/ehjci/jev154.
[22]
AMZULESCU M S, DE CRAENE M, LANGET H, et al. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(6): 605-619. DOI: 10.1093/ehjci/jez041.
[23]
CHACKO B R, KARUR G R, CONNELLY K A, et al. Left ventricular structure and diastolic function by cardiac magnetic resonance imaging in hypertrophic cardiomyopathy[J]. Indian Heart J, 2018, 70(1): 75-81. DOI: 10.1016/j.ihj.2016.12.021.
[24]
BUCIUS P, ERLEY J, TANACLI R, et al. Comparison of feature tracking, fast-SENC, and myocardial tagging for global and segmental left ventricular strain[J]. ESC Heart Fail, 2020, 7(2): 523-532. DOI: 10.1002/ehf2.12576.
[25]
AQUARO G D, PIZZINO F, TERRIZZI A, et al. Diastolic dysfunction evaluated by cardiac magnetic resonance: the value of the combined assessment of atrial and ventricular function[J]. Eur Radiol, 2019, 29(3): 1555-1564. DOI: 10.1007/s00330-018-5571-3.
[26]
YANG Y X, YIN G, JIANG Y, et al. Quantification of left atrial function in patients with non-obstructive hypertrophic cardiomyopathy by cardiovascular magnetic resonance feature tracking imaging: a feasibility and reproducibility study[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 1 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/31898543/. DOI: 10.1186/s12968-019-0589-5.
[27]
SONGSANGJINDA T, KRITTAYAPHONG R. Impact of different degrees of left ventricular strain on left atrial mechanics in heart failure with preserved ejection fraction[J/OL]. BMC Cardiovasc Disord, 2022, 22(1): 160 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/35397510/. DOI: 10.1186/s12872-022-02608-7.
[28]
THOMAS L, MARWICK T H, POPESCU B A, et al. Left atrial structure and function, and left ventricular diastolic dysfunction: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2019, 73(15): 1961-1977. DOI: 10.1016/j.jacc.2019.01.059.
[29]
FUJIMOTO K, INOUE K, SAITO M, et al. Incremental value of left atrial active function measured by speckle tracking echocardiography in patients with hypertrophic cardiomyopathy[J]. Echocardiography, 2018, 35(8): 1138-1148. DOI: 10.1111/echo.13886.
[30]
YAMADA A, HASHIMOTO N, FUJITO H, et al. Comprehensive assessment of left atrial and ventricular remodeling in paroxysmal atrial fibrillation by the cardiovascular magnetic resonance myocardial extracellular volume fraction and feature tracking strain[J/OL]. Sci Rep, 2021, 11(1): 10941 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/34035345/. DOI: 10.1038/s41598-021-90117-6.
[31]
ZHAO Y T, SONG Y, MU X L. Application of left atrial strain derived from cardiac magnetic resonance feature tracking to predict cardiovascular disease: a comprehensive review[J/OL]. Heliyon, 2024, 10(7): e27911 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/38560271/. DOI: 10.1016/j.heliyon.2024.e27911.

上一篇 基于MRI探索甲状腺相关性眼病眶内组织与复视的相关性
下一篇 长期过量饮酒者心肌损伤的心脏磁共振特征追踪技术的成像评价
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2