分享:
分享到微信朋友圈
X
综述
颈动脉易损斑块的MRI研究进展
周婷婷 康立清 宋彦澄

Cite this article as: ZHOU T T, KANG L Q, SONG Y C. Study progress of MRI on vulnerable plaques in carotid arteries[J]. Chin J Magn Reson Imaging, 2024, 15(9): 167-171, 188.本文引用格式:周婷婷, 康立清, 宋彦澄. 颈动脉易损斑块的MRI研究进展[J]. 磁共振成像, 2024, 15(9): 167-171, 188. DOI:10.12015/issn.1674-8034.2024.09.029.


[摘要] 颈动脉易损斑块是引起急性缺血性卒中(acute ischemic stroke, AIS)的重要危险因素,与AIS的发生、进展及复发密切相关。准确评估颈动脉易损斑块对改进AIS的危险分层、指导临床治疗并改善预后有重要意义。MRI高分辨率血管壁成像、MRI影像组学与四维血流磁共振成像可在不同方面对颈动脉易损斑块进行评估。本文综述MRI评估颈动脉易损斑块的常用技术和应用进展,以期为临床选择针对性措施,预防卒中发生、进展及复发提供更好的影像学指导。
[Abstract] Vulnerable carotid artery plaque is an important risk factor for acute ischemic stroke, which is closely related to the occurrence, development and recurrence of acute ischemic stroke. Accurate assessment of carotid vulnerable plaque is important for improving risk stratification, guiding clinical treatment and improving prognosis of AIS. High-resolution vessel wall imaging, MRI radiomics and 4D flow magnetic resonance imaging can be used to assess vulnerable carotid plaque in different ways. This article reviews the progress of common techniques and values of MRI in evaluating vulnerable carotid artery plaques, so as to provide imaging guidance for the selection of targeted measures to prevent the occurrence, progression and recurrence of stroke.
[关键词] 易损斑块;缺血性卒中;磁共振成像;血管壁成像;影像组学;四维血流动力学
[Keywords] vulnerable plaque;ischemic stroke;magnetic resonance imaging;vascular wall imaging;radiomics;four dimensional hemodynamics

周婷婷 1   康立清 1, 2*   宋彦澄 2  

1 河北医科大学附属沧州市中心医院磁共振成像科,沧州 061000

2 沧州市中心医院磁共振成像科,沧州 061000

通信作者:康立清,E-mail: 1513203473@qq.com

作者贡献声明::康立清设计本研究的方案,对稿件重要内容进行了修改;周婷婷起草和撰写稿件,获取、阅读并分析本研究的参考文献;宋彦澄获取、阅读并分析本研究的参考文献,对稿件重要内容进行了修改,获得了2024年度河北省医学科学研究课题计划项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 河北省医学科学研究课题计划项目 20240870
收稿日期:2024-06-05
接受日期:2024-09-10
中图分类号:R445.2  R743.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.09.029
本文引用格式:周婷婷, 康立清, 宋彦澄. 颈动脉易损斑块的MRI研究进展[J]. 磁共振成像, 2024, 15(9): 167-171, 188. DOI:10.12015/issn.1674-8034.2024.09.029.

0 引言

       急性缺血性卒中(acute ischemic stroke, AIS)是各种原因引起的脑组织缺血坏死,进而出现神经功能障碍的一组临床综合征,具有较高的复发率、致残率以及死亡率,是全球范围内导致死亡与残疾的主要原因之一[1, 2]。中国是AIS的高发区[3],颈动脉粥样硬化斑块脱落引起的栓塞是导致AIS的重要原因之一[4]。既往颈动脉粥样硬化引起的管腔狭窄程度通常作为卒中危险分层及手术干预方式选择的依据。但越来越多的研究表明,轻度狭窄(<50%)颈动脉斑块也与AIS的发生相关[5, 6],并且狭窄程度相同的颈动脉斑块特征也存在较大的差异[7, 8]。因此,颈动脉易损斑块与缺血性卒中的发生、发展及复发密切相关[9]。早期识别颈动脉斑块性质有助于开展早期针对性预防。

       MRI具有软组织分辨率高,无辐射,无创,安全,可重复性高等优点。MRI高分辨率血管壁成像(high-resolution vessel wall imaging, HR-VWI)已成为颈动脉斑块评估的主要影像学方法。MRI影像组学、四维血流磁共振成像(4D flow magnetic resonance imaging, 4D-flow MRI)分别可对颈动脉斑块成分中肉眼不可见的影像学信息和血流动力学进行分析,在颈动脉斑块性质评估及AIS预测方面已取得初步研究成果[10, 11]。目前为止,对于MRI不同技术及其在颈动脉斑块评估中的应用进展尚缺乏系统总结。本文就MRI评估颈动脉易损斑块常用技术及应用的进展进行综述,旨在准确评估颈动脉斑块性质,为临床提供更丰富的诊疗依据,从而有效预防AIS并改善患者预后。

1 MRI评估颈动脉易损斑块的常用技术及进展

1.1 HR-VWI

       HR-VWI是量化评估颈动脉易损斑块成分特征的最佳技术[12],现已被广泛应用于对颈动脉斑块的评估分析。HR-VWI可通过T1WI、T2WI、三维时间飞跃法(3D-time of flight, 3D-TOF)、T1增强序列等多个序列综合评价血管狭窄程度及斑块特征[13]。采用“黑血技术”抑制血液及脑脊液信号,可使血管壁显影更清晰[14]。PAKIZER等[15]分析了HR-VWI对颈动脉斑块特征诊断的准确性,发现无论采用1.5 T还是3.0 T,MRI均能准确检测到多个斑块成分。HR-VWI可准确评估颈动脉狭窄程度,发现易损斑块位置及特点[16, 17]。ZHAO等[18]对患者进行降脂治疗,并使用MRI评估基线与两年时颈动脉斑块形态及成分变化,发现降脂治疗可使斑块变得稳定。JIANG等[19]采用HR-VWI评估颈动脉支架置入术后血流动力学不稳定的危险因素,发现斑块负荷及易损斑块特征,特别是较大体积的富脂质坏死核心(lipid rich necrotic core, LRNC)为其有效的预测因子。HR-VWI可准确评估颈动脉斑块特征,测量斑块成分变化,对临床治疗疗效有一定提示作用。目前,随着7 T MRI的发展,可提高血管壁病变显示的敏感性。

1.2 MRI影像组学

       影像组学是指提取医学图像中肉眼不易观察到的影像定量信息并加以分析处理的方法,近年来,人工智能(artificial intelligence, AI)包括机器学习(machine learning, ML)和深度学习(deep learning, DL)方法逐步得到开发应用,影像组学结合AI可用于判断颈动脉斑块性质、预测脑血管事件的发生。目前已有基于CT和超声的纹理分析来识别高危斑块的影像组学研究[20, 21],但基于MRI的颈动脉斑块影像组学相关研究较少。ZHANG等[10]基于颈动脉多模态MRI的影像组学结合ML的方法构建斑块性质判别模型。传统模型的曲线下面积(area under the curve, AUC)训练组和测试组分别为0.825、0.804,而影像组学模型的AUC值分别为0.988、0.984,联合模型的AUC值分别为0.989、0.986。可见影像组学模型和联合模型在识别高危斑块方面优于传统模型,而联合模型与影像组学模型无显著差异。CHEN等[22]构建YOLO V3DL模型判断斑块性质,其预测AIS风险准确率达94.8%,此模型还可自动分割斑块成分,如钙化、LRNC等,DL方法的使用可提高斑块分割的准确性及效率,并可避免判读的主观性。

       MRI影像组学可从图像中快速提取大量肉眼不可见的颈动脉斑块定量特征,但基于MRI提取的影像组学特征易受不同场强、序列、扫描视野及层厚等因素影响。因此,影像组学在颈动脉斑块的模型构建仍需进一步规范扫描方法并进行大样本验证研究。

1.3 4D-flow MRI

       血流动力学是指血液与血管壁之间的相互作用。管腔内血流动力学的改变会影响斑块的形成、进展及破裂。既往血流动力学测量技术有一定局限性。计算流体力学(computation fluid dynamics, CFD)测量血流动力学需要基于理想的流体力学模型[23]。超声检查方法只能测量血流速度、血流方向等基本参数,不能获得足够的血流动力学数据。相位对比MRI(phase contrast MRI, PC-MRI)的不足在于空间分辨率有限。

       4D-flow MRI是一种同时具有时间分辨率及三维速度编码的MRI新技术,可在体直接测量剪切力、压力梯度、能量损耗等参数,并可动态观察血流动力学和形态学变化[24]。目前已有研究表明颈动脉斑块的形成与局部血流动力学相关,斑块形成好发于管壁剪切应力(wall shear stress, WSS)值下降及血流速度减低的区域[25]。ZHANG等[11]应用4D-flow MRI比较高危斑块与低危斑块在心动周期20个不同时间点的WSS,发现高危斑块患者的WSS高于低危斑块患者(P<0.05)。TUENTER等[26]基于HR-VWI应用CFD计算颈动脉斑块最小、平均、最大WSS,发现较高的最大WSS与斑块内出血(intraplaque hemorrhage, IPH)、钙化显著相关。颈动脉局部血流动力学的改变会影响斑块成分的改变[27],而颈动脉斑块的形成和发展也可能导致其局部血流动力学改变。因此,4D-flow MRI与颈动脉斑块易损特征分析相结合,有可能为颈动脉斑块破裂风险评估提供更多信息,为临床提供更丰富的诊疗依据。

2 MRI在评估颈动脉易损斑块中的应用及进展

2.1 MRI在评估颈动脉易损斑块成分特征中的应用及进展

       易损斑块的概念来源于对冠状动脉粥样硬化斑块的描述,是指具有血栓形成倾向或极有可能快速进展成为“罪犯斑块”的动脉粥样硬化斑块[28]。其特征包括:IPH,LRNC,薄的/破裂的纤维帽(thinned/ruptured fibrous cap, TRFC),斑块内新生血管和炎症,钙化等。

2.1.1 IPH的MRI评估

       IPH是颈动脉易损斑块的主要特征之一,主要由血管内皮损伤或新生血管破裂引起[29]。组织病理学研究表明IPH可引起游离胆固醇累积,导致LRNC扩大。MRI可准确评估IPH,新鲜IPH表现为T1WI、TOF序列高信号,T2WI呈等/低信号,近期IPH表现为T1WI、T2WI高信号[30]。TAKAYA等[31]应用HR-VWI发现经18个月随访比较,出血组血管壁体积百分比(6.80% vs. 0.15%;P=0.009)及LRNC体积百分比(28.4% vs. 5.2%;P=0.001)较对照组变化更明显,并更有可能发现新的斑块出血(43% vs. 0%;P=0.006),所以IPH可通过增加LRNC及斑块体积、产生新不稳定因子加速颈动脉斑块进展。CANTON等[32]应用HR-VWI对无症状颈动脉斑块患者(1.8±0.8)年的随访发现,IPH和钙化是颈动脉斑块进展的独立危险因素,且钙化及脉压升高与IPH的发生有关。但目前,这些研究随访时间多在2年内,对于斑块成分对斑块进展的长期影响仍需进一步探索。

2.1.2 LRNC和TRFC的MRI评估

       LRNC和TFC也是颈动脉易损斑块的主要特征。LRNC主要由胆固醇晶体、凋亡细胞碎片和钙颗粒组成,MRI呈等/稍高T1、等/稍高T2信号,TOF序列呈稍低信号,无或轻度强化。LRNC百分比越大,斑块破裂的可能性就越大。有研究认为LRNC百分比>40%的斑块更容易发生纤维帽破裂,且大体积LRNC与正性重构协同效应可促进斑块不稳定性[33]。冯莹印等[34]应用HR-VWI分析了LRNC与颈动脉斑块负荷的关系,发现最大管壁厚度是LRNC的独立预测因素。进一步研究探讨LRNC的成因及其变化,可能有助于进一步明确颈动脉斑块进展的机制及其与AIS的相关性。

       纤维帽为一层覆盖在脂质核心上的纤维结缔组织,MRI表现为连续的等T1、等/高T2信号,增强扫描为斑块表面光滑、连续线样的明显强化。纤维帽厚度是斑块稳定与否的标志,纤维帽越薄斑块越容易发生破裂,TRFC表现为连续信号的中断或缺失。研究表明TRFC与脑血管事件的发生和复发密切相关[35]。一项荟萃分析应用HR-VWI表征TRFC,发现TRFC可预测未来缺血性事件的发生[36]。李昊文等[37]应用HR-VWI区分纤维帽的厚度,发现蛋白C受体(endothelial protein C receptor, PROCR)基因多态性位点rs867186与TRFC相关。总之,HR-VWI可准确评价纤维帽厚度及有无破裂,丰富斑块易损性特征的信息,并提高AIS事件预测的准确性。关于基因多态性与TRFC关系的进一步研究有可能为其预测及相应的预防提供新的思路。

2.1.3 斑块内新生血管和炎症的MRI评估

       斑块内新生血管和炎症也是颈动脉斑块易损性的重要标志。斑块内新生血管通常不成熟,容易发生渗漏引起IPH,导致斑块不稳定[38]。一项前瞻性研究发现斑块内新生血管可预测缺血性事件的发生[39]。有研究表明炎症浸润可反映斑块的易损性,并与卒中的发生相关[40, 41]。SABA等[42]对斑块成分进行免疫细胞化学分析,发现斑块内炎症细胞,主要是巨噬细胞的存在及其数量与卒中发生密切相关。斑块内新生血管及炎症浸润在MRI通常表现为斑块的强化。PAPINI等[43]通过轴位增强前后TIWI信号强度变化来评估患者颈动脉斑块强化情况,并对患者进行随访,发现MRI颈动脉斑块强化与3年内脑血管事件相关。但HAN等[44]的研究中发现卒中组与非卒中组的颈动脉斑块强化差异并无统计学意义,而基于对比增强T1WI的影像组学模型预测效能更好。因此,斑块强化对斑块内新生血管及炎症浸润的表征可能受病变内部异质性及图像分辨率的限制,而影像组学有望提供更客观全面的定量信息,对斑块进行更精准的评估。

2.1.4 钙化的MRI评估

       钙化与颈动脉斑块易损性存在一定的相关性。有相关研究表明,钙化位置较浅、多发钙化、微小钙化等会导致斑块局部应力增加,从而易发生破裂[45, 46, 47]。KASHIWAZAKI等[48]应用计算机断层扫描血管造影(computed tomography angiography, CTA)和HR-VWI分析了钙化厚度与颈动脉易损斑块特征的关系,发现薄钙化组有症状患者的发病率更高,且薄钙化斑块与IPH相关。LIN等[49]应用HR-VWI将颈动脉钙化分为表浅、混合和深层钙化,根据钙化数量分为单一和多发钙化,发现表浅钙化和多发钙化与IPH的存在密切相关。也有研究表明钙化的体积越小斑块越容易破裂,而钙化体积越大斑块硬度越大、越稳定[50]。MRI可显示斑块钙化及其形态特点,钙化在MRI各序列上均表现为低信号。一项荟萃分析比较了HR-VWI斑块内钙化检出的准确性,发现在7项1.5 T MRI研究中钙化检出敏感度为76.42%~85.71%(平均81%),特异度为85.71%~100%(平均91%),在6项3 T MRI研究中钙化检出敏感度为81.25%~100%(平均92%),特异度为75%~100%(平均90%),表明MRI是检测钙化的可靠方法[15]。既往研究多探讨了钙化的单一特征,但钙化的不同特征可同时存在,未来可综合分析钙化的各种特征及不同类型钙化的比例评估钙化对斑块的影响。

2.2 MRI在评估颈动脉易损斑块与AIS相关性中的应用及进展

       颈动脉易损斑块成分特征会影响AIS的发生、进展及复发。因此对于斑块成分评估的相关研究有助于临床对AIS患者进行有效的一级、二级预防。

2.2.1 MRI评估颈动脉易损斑块与AIS发生的相关性

       颈动脉易损斑块是AIS的危险因素。颈动脉斑块的特殊成分可能会导致斑块的破裂、脱落从而引起缺血性事件的发生。TANG等[51]应用HR-VWI研究发现伴有AIS的颈动脉易损斑块体积明显较大,并且兼具LRNC、IPH、斑块溃疡特征的斑块在伴或不伴AIS两组间差异具有统计学意义。双侧颈动脉斑块患者,症状侧较无症状侧斑块负荷更大,IPH及纤维帽破裂更多[52]。另外,LU等[53]的研究应用HR-VWI发现AIS患者较短暂性脑缺血发作(transient ischemic attack, TIA)患者有更大的斑块负荷,斑块LRNC的占比也更大。一项荟萃分析纳入了行HR-VWI、CTA、超声斑块成像的研究,表明轻度颈动脉狭窄的隐源性卒中,同侧易损斑块发生率是对侧的5倍,提示易损斑块与卒中发生风险有关[54],因此对于轻度颈动脉狭窄患者,仍需要关注斑块的易损性。上述研究均表明颈动脉斑块的易损特征与AIS的发生密切相关。近年来,随着技术的发展,影像组学也逐步应用于颈动脉斑块评估。HAN等[44]纳入127例颈动脉易损斑块患者,分别基于平扫和增强T1WI构建影像组学预测模型,并与传统影像学特征及联合模型比较,发现基于增强T1WI的影像组学与传统影像特征的联合模型AUC值最高,训练组和测试组分别为0.84和0.82,可准确预测AIS发生风险。利用颈动脉斑块MRI影像组学预测AIS的研究尚少,未来可构建基于不同序列的颈动脉斑块影像组学预测模型,完善AIS的一级预防。

       颈动脉易损斑块破裂及AIS的发生也受血流动力学影响[27]。一项研究对颈动脉粥样硬化中度狭窄的30例患者进行回顾分析,应用4D-flow MRI测量20个时间点的3D WSS、轴向WSS和周向WSS,发现舒张期WSS和轴向WSS的增加与高危斑块密切相关,并可能引起脑血管事件发生[11]。4D-flow MRI在颈动脉斑块的研究及应用较少,未来需更多研究为临床提供更多信息。

2.2.2 MRI评估颈动脉易损斑块与进展性卒中的相关性

       进展性卒中(progressive stroke, PS)是AIS的一种特殊类型,是指部分缺血性卒中患者经临床治疗后,短时间内神经缺损症状进行性加重的现象[55]。PS发病机制尚不明确,与非进展性卒中相比,其预后更差,死亡率及致残率更高[56]。因此探索其发病机制及危险因素非常重要。既往研究表明颈动脉不稳定斑块为PS的独立危险因素[57, 58]。陈博等[59]应用HR-VWI评估颈动脉斑块与PS的相关性,发现TRFC与PS显著相关。但目前应用HR-VWI评估颈动脉斑块成分特征与PS关系的研究尚少。进一步应用HR-VWI分析颈动脉斑块成分与PS相关性,将可能为PS发病机制提供新的见解,为临床制订防治策略提供依据。另外,影像组学及4D-flow MRI在预测PS方面的价值也有待开发。

2.2.3 MRI评估颈动脉易损斑块与AIS复发的相关性

       既往研究表明,颈动脉狭窄程度与AIS的复发及预后密切相关。随着研究的进展,应用HR-VWI评估颈动脉易损斑块成分与AIS复发的相关性也成为研究热点。一项HR-VWI研究发现伴同侧复杂性颈动脉斑块患者较不伴者AIS及TIA复发风险增加了5.6倍,其中IPH和纤维帽破裂与AIS及TIA复发显著相关[35]。CHE等[60]研究应用HR-VWI发现在颈动脉粥样硬化源性卒中或TIA的患者中,IPH组早期复发性缺血性卒中及预后不良的比例显著高于非IPH组,IPH是3个月后预后不良的有效预测因子OR=3.66(95%置信区间:1.68~7.94,P=0.001)。目前对于IPH导致卒中复发及预后不良的病理生理机制尚不明确,对IPH动态演变过程仍需进一步研究。影像组学及4D-flow MRI与HR-VWI结合进一步研究,有可能为此类研究提供新的思路。

3 小结

       颈动脉易损斑块与AIS的发生、进展及复发密切相关,HR-VWI、4D-flow MRI及MRI影像组学技术可从不同方面对颈动脉易损斑块进行有效评估。目前HR-VWI技术已趋于成熟,并有较多的商用软件用于临床。MRI影像组学及4D-flow MRI在颈动脉斑块的研究尚处于初步阶段,但有可能提供更多的影像学信息,尤其是4D-flow MRI所提供的血流动力学信息,如果能与颈动脉斑块的HR-VWI和/或MRI影像组学特征分析相结合,有望开拓颈动脉斑块综合评估的研究领域,为卒中风险预测提供更丰富和可靠的评估手段。

[1]
COLLABORATORS G2 S. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Neurol, 2021, 20(10): 795-820. DOI: 10.1016/S1474-4422(21)00252-0.
[2]
王亚楠, 吴思缈, 刘鸣. 中国脑卒中15年变化趋势和特点[J]. 华西医学, 2021, 36(6): 803-807. DOI: 10.7507/1002-0179.202105046.
WANG Y N, WU S M, LIU M. Temporal trends and characteristics of stroke in China in the past 15 years[J]. West China Med J, 2021, 36(6): 803-807. DOI: 10.7507/1002-0179.202105046.
[3]
SUN T, CHEN S Y, WU K, et al. Trends in incidence and mortality of stroke in China from 1990 to 2019[J/OL]. Front Neurol, 2021, 12: 759221 [2024-06-04]. https://pubmed.ncbi.nlm.nih.gov/34880825/. DOI: 10.3389/fneur.2021.759221.
[4]
KAMEL H, NAVI B B, MERKLER A E, et al. Reclassification of ischemic stroke etiological subtypes on the basis of high-risk nonstenosing carotid plaque[J]. Stroke, 2020, 51(2): 504-510. DOI: 10.1161/STROKEAHA.119.027970.
[5]
OSPEL J M, MARKO M, SINGH N, et al. Prevalence of non-stenotic (<50%) carotid plaques in acute ischemic stroke and transient ischemic attack: a systematic review and meta-analysis[J/OL]. J Stroke Cerebrovasc Dis, 2020, 29(10): 105117 [2024-06-04]. https://pubmed.ncbi.nlm.nih.gov/32912562/. DOI: 10.1016/j.jstrokecerebrovasdis.2020.105117.
[6]
ZHANG L H, GUO Y K, ZHOU W, et al. Characteristics of non-stenotic carotid plaque in embolic stroke of undetermined source compared with cardiogenic embolism: a retrospective cross-sectional observational study[J/OL]. BMC Neurol, 2022, 22(1): 315 [2023-12-13] https://www.ncbi.nlm.nih.gov/pubmed/36008791. DOI: 10.1186/s12883-022-02846-4.
[7]
SABA L, YUAN C, HATSUKAMI T S, et al. Carotid artery wall imaging: perspective and guidelines from the ASNR vessel wall imaging study group and expert consensus recommendations of the American society of neuroradiology[J/OL]. AJNR Am J Neuroradiol, 2018, 39(2): E9-E31 [2024-03-22] https://www.ncbi.nlm.nih.gov/pubmed/29326139. DOI: 10.3174/ajnr.A5488.
[8]
徐莹鑫, 张爽, 周晓梅, 等. 非狭窄性颈动脉斑块与前循环不明原因栓塞性卒中的相关性研究[J]. 中国卒中杂志, 2022, 17(11): 1233-1237. DOI: 10.3969/j.issn.1673-5765.2022.11.013.
XU Y X, ZHANG S, ZHOU X M, et al. Correlation of non-stenotic carotid plaque with anterior circulation embolic stroke of undetermined source[J]. Chin J Stroke, 2022, 17(11): 1233-1237. DOI: 10.3969/j.issn.1673-5765.2022.11.013.
[9]
ZHAO J J, LU Y, CUI J Y, et al. Characteristics of symptomatic plaque on high-resolution magnetic resonance imaging and its relationship with the occurrence and recurrence of ischemic stroke[J]. Neurol Sci, 2021, 42(9): 3605-3613. DOI: 10.1007/s10072-021-05457-y.
[10]
ZHANG R Y, ZHANG Q W, JI A H, et al. Identification of high-risk carotid plaque with MRI-based radiomics and machine learning[J]. Eur Radiol, 2021, 31(5): 3116-3126. DOI: 10.1007/s00330-020-07361-z.
[11]
ZHANG G L, ZHANG S, QIN Y Y, et al. Differences in wall shear stress between high-risk and low-risk plaques in patients with moderate carotid artery stenosis: a 4D flow MRI study[J/OL]. Front Neurosci, 2021, 15: 678358 [2024-05-14]. https://www.ncbi.nlm.nih.gov/pubmed/34456667. DOI: 10.3389/fnins.2021.678358.
[12]
SUN Y, XU L, JIANG Y, et al. Significance of high resolution MRI in the identification of carotid plaque[J]. Exp Ther Med, 2020, 20(4): 3653-3660. DOI: 10.3892/etm.2020.9091.
[13]
WU X B, HUANG L X, HUANG Z R, et al. The lymphocyte-to-monocyte ratio predicts intracranial atherosclerotic stenosis plaque instability[J/OL]. Front Immunol, 2022, 13: 915126 [2024-05-23]. https://www.ncbi.nlm.nih.gov/pubmed/35935982. DOI: 10.3389/fimmu.2022.915126.
[14]
HOU Y W, REN L, CAO C, et al. The additional value of high-resolution vessel wall imaging in screening suitable chronic internal carotid artery occlusion candidates for endovascular recanalization: comparison with digital subtraction angiography[J]. Acta Radiol, 2023, 64(4): 1702-1711. DOI: 10.1177/02841851221127563.
[15]
PAKIZER D, KOZEL J, ELMERS J, et al. Diagnostics accuracy of magnetic resonance imaging in detection of atherosclerotic plaque characteristics in carotid arteries compared to histology: a systematic review[J/OL]. J Magn Reson Imaging, 2024 [2024-06-05]. https://www.ncbi.nlm.nih.gov/pubmed/38981139. DOI: 10.1002/jmri.29522.
[16]
REN L, XU R J, ZHAO C X, et al. Tortuosity and proximal-specific hemodynamics associated with plaque location in the carotid bulb stenosis[J]. J Vasc Res, 2023, 60(3): 160-171. DOI: 10.1159/000531584.
[17]
YANG W, WASSERMAN B A, YANG H, et al. Characterization of Restenosis following Carotid Endarterectomy Using Contrast-Enhanced Vessel Wall MR Imaging[J]. AJNR Am J Neuroradiol, 2022, 43(3): 422-428. DOI: 10.3174/ajnr.A7423.
[18]
ZHAO X Q, SUN J, HIPPE D S, et al. Magnetic resonance imaging of intraplaque hemorrhage and plaque lipid content with continued lipid-lowering therapy: results of a magnetic resonance imaging substudy in AIM-HIGH[J/OL]. Circ Cardiovasc Imaging, 2022, 15(11): e014229 [2024-06-05]. https://pubmed.ncbi.nlm.nih.gov/36378778/. DOI: 10.1161/CIRCIMAGING.122.014229.
[19]
JIANG C, MENG Q, ZHAO K Q, et al. Vulnerable carotid plaque characteristics on magnetic resonance vessel wall imaging: potential predictors for hemodynamic instability during carotid artery stenting[J]. Quant Imaging Med Surg, 2023, 13(6): 3441-3450. DOI: 10.21037/qims-22-865.
[20]
MITCHELL C C, KORCARZ C E, GEPNER A D, et al. Carotid artery echolucency, texture features, and incident cardiovascular disease events: the MESA study[J/OL]. J Am Heart Assoc, 2019, 8(3): e010875 [2024-03-22]. https://www.ncbi.nlm.nih.gov/pubmed/30681393. DOI: 10.1161/JAHA.118.010875.
[21]
SHI J L, SUN Y, HOU J, et al. Radiomics signatures of carotid plaque on computed tomography angiography: an approach to identify symptomatic plaques[J]. Clin Neuroradiol, 2023, 33(4): 931-941. DOI: 10.1007/s00062-023-01289-9.
[22]
CHEN Y F, CHEN Z J, LIN Y Y, et al. Stroke risk study based on deep learning-based magnetic resonance imaging carotid plaque automatic segmentation algorithm[J/OL]. Front Cardiovasc Med, 2023, 10: 1101765 [2024-06-04]. https://www.ncbi.nlm.nih.gov/pubmed/36910524. DOI: 10.3389/fcvm.2023.1101765.
[23]
KAMADA H, NAKAMURA M, OTA H, et al. Blood flow analysis with computational fluid dynamics and 4D-flow MRI for vascular diseases[J]. J Cardiol, 2022, 80(5): 386-396. DOI: 10.1016/j.jjcc.2022.05.007.
[24]
SAYED R E, SHARIFI A, PARK C C, et al. Optimization of 4D flow MRI spatial and temporal resolution for examining complex hemodynamics in the carotid artery bifurcation[J]. Cardiovasc Eng Technol, 2023, 14(3): 476-488. DOI: 10.1007/s13239-023-00667-1.
[25]
ZHOU M L, YU Y F, CHEN R Y, et al. Wall shear stress and its role in atherosclerosis[J/OL]. Front Cardiovasc Med, 2023, 10: 1083547 [2024-05-24]. https://www.ncbi.nlm.nih.gov/pubmed/37077735. DOI: 10.3389/fcvm.2023.1083547.
[26]
TUENTER A, SELWANESS M, ARIAS LORZA A, et al. High shear stress relates to intraplaque haemorrhage in asymptomatic carotid plaques[J/OL]. Atherosclerosis, 2016, 251: 348-354 [2024-05-24]. https://pubmed.ncbi.nlm.nih.gov/27263078/. DOI: 10.1016/j.atherosclerosis.2016.05.018.
[27]
SAVASTANO L, MOUSAVI H, LIU Y, et al. Unifying theory of carotid plaque disruption based on structural phenotypes and forces expressed at the lumen/wall interface[J]. Stroke Vasc Neurol, 2022, 7(6): 465-475. DOI: 10.1136/svn-2021-001451.
[28]
NAGHAVI M, LIBBY P, FALK E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I [J]. Circulation, 2003, 108(14): 1664-1672, DOI: 10.1161/01.Cir.0000087480.94275.97.
[29]
BALMOS I A, SLEVIN M, BRINZANIUC K, et al. Intraplaque neovascularization, CD68+ and iNOS2+ macrophage infiltrate intensity are associated with atherothrombosis and intraplaque hemorrhage in severe carotid atherosclerosis[J/OL]. Biomedicines, 2023, 11(12): 3275 [2024-05-24]. https://pubmed.ncbi.nlm.nih.gov/38137496/. DOI: 10.3390/biomedicines11123275.
[30]
HUO R, YUAN W Z, XU H M, et al. Investigating the association of carotid atherosclerotic plaque MRI features and silent stroke after carotid endarterectomy[J]. J Magn Reson Imaging, 2024, 60(1): 138-149. DOI: 10.1002/jmri.29115.
[31]
TAKAYA N, YUAN C, CHU B C, et al. Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic plaques: a high-resolution magnetic resonance imaging study[J]. Circulation, 2005, 111(21): 2768-2775. DOI: 10.1161/CIRCULATIONAHA.104.504167.
[32]
CANTON G, BAYLAM GELERI D, HIPPE D S, et al. Pathophysiology of carotid atherosclerosis: Calcification, intraplaque haemorrhage and pulse pressure as key players[J/OL]. Eur J Radiol, 2024, 178: 111647 [2024-08-05]. https://www.ncbi.nlm.nih.gov/pubmed/39068857. DOI: 10.1016/j.ejrad.2024.111647.
[33]
TAO L, WANG X H, LI X Q, et al. Intracranial plaque with large lipid core is associated with embolic stroke of undetermined source[J]. Ann Clin Transl Neurol, 2023, 10(3): 363-372. DOI: 10.1002/acn3.51726.
[34]
冯莹印, 高晓, 宋金玉, 等. 基于HR-MRI对富脂坏死核心与颈动脉斑块负荷、临床因素的相关性分析[J]. 国际医学放射学杂志, 2022, 45(5): 497-502, 514. DOI: 10.19300/j.2022.L19412.
FENG Y Y, GAO X, SONG J Y, et al. Analysis of the correlation between lipid-necrotic core and carotid plaque burden and clinical factors based on high-resolution magnetic resonance imaging[J]. Int J Med Radiol, 2022, 45(5): 497-502, 514. DOI: 10.19300/j.2022.L19412.
[35]
KOPCZAK A, SCHINDLER A, SEPP D, et al. Complicated carotid artery plaques and risk of recurrent ischemic stroke or TIA[J]. J Am Coll Cardiol, 2022, 79(22): 2189-2199. DOI: 10.1016/j.jacc.2022.03.376.
[36]
RIZVI A, SEYEDSAADAT S M, ALZUABI M, et al. Carotid plaque vulnerability on magnetic resonance imaging and risk of future ischemic events: a systematic review and meta-analysis[J]. J Neurosurg Sci, 2020, 64(5): 480-486. DOI: 10.23736/S0390-5616.20.04959-0.
[37]
李昊文, 王雅杰, 沈宓, 等. PROCR基因多态性与颈动脉斑块纤维帽变薄或破损相关性[J]. 心脑血管病防治, 2019, 19(5): 394-396, 404. DOI: 10.3969/j.issn.1009-816x.2019.05.002.
LI H W, WANG Y J, SHEN M, et al. Association between PROCR polymorphism and thin or ruptured fibrous cap of carotidartery plaque[J]. Cardio Cerebrovasc Dis Prev Treat, 2019, 19(5): 394-396, 404. DOI: 10.3969/j.issn.1009-816x.2019.05.002.
[38]
BURKE-KLEINMAN J, GOTLIEB A I. Progression of arterial Vasa vasorum from regulator of arterial homeostasis to promoter of atherogenesis[J]. Am J Pathol, 2023, 193(10): 1468-1484. DOI: 10.1016/j.ajpath.2023.06.003.
[39]
CUI L P, XING Y Q, WANG L J, et al. Carotid intraplaque neovascularization and future vascular events in patients with asymptomatic carotid stenosis[J/OL]. Front Pharmacol, 2022, 13: 804810 [2024-05-14]. https://www.ncbi.nlm.nih.gov/pubmed/35273496. DOI: 10.3389/fphar.2022.804810.
[40]
BALMOS I A, HORVÁTH E, BRINZANIUC K, et al. Inflammation, microcalcification, and increased expression of osteopontin are histological hallmarks of plaque vulnerability in patients with advanced carotid artery stenosis[J/OL]. Biomedicines, 2023, 11(3): 881 [2024-05-24]. https://www.ncbi.nlm.nih.gov/pubmed/36979863. DOI: 10.3390/biomedicines11030881.
[41]
ZHENG Y L, LIM M J R, TAN B Y, et al. Role of plaque inflammation in symptomatic carotid stenosis[J/OL]. Front Neurol, 2023, 14: 1086465 [2024-05-23]. https://www.ncbi.nlm.nih.gov/pubmed/36761341. DOI: 10.3389/fneur.2023.1086465.
[42]
SABA, LAI L, LUCATELLI P, et al. Association between carotid artery plaque inflammation and brain MRI[J]. J De Neuroradiol, 2020, 47(3): 203-209. DOI: 10.1016/j.neurad.2018.10.004.
[43]
PAPINI G D, LEO G D, BANDIRALI M, et al. Is carotid plaque contrast enhancement on MRI predictive for cerebral or cardiovascular events? A prospective cohort study[J]. J Comput Assist Tomogr, 2017, 41(2): 321-326. DOI: 10.1097/RCT.0000000000000506.
[44]
HAN N, HU W J, MA Y R, et al. A clinical-radiomics combined model based on carotid atherosclerotic plaque for prediction of ischemic stroke[J/OL]. Front Neurol, 2024, 15: 1343423 [2024-05-25]. https://www.ncbi.nlm.nih.gov/pubmed/38550341. DOI: 10.3389/fneur.2024.1343423.
[45]
JANSEN I, CRIELAARD H, WISSING T, et al. A tissue-engineered model of the atherosclerotic plaque cap: toward understanding the role of microcalcifications in plaque rupture[J/OL]. APL Bioeng, 2023, 7(3): 036120 [2024-05-24]. https://www.ncbi.nlm.nih.gov/pubmed/37786532. DOI: 10.1063/5.0168087.
[46]
KOTSUGI M, NAKAGAWA I, SASAKI H, et al. Thin calcification predicts lipid component in carotid plaque-relationship between lipid distribution and thin calcification[J/OL]. World Neurosurg, 2024, 183: e715-e721 [2024-05-23]. https://www.ncbi.nlm.nih.gov/pubmed/38191057. DOI: 10.1016/j.wneu.2024.01.011.
[47]
BENITEZ J, FONTANAROSA D, WANG J Q, et al. Evaluating the impact of calcification on plaque vulnerability from the aspect of mechanical interaction between blood flow and artery based on MRI[J]. Ann Biomed Eng, 2021, 49(4): 1169-1182. DOI: 10.1007/s10439-020-02655-1.
[48]
KASHIWAZAKI D, YAMAMOTO S, HORI E, et al. Thin calcification (<2 mm) can highly predict intraplaque hemorrhage in carotid plaque: the clinical significance of calcification types[J]. Acta Neurochir, 2022, 164(6): 1635-1643. DOI: 10.1007/s00701-022-05205-x.
[49]
LIN R L, CHEN S, LIU G F, et al. Association between carotid atherosclerotic plaque calcification and intraplaque hemorrhage: a magnetic resonance imaging study[J]. Arterioscler Thromb Vasc Biol, 2017, 37(6): 1228-1233. DOI: 10.1161/ATVBAHA.116.308360.
[50]
SABA, NARDI V, CAU R, et al. Carotid artery plaque calcifications: lessons from histopathology to diagnostic imaging[J]. Stroke, 2022, 53(1): 290-297. DOI: 10.1161/STROKEAHA.121.035692.
[51]
TANG Y X, ZHANG J P, LIU W Z, et al. Analysis of carotid vulnerable plaque MRI high-risk features and clinical risk factors associated with concomitant acute cerebral infarction[J/OL]. BMC Cardiovasc Disord, 2023, 23(1): 173 [2024-05-14]. https://www.ncbi.nlm.nih.gov/pubmed/36997869. DOI: 10.1186/s12872-023-03199-7.
[52]
XIN R J, YANG D D, XU H M, et al. Comparing symptomatic and asymptomatic carotid artery atherosclerosis in patients with bilateral carotid vulnerable plaques using magnetic resonance imaging[J]. Angiology, 2022, 73(2): 104-111. DOI: 10.1177/00033197211012531.
[53]
LU M M, ZHANG L C, YUAN F, et al. Comparison of carotid atherosclerotic plaque characteristics between symptomatic patients with transient ischemic attack and stroke using high-resolution magnetic resonance imaging[J/OL]. BMC Cardiovasc Disord, 2022, 22(1): 190 [2024-03-20]. https://www.ncbi.nlm.nih.gov/pubmed/35448952. DOI: 10.1186/s12872-022-02624-7.
[54]
KAMTCHUM-TATUENE J, WILMAN A, SAQQUR M, et al. Carotid plaque with high-risk features in embolic stroke of undetermined source: systematic review and meta-analysis[J]. Stroke, 2020, 51(1): 311-314. DOI: 10.1161/STROKEAHA.119.027272.
[55]
SENERS P, BARON J C. Revisiting 'progressive stroke': incidence, predictors, pathophysiology, and management of unexplained early neurological deterioration following acute ischemic stroke[J]. J Neurol, 2018, 265(1): 216-225. DOI: 10.1007/s00415-017-8490-3.
[56]
YU Q L, MAO X C, FU Z H, et al. Fasting blood glucose as a predictor of progressive infarction in men with acute ischemic stroke[J/OL]. J Int Med Res, 2022, 50(10): 3000605221132416 [2024-05-02]. https://www.ncbi.nlm.nih.gov/pubmed/36271599. DOI: 10.1177/03000605221132416.
[57]
HE Y T, YANG M J, CHE S X, et al. Effect of morning blood pressure peak on early progressive ischemic stroke: a prospective clinical study[J/OL]. Clin Neurol Neurosurg, 2019, 184: 105420 [2024-02-02]. https://www.ncbi.nlm.nih.gov/pubmed/31310922. DOI: 10.1016/j.clineuro.2019.105420.
[58]
陈金, 姚远, 朱润秀. 进展性缺血性脑卒中危险因素分析及微栓子对卒中进展的预测价值[J]. 国际神经病学神经外科学杂志, 2019, 46(6): 614-617. DOI: 10.16636/j.cnki.jinn.2019.06.006.
CHEN J, YAO Y, ZHU R X. Risk factors for progressive ischemic stroke and the value of microemboli in predicting stroke progression[J]. J Int Neurol Neurosurg, 2019, 46(6): 614-617. DOI: 10.16636/j.cnki.jinn.2019.06.006.
[59]
陈博, 宋彦, 丁旭萌, 等. 颈动脉颅外段不稳定斑块与进展性脑梗死的相关性[J]. 中国实用神经疾病杂志, 2016, 19(14): 69-70. DOI: 10.3969/j.issn.1673-5110.2016.14.042.
CHEN B, SONG Y, DING X M, et al. Correlation between unstable plaque in extracranial carotid artery and progressive cerebral infarction[J]. Chin J Pract Nerv Dis, 2016, 19(14): 69-70. DOI: 10.3969/j.issn.1673-5110.2016.14.042.
[60]
CHE F L, LIU Y F, GONG X P, et al. Extracranial carotid plaque hemorrhage is independently associated with poor 3-month functional outcome after acute ischemic stroke-a prospective cohort study[J/OL]. Front Neurol, 2021, 12: 780436 [2024-05-03]. https://www.ncbi.nlm.nih.gov/pubmed/34970212. DOI: 10.3389/fneur.2021.780436.

上一篇 人工智能在垂体瘤MRI中的研究进展
下一篇 免疫检查点抑制剂致心脏毒性的MRI研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2