分享:
分享到微信朋友圈
X
综述
7 T超高场磁共振颅内血管壁成像在缺血性脑卒中病因分型中的研究进展
张强 许晓泉 吴飞云

Cite this article as: ZHANG Q, XU X Q, WU F Y. Advances of 7 T ultra-high field magnetic resonance intracranial vessel wall imaging in the etiology classification of ischemic stroke[J]. Chin J Magn Reson Imaging, 2024, 15(9): 157-161.本文引用格式:张强, 许晓泉, 吴飞云. 7 T超高场磁共振颅内血管壁成像在缺血性脑卒中病因分型中的研究进展[J]. 磁共振成像, 2024, 15(9): 157-161. DOI:10.12015/issn.1674-8034.2024.09.027.


[摘要] 缺血性脑卒中的病因分型对临床治疗决策和预后判断有重要价值。近年来,随着高分辨率磁共振血管壁成像(high-resolution vessel wall magnetic resonance imaging, HR-VW-MRI)在脑卒中临床研究和实践中的应用增加,7 T MRI以其更高信噪比和更优图像质量,可发现脑血管早期、细微的病理变化,为深入了解各种脑血管疾病的病理机制提供了新思路。然而,超高场强也存在B1场不均、扫描时间长等技术挑战。本文就7 T HR-VW-MRI在缺血性卒中病因分型及临床应用中的进展进行综述,深入分析7 T HR-VW-MRI在提升临床诊断精确性与指导临床治疗中的潜在价值,为临床实践与科研探索提供参考。
[Abstract] The etiological classification of ischemic stroke is of great value for clinical treatment decision-making and prognosis. In recent years, with the increasing application of high-resolution vessel wall magnetic resonance imaging (HR-VW-MRI) in clinical research and practice of stroke, 7 T MRI with higher signal-to-noise ratio and better image quality can detect early and subtle pathological changes of cerebrovascular diseases, which provides new ideas for understanding the pathological mechanism of various cerebrovascular diseases. However, the ultra-high field strength also has technical challenges such as B1 field inhomogeneity and long scanning time. This article reviews the etiological classification and clinical application of 7 T HR-VW-MRI in ischemic stroke, and analyzes the potential value of 7 T HR-VW-MRI in improving the accuracy of clinical diagnosis and guiding clinical treatment, so as to provide reference for clinical practice and scientific research exploration.
[关键词] 缺血性脑卒中;7 T;超高场;高分辨率磁共振血管壁成像;磁共振成像
[Keywords] ischemic stroke;7 T;ultra-high field;high-resolution vessel wall magnetic resonance imaging;magnetic resonance imaging

张强 1, 2   许晓泉 1   吴飞云 1*  

1 南京医科大学第一附属医院放射科,南京 210000

2 丹阳市人民医院放射科,镇江 212300

通信作者:吴飞云,E-mail: wfy_njmu@163.com

作者贡献声明::吴飞云确定本研究的方向,对稿件重要内容进行了修改;张强起草和撰写稿件,阅读文献,总结归纳;许晓泉分析研究现状,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 江苏省重点研发计划(社会发展)专项 BE2021604
收稿日期:2024-04-26
接受日期:2024-09-10
中图分类号:R445.2  R743.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.09.027
本文引用格式:张强, 许晓泉, 吴飞云. 7 T超高场磁共振颅内血管壁成像在缺血性脑卒中病因分型中的研究进展[J]. 磁共振成像, 2024, 15(9): 157-161. DOI:10.12015/issn.1674-8034.2024.09.027.

0 引言

       缺血性脑卒中作为全球范围内致残率和致死率均较高的疾病之一[1],其病因复杂多样,精准的病因诊断对于制订有效的治疗与预防策略至关重要。传统的影像学方法,如CT和常规MRI,虽能在一定程度上揭示脑血管病变,但在识别颅内动脉管壁细微结构及病变成分方面存在局限性。近年来,高分辨率磁共振血管壁成像(high-resolution vessel wall magnetic resonance imaging, HR-VW-MRI)技术迅猛发展,其无创特性与对颅内动脉管壁病变的清晰展示能力赢得了广泛研究关注,特别是7 T超高场强MRI的应用,为缺血性脑卒中的病因诊断开辟了新的途径。

       该技术在评估缺血性脑卒中风险方面展现出重要价值,并被大量临床研究证实能有效预测风险[2]。同时,体内外研究亦验证了其在动脉粥样硬化斑块形态、成分及结构上的定性定量评估能力[3, 4]。鉴于缺血性脑卒中病因复杂多样,急性缺血性脑卒中试验(the Trial of ORG 10172 in Acute Stroke Treatment, TOAST)分型作为主流分类方法,区分了包括大动脉粥样硬化、脑小血管及穿支动脉病变在内的多种病因类型,强调了准确病因诊断对于制订个性化治疗与预防策略的重要性[5, 6]

       早期,基于3 T的HR-VW-MRI在评估颅内动脉粥样硬化(intracranial atherosclerosis, ICAS)及部分卒中病因方面已展现出一定价值,但受限于空间分辨率,对于远端血管病变及脑小血管疾病(cerebral small vessel disease, CSVD)的评估仍显不足[7]。随着MRI技术的不断进步,7 T超高场强MRI以其显著提升的信噪比(signal-to-noise ratio, SNR)、对比噪声比(contrast-to-noise ratio, CNR)及空间分辨率,不仅提升了病变检出率[8],还实现了血管壁病理改变的可视化与定量化评估[9],对ICAS的识别更为精确[10],并有望大幅提升CSVD的检出能力[11],为缺血性脑卒中的病因分型提供了更为精准的工具。

       7 T超高场HR-VW-MRI在缺血性脑卒中病因分型中的应用具有显著的临床意义。首先,它能够精准识别TOAST分型中的大动脉粥样硬化型与穿支动脉型卒中,以及颅内血管炎、血管夹层等非典型病变,从而显著提高病因分型的准确性。其次,该技术对ICAS的识别更为精确,有助于早期发现并干预高危病变,降低卒中复发风险。此外,7 T HR-VW-MRI还有望大幅提升CSVD的检出能力,为这类隐匿性高、危害大的疾病提供新的诊断手段[10, 11]。最终,这些精准的诊断信息将指导临床医生制订更加个性化的治疗与预防策略,改善患者预后。

       鉴于7 T超高场HR-VW-MRI在缺血性脑卒中病因分型中的独特优势及其在临床应用中的巨大潜力,本综述系统地梳理了该领域的研究进展,深入分析了7 T HR-VW-MRI在提升临床诊断精确性与指导临床治疗中的潜在价值。通过总结现有研究成果,探讨该技术面临的挑战与未来发展方向,为临床实践与科研探索提供参考。

1 7 T HR-VW-MRI的技术优势

       相较于传统的3 T MRI,7 T HR-VW-MRI在多个方面实现了显著的性能提升,为临床诊断和治疗决策提供了更为精确和丰富的信息。首先,显著提升了图像的SNR和CNR[8]。更高的SNR意味着图像中的信号强度相对于背景噪声得到显著增强,从而提高了图像的整体清晰度。同时,增强的CNR使得血管壁与周围组织之间的对比度更加明显,有助于更精确地识别血管壁病变的细微结构。这种提升对于检测颅内小动脉及其病变尤为关键。其次,7 T HR-VW-MRI能够实现亚毫米级的空间分辨率[9],甚至达到0.2~0.3 mm各向同性,这意味着能够更清晰地显示颅内血管壁的细微结构和病变特征。无论是动脉壁的厚度变化、斑块负荷的评估,还是斑块内部成分的定性及定量分析,都展现出了前所未有的精度。再次,通过优化扫描参数和图像处理技术,可以有效减少脑脊液和血流对血管壁成像的干扰,进一步提高图像质量,可更清晰地观察血管壁的结构和病变情况,从而在检测颅内小血管及远端血管病变方面表现更出色。最后,可实现更全面的病理改变可视化与定量化[9, 10]。7 T HR-VW-MRI不仅能够清晰地显示血管壁的形态学变化,还能够通过多参数成像技术揭示血管壁内部的病理改变。利用T1、T2、T2*等加权成像技术,可以区分血管壁内的不同组织成分(如脂质、纤维组织等),并对斑块成分进行定量化评估。这种能力对于理解颅内动脉粥样硬化的发病机制、评估斑块稳定性以及预测卒中风险具有重要意义。

2 在缺血性脑卒中病因分型的临床应用

2.1 颅内大动脉粥样硬化

       在我国,颅内大脑动脉粥样硬化是造成供血区脑组织发生缺血性卒中事件的主要病因之一,约占在缺血性脑卒中的70%[12],基于3 T的HR-VW-MRI是目前临床常用的病因鉴别检查方案,但高SNR、CNR和空间分辨率的7 T HR-VW-MRI提供了更高的管壁及管腔对比度,同时改善了脑脊液及血流信号抑制[13],相对于3 T的图像清晰度和图像质量均有所提升[14]

       一方面,在管壁结构评估上,以病理组织为参照,7 T HR-VW-MRI可以比3 T更准确地测量动脉壁的厚度并评估斑块负荷[7],从而能更好地识别细微的非狭窄性血管壁病变[15]。另一方面,在颅内动脉粥样硬化斑块评估上,7 T HR-VW-MRI也有不俗表现。一项基于7 T的离体斑块研究表明,多参数HR-VW-MRI(分辨率0.1 mm各向同性)显示,质子密度加权成像(proton density weighted imaging, PDWI)、T2WI和T2*WI上出现的低信号与泡沫巨噬细胞或富含脂质的坏死核心相对应,为颅内动脉斑块成分研究提供超高场磁共振成像证据[16]。活体斑块研究中,由于颅内斑块的体积小,通过3 T MRI来区分斑块的成分仍然是具有挑战性的,在一项7 T HR-VW-MRI的基底动脉斑块研究中,分辨率为0.5 mm各向同性扫描可以进一步提升管壁的清晰度,参照颈动脉斑块成分研究,在图像上分辨出基底动脉斑块中的纤维帽和较大脂质核心成分[17]

       同时,7 T HR-VW-MRI能够更好地显示颅内动脉管腔及管壁结构特征以及斑块表面形态[18, 19],提高了3 T MRI和数字减影血管造影(digital subtraction angiography, DSA)检查中卒中病因分型不明确患者的识别能力[10],对ICAS症状性斑块与非ICAS的鉴别有较大帮助。有病例报告显示[10],一名左侧基底节急性脑梗死的患者,其DSA及3 T MRA均未发现明确动脉狭窄或结构显示正常,而进一步在7 T HR-VW-MRI检查中发现左侧大脑中动脉M1段近端上壁偏心性弧形斑块,呈阳性重构且明显强化,表明该斑块为高危斑块,且与此次卒中事件相关。而另一名双侧颈内动脉末端闭塞的患者,DSA诊断为烟雾病,但其在7 T HR-VW-MRI中可明确显示两侧颅内动脉弥漫性粥样硬化改变,ICAS为其本次缺血性卒中的病因。随着7 T HR-VW-MRI的研究不断深入,未来分析颅内动脉斑块成分将成为可能,并为患者风险分层提供有价值的信息[20],帮助患者治疗方案的选择[21]

       综上,笔者认为7 T HR-VW-MRI在颅内动脉粥样硬化疾病应用中,优势在于其超高分辨率,能更清晰地显示动脉斑块、病变部位及形态,提升诊断准确性。然而,高场强也带来磁敏感效应等挑战,技术难度较高。未来研究方向包括优化成像技术、降低成本、增强SNR,并深入探索斑块成分、稳定性评估等,以进一步推动临床应用和科学研究。

2.2 穿支动脉及脑小血管病变

       随着影像技术的提升,穿支动脉和小血管病变可以被超高场磁共振识别并评估[22],HR-VW-MRI更进一步提高了血管壁边界和病变判别的能力,尤其基于7 T的HR-VW-MRI成像方案显著提升了豆纹动脉(lenticulostriates, LSAs)[23, 24, 25]、脑桥穿支[26]和皮层动脉[27]的可视化评估。目前,LSAs的7 T评估成果较为丰富,可评估的特征主要包括血管形态学(如主干及各级分支的直径、走行路径及其分支情况)[25]、血流动力学(血流速度、方向)[28]、血管壁特征(斑块成分、管壁厚度、病变位置)[29],这些特征评估都与缺血性脑卒中发生相关,如LSAs的走行异常或管径狭窄会导致异常的血流速度和方向,从而可能导致血液供应不足或形成涡流,增加供血区脑卒中的风险;同时,其具有许多的临床益处,包括:脑白质深部梗死的病因诊断中对颅内动脉粥样硬化累及开口的评估,更好地检测和评估小动脉炎性血管病变,以及更准确地检测小的动脉瘤[30]。在LSAs供血区域脑梗死的患者中,7 T HR-VW-MRI对LSA闭塞的显示较为常见,并且与供血区脑梗死的发生、复发及进展相关[29, 30, 31]。ICAS累及大脑中动脉或基底动脉可造成部分穿支动脉开口堵塞,从而导致穿支血管供血区梗死,称之为分支动脉粥样硬化性疾病(branch atheromatous disease, BAD)[26]。7 T HR-VW-MRI对大血管及穿支血管的可视化有助于BAD的评估,为临床治疗提供依据。

       另外,CSVD是一种以慢性进行性血管病变为特征,累及大脑小动脉、细小动脉、毛细血管和小静脉导致脑卒中发生的疾病[32, 33, 34, 35]。7 T HR-VW-MRI可以评估LSA主干及分支数量、平均长度和弯曲度等结构特征、识别任何变窄或中断,从而为了解CSVD的发病机制提供了新的视角。SMART-MR研究的亚分析(n=130)发现,ICAD负担较高的患者也有更广泛的CSVD,较大的斑块负荷与白质高信号严重程度、皮质下和深部灰质梗死以及血管腔隙相对应[36]。同时,LSAs血流动力学状态与脑小血管病变密切相关。7 T MRI通过对其血流速度、流量等参数的测量和分析,表明穿支动脉血流速度减缓、流量降低等因素是造成供血区缺血的危险因素,揭示了其与CSVD之间的内在联系,从而为我们提供了早期预警和干预的靶点。

       综上,笔者认为7 T HR-VW-MRI在穿支小动脉及脑小血管病评估中,其优点在于显著提高了空间分辨率,可精确评估小动脉数量及结构特征,对脑卒中的早期诊断、病因分析及预后评估有重要作用。然而,该技术检查速度较慢,不适用于危重患者,且某些关键影像学指标仍存在争议。未来研究应聚焦于优化扫描速度、开发快速成像技术,并深入探索影像学指标的一致性,以提升临床应用效能。

2.3 其他病因型缺血性脑卒中

       其他原因所致的缺血性脑卒中常见为脑动脉血管炎及颅内动脉夹层(intracranial artery dissection, IAD)。一方面,因为SNR和CNR的提升,7 T HR-VW-MRI较之3 T在增强扫描上有更明显的强化表现,有利于检测出颅内血管壁炎性病变。其中,在3例活检证实的巨细胞动脉炎病例中,基于7 T HR-VW-MRI的T1WI增强图像上显示颅内动脉明显强化,图像质量优于3 T HR-VW-MRI[37]。此外,7 T HR-VW-MRI也可应用于系统性红斑狼疮的颅内动脉病变评估,以检测微小的脑血管改变,表现为皮质下和/或皮质区微小的点状或线状高信号病变[38]。另一方面,IAD是多种原因引起的颅内动脉壁内出血,可导致头痛、动脉狭窄和动脉瘤等[39, 40]。IAD好发于椎基底动脉,有研究表明外部原因似乎在颅内椎动脉夹层的发展中起着较少的作用,而基于血管的内在差异(过度迂曲、动脉瘤和狭窄等并发病变)可能更有助于其形成[41],且年轻患者发生蛛网膜下腔出血的概率较高,老年患者发生后循环梗死的概率较高[42],当IAD出现局限性狭窄或完全闭塞时,诊断往往具有一定难度,HR-VW-MRI在识别双腔、内膜瓣、壁内血肿等细微结构上较DSA更具有优势[43, 44, 45, 46]。但目前基于7 T的IAD研究较少,一例大脑中动脉M2段夹层的病例报道中提示7 T HR-VW-MRI在诊断颅内远端动脉夹层时比传统3 T能提供更详细的影像解剖变化[47]

       综上,笔者认为,颅内动脉夹层和血管炎等其他病因型缺血性脑卒中评估中,7 T HR-VW-MRI能清晰显示微小结构和血管壁病变,提供更丰富的图像信息以辅助诊断。但其成本高、操作复杂、扫描耗时等限制了普及。未来研究方向应集中在优化成像技术、降低成本,并深入发掘具有特异性表现和诊断价值的影像信息。

2.4 不明原因型缺血性脑卒中

       不明原因卒中,即隐源性卒中或不明原因栓塞性脑卒中,占卒中病因的相当一部分,长期以来一直是临床诊断和治疗的一大挑战。7 T HR-VW-MRI以其卓越的空间分辨率、SNR和组织对比度为病因学诊断、栓子来源追踪、侧支循环评估以及功能代谢成像提供了强有力的支持,为不明原因卒中的诊断提供了更为精准的影像学依据。其中,对于不明原因栓塞性脑卒中,确定栓子的来源是治疗的关键。7 T HR-VW-MRI结合磁敏感加权成像等技术,能够敏感地检测出血性病灶和微小栓子,有助于判断栓子是否来源于心脏或其他血管部位,从而指导抗凝或抗血小板治疗的选择[48]。另外,在功能代谢成像中,7 T MRI可利用超极化129Xe磁共振成像监测脑血流动力学改变,以及31P磁共振波谱成像检测能量代谢情况[49],可以进一步揭示卒中后的病理生理机制,为治疗方案的优化提供科学依据。

       总之,7 T HR-VW-MRI因其高空间分辨率和SNR,使得颅内动脉细微结构能清晰展示,对大血管及小血管、侧支血管有更准确的评估,但超高场带来了B1场不均匀性也可造成颅底血管病变显示缺失等问题,因此未来应聚焦于优化成像序列和参数,提高成像效率和质量,并探索其在临床中的广泛应用和标准化成像方案。

3 优势及挑战

       7 T HR-VW-MRI较常规3 T成像提高了SNR和CNR,延长了血液T1弛豫时间,增强了血流和相位对比效应,在临床常规扫描时间内能更好地抑制脑脊液及血流像,以此提高图像质量[50, 51, 52]。由于分辨率能够达到0.2~0.3 mm各向同性,其对颅内小动脉的显示也具有优势。

       但7 T HR-VW-MRI也面临着一些挑战,包括B1场不均匀性、特定吸收率(specific absorption rate, SAR)增大、扫描采集时间较长、更多的禁忌证和安全问题[53, 54]等。其中,B1场不均匀是超高场磁共振的主要问题,会导致颅底部分及边缘组织信号不均匀,从而导致一些血管的细节评估不足。尽管压缩感知等加速技术被应用于7 T扫描,但较长的扫描时间仍是患者依从性差的一个主要因素[55]。最后,目前受线圈的限制,7 T管壁成像还无法实现头颈一体化扫描,这对7 T HR-VW-MRI未来全面评估头颈血管病变提出了期待。

       综上,7 T HR-VW-MRI 具有超高分辨率和信噪比,可以识别3 T上无法检测到的细微病变,可为隐源性脑血管疾病提供额外价值,其作为一种无创血管评估方案,用于颅内斑块动态检测及治疗后评估随访,在缺血性脑卒中的病因分型中具有广阔的应用前景。

[1]
WU S, WU B, LIU M, et al. China Stroke Study Collaboration. Stroke in China: advances and challenges in epidemiology, prevention, and management[J]. Lancet Neurol, 2019, 18(4): 394-405. DOI: 10.1016/S1474-4422(18)30500-3.
[2]
ZHAI S J, JIA L, KUKUN H J, et al. Predictive power of high-resolution vessel wall magnetic resonance imaging in ischemic stroke[J/OL]. Am J Transl Res, 2022, 15, 14(1): 664-671 [2024-04-26]. https://pubmed.ncbi.nlm.nih.gov/35173884/.
[3]
LI F, WANG Y, HU T, et al. Application and interpretation of vessel wall magnetic resonance imaging for intracranial atherosclerosis: a narrative review[J/OL]. Ann Transl Med, 2022, 10(12): 714 [2024-04-26]. https://pubmed.ncbi.nlm.nih.gov/35845481/. DOI: 10.21037/atm-22-2364.
[4]
王泽华, 高阳. 磁共振高分辨力血管壁成像在缺血性脑卒中的研究进展[J]. 磁共振成像, 2023, 14(1): 156-160, 165. DOI: 10.12015/issn.1674-8034.2023.01.029.
WANG Z H, GAO Y. Research progress of high resolution magnetic resonance angiography in ischemic stroke[J]. Chin J Magn Reson Imaging, 2023, 14(1): 156-160, 165. DOI: 10.12015/issn.1674-8034.2023.01.029.
[5]
杨丽, 王效春. 高分辨率磁共振血管壁成像在缺血性脑卒中的应用进展[J]. 磁共振成像, 2022, 13(5): 136-139. DOI: 10.12015/issn.1674-8034.2022.05.028.
YANG L, WANG X C. Application progress of high-resolution magnetic resonance vessel wall imaging in ischemic stroke[J]. Chin J Magn Reson Imaging, 2022, 13(5): 136-139. DOI: 10.12015/issn.1674-8034.2022.05.028.
[6]
MICELI G, BASSO M G, RIZZO G, et al. Artificial intelligence in acute ischemic stroke subtypes according to toast classification: A comprehensive narrative review[J/OL]. Biomedicines, 2023, 10, 11(4): 1138 [2024-04-26]. https://pubmed.ncbi.nlm.nih.gov/37189756/. DOI: 10.3390/biomedicines11041138.
[7]
HARTEVELD A A, VAN DER KOLK A G, VAN DER WORP H B, et al. High-resolution intracranial vessel wall MRI in an elderly asymptomatic population: comparison of 3T and 7 T[J]. Eur Radiol, 2017, 27(4): 1585-1595. DOI: 10.1007/s00330-016-4483-3.
[8]
JONES S E, LEE J, LAW M. Neuroimaging at 3T vs 7T: Is it really worth it?[J]. Magn Reson Imaging Clin N Am, 2021, 29(1): 1-12. DOI: 10.1016/j.mric.2020.09.001.
[9]
ZHANG C, SHI J. 7T MRI for intracranial vessel wall lesions and its associated neurological disorders: A systematic review[J/OL]. Brain Sci, 2022, 21, 12(5): 528 [2024-04-26]. https://pubmed.ncbi.nlm.nih.gov/35624915/. DOI: 10.3390/brainsci12050528.
[10]
FAKIH R, ROA J A, BATHLA G, et al. Detection and quantification of symptomatic atherosclerotic plaques with high-resolution imaging in cryptogenic stroke[J]. Stroke, 2020, 51(12): 3623-3631. DOI: 10.1161/STROKEAHA.120.031167.
[11]
BOUVY W H, VAN VELUW S J, KUIJF H J, et al. Microbleeds colocalize with enlarged juxtacortical perivascular spaces in amnestic mild cognitive impairment and early Alzheimer's disease: A 7 Tesla MRI study[J]. J Cereb Blood Flow Metab, 2020, 40(4): 739-746. DOI: 10.1177/0271678X19838087.
[12]
HOU C, LAN J, LIN Y, et al. Chronic remote ischemic conditioning in patients with symptomatic intracranial atherosclerotic stenosis (the RICA trial): a multicentre, randomised, double-blind sham-controlled trial in China[J]. Lancet Neurol. 2022, 21(12): 1089-1098. DOI: 10.1016/S1474-4422(22)00335-0.
[13]
SHAO X, YAN L, MA S J, et al. High-resolution neurovascular imaging at 7T: Arterial spin labeling perfusion, 4-dimensional MR angiography, and black blood MR imaging[J]. Magn Reson Imaging Clin N Am, 2021, 29(1): 53-65. DOI: 10.1016/j.mric.2020.09.003.
[14]
SUI B, SANNANANJA B, ZHU C, et al. Report from the society of magnetic resonance angiography: clinical applications of 7T neurovascular MR in the assessment of intracranial vascular disease[J/OL]. J Neurointerv Surg, 2023, 31: jnis-2023-020668 [2024-04-26]. https://pubmed.ncbi.nlm.nih.gov/37652689/. DOI: 10.1136/jnis-2023-020668.
[15]
HARTEVELD A A, DENSWIL N P, VAN HECKE W, et al. Ex vivo vessel wall thickness measurements of the human circle of Willis using 7T MRI[J]. Atherosclerosis, 2018, 273: 106-114. DOI: 10.1016/j.atherosclerosis.2018.04.023.
[16]
UNDERHILL H R, HATSUKAMI T S, FAYAD Z A, et al. MRI of carotid atherosclerosis: clinical implications and future directions[J]. Nat Rev Cardiol, 2010, 7(3): 165-173. DOI: 10.1038/nrcardio.2009.246.
[17]
HARTEVELD A A, DENSWIL N P, SIERO J C, et al. Quantitative intracranial atherosclerotic plaque characterization at 7T MRI: An ex vivo study with histologic validation[J]. AJNR Am J Neuroradiol, 2016, 37(5): 802-810. DOI: 10.3174/ajnr.A4628.
[18]
WANG Y, LIU X, WU X, et al. Culprit intracranial plaque without substantial stenosis in acute ischemic stroke on vessel wall MRI: A systematic review[J]. Atherosclerosis, 2019, 287: 112-121. DOI: 10.1016/j.atherosclerosis.2019.06.907.
[19]
FAKIH R, VARON MILLER A, RAGHURAM A, et al. High resolution 7T MR imaging in characterizing culprit intracranial atherosclerotic plaques[J/OL]. Interv Neuroradiol, 2022, 26: 15910199221145760 [2024-04-26]. https://pubmed-ncbi-nlm-nih-gov-s.webvpn.njmu.edu.cn:8118/36573263/. DOI: 10.1177/15910199221145760.
[20]
SHOZUSHIMA M, MORI F, YASHIRO S, et al. Evaluation of high intracranial plaque prevalence in type 2 diabetes using vessel wall imaging on 7 T magnetic resonance imaging[J/OL]. Brain Sci, 2023, 28, 13(2): 217 [2024-04-26]. https://pubmed.ncbi.nlm.nih.gov/36831760/. DOI: 10.3390/brainsci13020217.
[21]
RUTLAND J W, DELMAN B N, GILL C M, et al. Emerging use of ultra-high-field 7T MRI in the study of intracranial vascularity: State of the field and future directions[J]. AJNR Am J Neuroradiol, 2020, 41(1): 2-9. DOI: 10.3174/ajnr.A6344.
[22]
VAN DEN BRINK H, DOUBAL F N, DUERING M. Advanced MRI in cerebral small vessel disease[J]. Int J Stroke. 2023 , 18(1): 28-35. DOI: 10.1177/17474930221091879.
[23]
梁红琴, 王健, 刘晨, 等. 7.0T超高场强MRI评估豆纹动脉病变与脑卒中相关疾病关系的研究进展[J]. 中国医学影像学杂志, 2023, 31(12): 1323-1327. DOI: 10.3969/j.issn.1005-5185.2023.12.016.
LIANG H Q, WANG J, LIU C, et al. Research progress of 7.0T ultra-high field MRI in evaluating the relationship between lenticulostriate artery lesions and stroke related diseases[J]. Chin J Med Imaging, 2023, 31(12): 1323-1327. DOI: 10.3969/j.issn.1005-5185.2023.12.016.
[24]
KANG C K, PARK C W, HAN J Y, et al. Imaging and analysis of lenticulostriate arteries using 7.0-Tesla magnetic resonance angiography[J]. Magn Reson Med, 2009, 61(1): 136-144. DOI: 10.1002/mrm.21786.
[25]
CHO Z H, KANG C K, HAN J Y, et al. Observation of the lenticulostriate arteries in the human brain in vivo using 7.0T MR angiography[J]. Stroke, 2008, 39(5): 1604-1606. DOI: 10.1161/STROKEAHA.107.508002.
[26]
MIYAZAWA H, NATORI T, KAMEDA H, et al. Detecting lenticulostriate artery lesions in patients with acute ischemic stroke using high-resolution MRA at 7 T[J]. Int J Stroke, 2019, 14(3): 290-297. DOI: 10.1177/1747493018806163.
[27]
VAN DEN BRINK H, PHAM S, SIERO J C, et al. Assessment of small vessel function using 7T MRI in patients with sporadic cerebral small vessel disease: The ZOOM@SVDs Study[J/OL]. Neurology, 2024, 12, 102(5): e209136 [2024-04-26]. https://pubmed-ncbi-nlm-nih-gov-s.webvpn.njmu.edu.cn:8118/38497722/. DOI: 10.1212/WNL.0000000000209136.
[28]
SAGLIETTOA, SCARSOGLIOS, TRIPOLIF, et al. Atrial fibrillation hemodynamic effects on lenticulostriate arteries identified at 7-Tesla cerebral magnetic resonance imaging[J/OL]. Clin Transl Med, 2023, 13(9): e1367 [2024-04-26]. https://pubmed-ncbi-nlm-nih-gov-s.webvpn.njmu.edu.cn:8118/37735820/. DOI: 10.1002/ctm2.1367.
[29]
BAI X, FAN P, LI Z, et al. Evaluating middle cerebral artery plaque characteristics and lenticulostriate artery morphology associated with subcortical infarctions at 7T MRI[J]. J Magn Reson Imaging, 2024, 59(3): 1045-1055. DOI: 10.1002/jmri.28839.
[30]
BOLLMANN S, MATTERN H, BERNIER M, et al. Imaging of the pial arterial vasculature of the human brain in vivo using high-resolution 7T time-of-flight angiography[J/OL]. Elife, 2022, 11: e71186 [2024-04-26]. https://pubmed-ncbi-nlm-nih-gov-s.webvpn.njmu.edu.cn:8118/35486089/. DOI: 10.7554/eLife.71186.
[31]
XIE W, WANG C, LIU S, et al. Visualization of lenticulostriate artery by intracranial dark-blood vessel wall imaging and its relationships with lacunar infarction in basal ganglia: a retrospective study[J]. Eur Radiol, 2021, 31(8): 5629-5639. DOI: 10.1007/s00330-020-07642-7.
[32]
CHOJDAK-ŁUKASIEWICZ J, DZIADKOWIAK E, ZIMNY A, et al. Cerebral small vessel disease: A review[J]. Adv Clin Exp Med, 2021, 30(3): 349-356. DOI: 10.17219/acem/131216.
[33]
胡文立, 杨磊, 李譞婷, 等. 中国脑小血管病诊治专家共识2021[J]. 中国卒中杂志, 2021, 16(7): 716-726. DOI: 10.3969/j.issn.1673-5765.2021.07.013.
HU W L, YANG L, LI X T, et al. Chinese expert consensus on diagnosis and treatment of small cerebral vascular disease 2021[J]. Chin J Stroke, 2021, 16(7): 716-726. DOI: 10.3969/j.issn.1673-5765.2021.07.013.
[34]
GUROL M E, BIESSELS G J, POLIMENI J R. Advanced neuroimaging to unravel mechanisms of cerebral small vessel diseases[J]. Stroke, 2020, 51(1): 29-37. DOI: 10.1161/STROKEAHA.119.024149.
[35]
BHAGAT R, MARINI S, ROMERO J R. Genetic considerations in cerebral small vessel diseases[J/OL]. Front Neurol, 2023, 14: 1080168 [2024-04-26]. https://pubmed.ncbi.nlm.nih.gov/37168667. DOI: 10.3389/fneur.2023.1080168.
[36]
ZWARTBOL M H, VAN DER KOLK A G, KUIJF H J, et al. Intracranial vessel wall lesions on 7T MRI and MRI features of cerebral small vessel disease: The SMART-MR study[J]. J Cereb Blood Flow Metab, 2021, 41(6): 1219-1228. DOI: 10.1177/0271678X20958517.
[37]
GOLL C, THORMANN M, HOFMÜLLER W, et al. Feasibility study: 7 T MRI in giant cell arteritis[J]. Graefes Arch Clin Exp Ophthalmol, 2016, 254(6): 1111-1116. DOI: 10.1007/s00417-016-3337-7.
[38]
MURATA O, SASAKI N, SASAKI M, et al. Detection of cerebral microvascular lesions using 7 T MRI in patients with neuropsychiatric systemic lupus erythematosus[J]. Neuroreport, 2015, 26(1): 27-32. DOI: 10.1097/WNR.0000000000000297.
[39]
SIKKEMA T, UYTTENBOOGAART M, ESHGHI O, et al. Intracranial artery dissection[J]. Eur J Neurol, 2014, 21(6): 820-826. DOI: 10.1111/ene.12384.
[40]
苏亚, 相世峰, 杨素君, 等. 高分辨率磁共振血管壁成像对椎动脉夹层的诊断价值[J]. 中西医结合心脑血管病杂志, 2023, 21(10): 1918-1920. DOI: 10.12102/j.issn.1672-1349.2023.10.040.
SU Y, XIANG S F YANG S J, et al. Diagnostic value of high resolution magnetic resonance vessel wall imaging in vertebral artery dissection[J]. Journal of Cardio-Cerebrovascular Disease of Integrated Traditional Chinese and Western Medicine, 2023, 21(10): 1918-1920. DOI: 10.12102/j.issn.1672-1349.2023.10.040.
[41]
ZHANG X, HAN J, WANG J, et al. A comparative study of the etiology of intracranial vertebral artery dissection and carotid artery dissection[J]. Neurologist, 2023, 28(5): 281-286. DOI: 10.1097/NRL.0000000000000484.
[42]
LIU P, LI Z, HU L, et al. Clinical characteristics, endovascular choices, and surgical outcomes of intracranial vertebral artery dissecting aneurysms: a consecutive series of 196 patients[J]. J Neurosurg, 2022, 138(1): 215-222. DOI: 10.3171/2022.4.JNS22609.
[43]
SHI Z, TIAN X, TIAN B, et al. Identification of high risk clinical and imaging features for intracranial artery dissection using high-resolution cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 74 [2024-04-26]. https://pubmed.ncbi.nlm.nih.gov/34120627/. DOI: 10.1186/s12968-021-00766-9.
[44]
HANIM K, JUNG S C, YOUNG C J, et al. Structural changes of intra and extracranial artery dissection: a study of high-resolution magnetic resonance imaging[J/OL]. J Stroke Cerebrovasc Dis, 2022, 31(3): 106302 [2024-04-26]. https://pubmed-ncbi-nlm-nih-gov-s.webvpn.njmu.edu.cn:8118/35038667/. DOI: 10.1016/j.jstrokecerebrovasdis.2021.106302.
[45]
RYU J, LEE K M, KIM H G, et al. Diagnostic performance of high-resolution vessel wall magnetic resonance imaging and digital subtraction angiography in intracranial vertebral artery dissection[J]. Diagnostics (Basel), 2022, 12(2): 432 [2024-04-26]. DOI: 10.3390/diagnostics12020432.
[46]
KANG H G, LEE C H, SHIN B S, et al. Characteristics of symptomatic basilar artery stenosis using high-resolution magnetic resonance imaging in ischemic stroke patients[J]. J Atheroscler Thromb, 2021, 28(10): 1063-1070. DOI: 10.5551/jat.58214.
[47]
XIE X, ZHANG Z, KONG Q, et al. M2 middle cerebral artery dissection on 7T MRI[J/OL]. Stroke Vasc Neurol, 2022, 7(6): 550 [2024-04-26]. https://http://pubmed-ncbi-nlm-nih-gov-s.webvpn.njmu.edu.cn:8118/30332725/. DOI: 10.1136/svn-2022-001557.
[48]
BELLIVEAU J G, BAUMAN G S, TAY K Y, et al. Initial investigation into microbleeds and white matter signal changes following radiotherapy for low-grade and benign brain tumors using ultra-high-field MRI techniques[J]. AJNR Am J Neuroradiol, 2017, 38(12): 2251-2256. DOI: 10.3174/ajnr.A5395.
[49]
VEERAIAH P, JANSEN J F A. Multinuclear magnetic resonance spectroscopy at ultra-high-field: Assessing human cerebral metabolism in healthy and diseased states[J/OL]. Metabolitesl, 2023, 13(4): 577 [2024-04-26]. https://pubmed.ncbi.nlm.nih.gov/37110235/. DOI: 10.3390/metabo13040577.
[50]
BODLE J D, FELDMANN E, SWARTZ R H, et al. High-resolution magnetic resonance imaging: an emerging tool for evaluating intracranial arterial disease[J]. Stroke, 2013, 44(1): 287-292. DOI: 10.1161/STROKEAHA.112.664680.
[51]
KOOPS A, ITTRICH H, PETRI S, et al. Multicontrast-weighted magnetic resonance imaging of atherosclerotic plaques at 3.0 and 1.5 Tesla: ex-vivo comparison with histopathologic correlation[J]. Eur Radiol, 2007, 17(1): 279-286. DOI: 10.1007/s00330-006-0265-7.
[52]
VAN DER KOLK A G, ZWANENBURG J J, BRUNDEL M, et al. Intracranial vessel wall imaging at 7.0-T MRI[J]. Stroke, 2011, 42(9): 2478-2484. DOI: 10.1161/STROKEAHA.111.620443.
[53]
FAGAN A J, BITZ A K, BJÖRKMAN-BURTSCHER I M, et al. 7T MR Safety[J]. J Magn Reson Imaging, 2021, 53(2): 333-346. DOI: 10.1002/jmri.27319.
[54]
OKADA T, AKASAKA T, THUY D H, et al. Safety for Human MR Scanners at 7T[J]. Magn Reson Med Sci, 2022, 21(4): 531-537. DOI: 10.2463/mrms.rev.2021-0063.
[55]
SEO J H, HAN Y, CHUNG J Y. A comparative study of birdcage RF coil configurations for ultra-high field magnetic resonance imaging[J/OL]. Sensors (Basel), 2022, 22(5): 1741 [2024-04-26]. https://pubmed.ncbi.nlm.nih.gov/35270889/. DOI: 10.3390/s22051741.

上一篇 7 T磁共振成像在脑小血管病中的应用进展
下一篇 人工智能在垂体瘤MRI中的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2