分享:
分享到微信朋友圈
X
综述
术前磁共振成像技术在乳腺癌腋窝淋巴结转移中的研究进展
王傲 赵思奇 张莫云 张丽娜

Cite this article as: WANG A, ZHAO S Q, ZHANG M Y, et al. Research progress of preoperative magnetic resonance imaging techniques in axillary lymph node metastasis of breast cancer[J]. Chin J Magn Reson Imaging, 2024, 15(9): 183-188.本文引用格式:王傲, 赵思奇, 张莫云, 等. 术前磁共振成像技术在乳腺癌腋窝淋巴结转移中的研究进展[J]. 磁共振成像, 2024, 15(9): 183-188. DOI:10.12015/issn.1674-8034.2024.09.032.


[摘要] 乳腺癌现已位居世界女性癌症死亡率之首,临床上对于乳腺癌患者的治疗方法主要以手术治疗和靶向治疗为主,而术前乳腺癌腋窝淋巴结转移是乳腺癌患者治疗和预后的重要的影响因素。随着磁共振成像技术的迅速发展,研究者们不仅从大小、边缘形态及皮质厚度等常规影像特征评估腋窝淋巴结转移,还利用功能成像方法了解淋巴结的微观结构信息、量化性评估淋巴结异质性等。此外,新兴的影像组学、影像学联合人工智能可以获得更多参数,在腋窝淋巴结的研究中取得了更深入的研究成果。本文就术前磁共振成像技术在乳腺癌中腋窝淋巴结转移的相关研究进展做一综述,旨在总结各成像序列在乳腺癌腋窝淋巴结转移应用中的优势和不足,并为后续的影像科学研究提供新方向。
[Abstract] Breast cancer has become the world's leading female cancer mortality rate. The clinical treatment methods for breast cancer patients are mainly surgical treatment and targeted treatment. The preoperative axillary lymph node metastasis of breast cancer is an important factor affecting the treatment and prognosis of breast cancer patients. With the rapid development of magnetic resonance imaging technology, researchers not only evaluate axillary lymph node metastasis based on conventional imaging features such as size, edge morphology, and cortical thickness, but also use functional imaging methods to understand the microstructure information of lymph nodes and quantitatively evaluate lymph node heterogeneity. In addition, emerging imaging omics, imaging combined with artificial intelligence can obtain more parameters and have achieved more in-depth research results in the study of axillary lymph nodes. This article reviews the research progress of preoperative magnetic resonance imaging in axillary lymph node metastasis in breast cancer, aiming to summarize the advantages and disadvantages of each imaging sequence in the application of axillary lymph node metastasis in breast cancer, and provide a new direction for subsequent imaging science research.
[关键词] 乳腺癌;腋窝淋巴结;磁共振成像;功能磁共振成像;动态对比增强磁共振成像;影像组学;新辅助化疗
[Keywords] breast cancer;axillary lymph nodes;magnetic resonance imaging;functional magnetic resonance imaging;dynamic contrast enhanced magnetic resonance imaging;radiomics;neoadjuvant chemotherapy

王傲 1, 2   赵思奇 1   张莫云 1   张丽娜 1*  

1 大连医科大学附属第一医院放射科,大连 116011

2 鞍山市中心医院CT科,鞍山 114000

通信作者:张丽娜,E-mail: zln201045@163.com

作者贡献声明::王傲负责本综述的文献查阅、整理及稿件起草,对文章内容进行修改;赵思奇、张莫云参与本综述的构思和设计,对文章内容进行修改和补充;张丽娜获得大连市医学重点专科“登峰计划”一般项目,提供文章立意设计,对论文重要内容的修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 大连市医学重点专科“登峰计划”一般项目 2022DF042
收稿日期:2024-05-04
接受日期:2024-08-12
中图分类号:R445.2  R737.9 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.09.032
本文引用格式:王傲, 赵思奇, 张莫云, 等. 术前磁共振成像技术在乳腺癌腋窝淋巴结转移中的研究进展[J]. 磁共振成像, 2024, 15(9): 183-188. DOI:10.12015/issn.1674-8034.2024.09.032.

0 引言

       乳腺癌现已位居世界女性癌症死亡率之首[1]。我国虽为乳腺癌发病率较低地区,但近年来由于经济发展、生活方式等变化,中国女性乳腺癌发病率逐年上升,且死亡率仍居高不下[2]。目前,临床上对于乳腺癌患者的治疗方法包括手术治疗、放化疗、靶向治疗、免疫治疗等[3],而乳腺癌腋窝淋巴结转移(axillary lymph node metastasis, ALNM)是乳腺癌患者治疗和预后的重要的影响因素[4],临床调查显示,腋窝淋巴结(axillary lymph node, ALN)阴性乳腺癌患者的5年生存率可达98.6%,而ALN阳性患者的生存率则降至84.4%[5],因此确定ALN是否转移至关重要。目前,诊断ALNM的金标准仍然是病理检查。腋窝淋巴结清扫(axillary lymph node dissection, ALND)和前哨淋巴结活检(sentinel lymph node biopsy, SLNB)是临床最常用的方法。然而,这两种手术都是侵入性的,会出现感觉异常、淋巴水肿和上肢运动损伤等并发症[6]。乳腺磁共振成像(magnetic resonance imaging, MRI)作为一种非侵入性方法,已广泛应用于临床实践。随着MRI各项技术的迅速发展,研究者们不仅从大小、边缘形态及皮质厚度等常规影像特征评估ALNM,还利用功能成像方法了解淋巴结的微观结构信息、量化评估淋巴结异质性等[7, 8],新兴的影像组学也可以获得更多参数,在ALNM的研究中已取得初步研究成果[9, 10]。此外,新辅助化疗(neoadjuvant chemotherapy, NAC)是晚期乳腺癌患者的一种治疗方案,可以缩小病灶体积,减少ALNM的发生风险[11],约50%的ALNM阳性患者经NAC后能够达到腋窝病理完全缓解(pathological complete response, pCR)[12],MRI技术能够有效预测NAC后的ALN[13]。因此,充分了解MRI技术在评估ALNM中的应用价值具有临床意义。但由于MRI技术的复杂性,目前还没有确立统一的标准和稳定的模型来评估ALNM,此外,关于其对乳腺癌NAC患者ALN疗效评估的研究还不够深入,准确性及敏感性有待提高。本文就术前MRI技术在乳腺癌ALNM的相关研究进展做一综述,旨在总结各成像序列在乳腺癌ALNM应用中的优势和不足,增强临床医生与影像科医生对于MRI技术在评估ALNM应用潜力的认识,为以后的影像科学研究提供新方向,助力提高乳腺癌的精准诊疗水平。

1 乳腺癌ALN的病理学基础及其临床意义

       ALN按解剖分为三区,Ⅰ区:位于胸小肌外侧缘外侧;Ⅱ区:位于胸小肌内侧缘与胸间淋巴结之间;Ⅲ区:位于胸小肌内缘内侧[14]。乳腺的淋巴管分为浅淋巴管和深淋巴管,约3%的淋巴流向乳腺内淋巴结,其余流向ALN。乳腺癌ALNM机制是转移细胞通过传入淋巴管到达淋巴结周围的边缘窦,进而向门部过滤,导致皮质的不均匀肿大,最终取代正常的淋巴结结构[15]。确定ALN是否含有癌细胞是疾病分期的重要组成部分,将为乳腺癌治疗方案的选择和预后评估提供重要信息。根治性乳腺切除术加ALND是20世纪预防乳腺癌扩散的标准治疗方法之一,但是术后有部分患者存在不同并发症,包括伤口感染、淋巴水肿和感觉功能障碍等[16, 17],因此,为了减少不必要的手术损伤及给患者造成的负担,我们需要一种术前预测方式,在提高诊断确性的同时,非侵入性地判断ALNM。

2 术前MRI技术在评估乳腺癌ALNM的应用

       近年来,术前利用MRI评估乳腺癌ALNM已成为很常见的方法,其影像学征象包括淋巴结长短径增大、淋巴门消失、皮质厚度(cortical thickness, CT)增加、不均匀或偏心环强化、周围脂肪间隙模糊以及表观弥散系数(apparent diffusion coefficient, ADC)值降低等信息均可作为ALNM的诊断依据[18, 19, 20]

2.1 常规MRI平扫技术在评估乳腺癌ALMN中的应用

       常规乳腺MRI平扫技术包括T1WI和T2WI,是通过分析ALN的大小、形态学特征等来判断ALN的状态,ALN的明显增大、形态异常、皮质不均匀增厚和淋巴门结构缺失等情况均是提示ALNM的表现[21, 22]。HA等[23]在研究中在T1WI和T2WI序列对ALN进行定量测量,包括其最大尺寸(largest dimension, LD)、CT,以及CT与LD的比值,他们发现ALN阳性组的LD、CT和CT/LD显著高于ALN阴性组(所有变量:P<0.001),且CT被证明是预测ALNM具有一定鉴别力的测量参数。此外,有学者在研究中采用T1加权快速梯度回波脂肪抑制序列分别测量转移性ALN与反应性ALN,发现转移性ALN与反应性ALN相比具有更长的短轴(P=0.042),与反应性ALN相比,转移性ALN的长轴与短轴比值明显较低,且60%的转移性ALN有淋巴门缺失的征象[24]。但另有研究认为仅以常规MRI平扫技术评估ALNM的敏感度、特异度和准确度不够高,尤其对较小的ALN(<5 mm)、早期的转移性ALN的判定有一定难度,临床应用仍受限制[25, 26]。可见,基于常规MRI平扫技术图像的基本影像学特征来评估ALNM有一定价值,可以从大小及形态方面评估ALN,但也有一定局限性,对于较小的微转移ALN可能无法与正常淋巴结区分开,而且难以评估ALN的生物学特征信息,所以临床中将常规MRI平扫技术与其他序列相结合能更好地评估ALNM。

2.2 功能MRI技术在评估乳腺癌ALNM中的应用

       扩散加权成像(diffusion-weighted imaging, DWI)是一种能够定量评价细胞外间隙水扩散障碍的成像技术,受细胞密度、微观组织结构等因素的影响,可定量反映组织微环境,在临床诊断中的应用越来越多[27, 28]。ADC值是通过DWI获得的定量参数,可提供定量评估水分子扩散受限的程度,从而区分组织病变性质[29]。CHO等[30]在研究中发现,在DWI序列上对ALN的形态学分析中,良性组和转移组的长径、短径和CT差异具有统计学意义,良性组包括在DWI序列未见ALN或ALN较小(<2 mm),转移组包括在DWI序列发现ALN且直径>2 mm。转移性ALN的长径明显长于良性ALN [(14.8±7.7)mm vs.(10.1±4.1)mm,P<0.001],这表明在DWI上对ALN的形态学评估可以在不增强对比的情况下区分转移性ALN和非转移性ALN。CATALDO等[31]发现转移性ALN组的中位ADC值(中位数为0.638×10-3 mm2/s)显著低于非转移性ALN组(中位数为1.24×10-3 mm2/s)(P<0.001),受试者工作特征(receiver operating characteristic, ROC)曲线下面积(area under the curve, AUC)为0.876 [95%置信区间(confidence interval, CI):0.783~0.939],分析表明,ADC值为0.8×10-3 mm2 /s是区分转移性和非转移性ALN的最佳临界值,该临界值获得的敏感度、特异度、阳性预测值(positive predictive value, PPV)和阴性预测值(negative predictive value, NPV)分别为82.6%、86%、70.4%和92.5%,这些结果证实了DWI序列评估ALNM的准确性和有效性[31]。LIMA等[32]学者也证明了ADC值评估乳腺癌患者ALNM的价值,其敏感度和特异度分别为83%(95% CI:0.80~0.86)和82%(95% CI:0.79~0.85)。

       扩散张量成像(diffusion tensor imaging, DTI)是DWI的一种扩展,它可以提供更多关于微观结构的信息,KURT等[33]在研究中发现ADC(b=800 s/mm2)是DWI中ALNM的独立预测因子,体积各向异性(volume anisotropy, VA)(b=500 s/mm2)是DTI中ALNM的独立预测因子,当ADC值(b=800 s/mm2)时,CT和VA(b=500 s/mm2)诊断转移性ALN的特异度和敏感度分别为95.7%和100%,PPV为100%,NPV为97.7%。

       尽管越来越多的证据表明DWI在评估乳腺癌ALNM方面具有潜在价值,但关于DWI与乳腺癌ALNM关系的研究仍尚处于初步阶段,尤其对于微小淋巴结ADC值测定结果的准确性和稳定性欠佳,影响最终评估效果。因此,关于DWI及其衍生序列在评估ALNM方面有待进一步深入研究。

       氢质子磁共振波谱(1H-magnetic resonance spectroscopy, 1H-MRS)基于MRI和化学位移原理,能够在不使用对比剂的情况下提供分子水平上的信息,SODANO等[34]研究发现,原发性乳腺癌总胆碱(total choline, tCho)可有效预测ALNM,在研究中,对两名阅片者的结果进行ROC分析,AUC分别为0.760(P<0.0001)和0.788(P<0.0001)。当tCho低于2.4 mmol/L时,未观察到转移性ALN,这可以避免一些不必要的淋巴结活检。

       mDixon-Quant技术是一项MRI精准定量新技术,其中脂肪分数(fat fraction, FF)图可以直接用来进行脂肪定量[35],最近有学者评估了乳腺癌患者ALN的FF值,研究表明转移性ALN的平均FF值为0.20±0.073,非转移性ALN的同侧淋巴结的平均FF值为0.31±0.079,对侧淋巴结的平均FF值为0.34±0.15,转移性ALN的FF值低于非转移性ALN[36],这对于评估ALNM也具有一定价值。但手动描绘感兴趣区(region of interest, ROI)而不是分割整个淋巴结,测量FF值时可能存在测量误差,且整个淋巴结分割可能会增加邻近腋窝脂肪部分,从而影响结果,所以,将其与人工智能等相结合有望提高结果的准确性。

       总之,功能MRI技术在评估乳腺癌ALNM有一定价值,可以在不使用对比剂的情况下提供微观结构的信息,量化评估淋巴结异质性,但尚存在不足,包括定量信息测量结果容易受到不同b值、淋巴结直径小、磁场不均匀等因素的影响,无法保证准确和可重复性反映组织的微观结构特点,但相信随着MRI技术的改进和发展,功能MRI技术将在乳腺癌 ALNM的术前评估中体现更全面的价值。

2.3 DCE-MRI技术在评估乳腺癌ALNM中的应用

       动态对比增强MRI(dynamic contrast enhanced MRI, DCE-MRI)是一种关注血流动力学的动态增强成像方法,可以估计病变的血管分布和通透性[37],从而更好地评估乳腺疾病。近年来,DCE-MRI在鉴别ALNM方面发挥着越来越重要的作用。DCE-MRI半定量参数包括时间-信号曲线(time-signal intensity curve, TIC)、最大密度投影(maximum intensity projection, MIP)血管重建。TIC分为3型,Ⅰ型为持续上升型,Ⅱ型为平台型,Ⅲ型为流出型[38],TIC可以反映病变内部的血流动力学改变,有研究显示,转移性ALN在强化后,TIC通常表现为Ⅱ或Ⅲ型,这与乳腺癌病灶的强化方式相似[39]。阮玫等[40]研究发现不均匀强化在转移及未转移ALN间差异有统计学意义(P<0.001),不均匀强化在转移组中的特异度为87.5%,强化不均匀可能是由于转移性ALN血供的变化或者出现坏死。GAO等[41]学者通过单因素logistic回归分析发现,ALN阳性与阴性乳腺癌的容积转运常数(volume transport constant, Ktrans)、血管外细胞外间隙容积分数(extravascular extracellular volume fraction, Ve)、流入斜率(wash-in slope, WIS)、流出斜率(wash-out slope, WOS)、增强峰值(peak of enhancement, PE)和AUC差异均有统计学意义,其中WIS的预测效果最好(AUC=0.661)。

       超快动态对比增强(ultrafast dynamic contrast- enhanced, UF-DCE)MRI是一种新的方法,可以在非常早期的对比后阶段捕获动力学信息,具有较高的时间分辨率,同时保持合理的空间分辨率[42],有学者在一项病例研究中发现,通过UF-DCE MRI扫描,从第7期开始,其中一个ALN比同侧和对侧腋窝的其他淋巴结在更早的阶段强化,这高度提示转移,超声16 G空芯针活检(core needle biopsy, CNB)显示ALNM,但18F-氟脱氧葡萄糖正电子发射断层扫描/计算机断层(18F-fluorodeoxyglucose positron emission tomography/computed tomography, 18F-FDG PET/CT)扫描淋巴结的异常蓄积并不确切,这表明,超快动态MRI可能在ALNM的诊断上有着重要意义[43]。此外,YAMAGUCHI等[44]发现,UF-DCE MRI上较高的最大斜率(maximum slope, MS)与乳腺癌ALNM显著相关,乳腺癌ALN阳性的MS显著高于ALN阴性的MS,分别为11.97%/秒和9.425%/秒,以MS值10.19%/秒为临界值时,诊断ALNM的敏感度和特异度分别为76.19%和63.16%,AUC为0.72。

       总之,DCE-MRI在评估乳腺癌ALNM中具有重要的鉴别和诊断作用,其准确性高于乳腺X线摄影及超声检查,但关于其与ALNM关系的研究尚需进一步探讨,包括药代动力学参数与ALNM的关系,今后可以通过改进研究方法等深入评价DCE-MRI与ALNM的关系。

3 基于MRI的影像组学在评估乳腺癌ALNM中的应用

       影像组学是联合医学影像与数据图像处理的新型交叉学科,是从医学图像中提取定量特征的过程,可充分利用肉眼无法识别的深层影像信息,将医学图像转化为可挖掘的数据,进而提高肿瘤诊疗精度,是近年来的研究热点[45]。CHAI等[46]在研究中发现,术前乳腺MRI提取的放射学特征与ALNM相关,T1WI、动态增强后第二时相(the second postcontrast phase of the DCE sequences, CE2)、T2WI及DWI序列均具有鉴别转移状态的特征,虽然四个序列的形态学特征和纹理特征在准确性和AUC方面都表现出良好的性能,但当与CE2提取的特征相结合时,血流动力学特征对分类贡献最大,从而使该特定ALNM分类任务的准确性和AUC最高。SHIMIZU等[47]研究表明,高分辨率3D T2WI 的纹理分析主要集中在腋窝区域,有助于区分乳腺癌患者的ALN转移与否,纹理-体积模型可以检测临床阴性乳腺癌患者的ALNM,敏感度、特异度、PPV和NPV分别为90%、69%、49%和96%。

       SONG等[48]研究发现,使用基于T2WI的影像组学的AUC略高于使用T1WI者,T2WI在TNBC影像组学研究中有很重要的意义。同时,使用多参数MRI和影像组学特征的基于机器学习(machine learning, ML)的预测模型在三阴性乳腺癌(triple-negative breast cancer, TNBC)患者术前预测ALNM方面显示出良好的诊断性能,来自乳腺MRI的计算机辅助诊断(computer aided design, CAD)测量的血管容积或影像组学特征可用作有价值的成像生物标志物,以确定Ⅰ~Ⅱ期TNBC患者的临床预后或指导治疗决策。WANG等[49]研究表明,在ALN阳性组中,人类表皮生长因子受体2(human epidermal growth factor receptor 2, HER-2)阳性、脉管癌栓阳性和Ⅱ~Ⅲ型TIC的占比均高于ALN阴性组,且ALN阳性组病灶较大,联合模型显示出最高的AUC,基于DCE-MRI的瘤内和瘤周影像组学模型可有效预测乳腺癌ALNM。此外,有学者研究发现,基于DCE-MRI的卷积神经网络(convolutional neural network, CNN)模型在术前预测乳腺癌ALNM方面优于传统的影像组学模型,CNN模型能对医学图像进行充分的挖掘,可以预测任何可检测病变的ALNM,对于ALNM患者,CNN模型可以进一步有效预测下一站引流淋巴结的转移情况,内部及外部验证集的AUC分别为0.800和0.763,有助于降低乳腺癌患者中不必要的前哨淋巴结清扫发生率[50]。基于MRI的影像组学作为一种定量信息提取和分析方法,是预测ALNM的一种非常有前景的新方法,但由于其技术和方法的复杂性以及大部分研究缺乏外部验证,很难应用于常规临床实践,因此今后的研究应侧重于临床适用性方面。

4 MRI技术对乳腺癌NAC患者LN疗效的评估

       NAC是指在手术前对患者使用化疗药物进行治疗的一种方法,可缩小肿瘤大小、减少ALNM的发生风险,提高保乳手术的成功率,提高患者的生存质量[51]。MRI在NAC后达到pCR的ALN术前诊断中显示出高敏感度(83%~92%)和中等特异度(47%~63%)[52]

       LIU等[53]采用多模态融合模型来预测患者接受NAC后LN是否可以达到pCR,分割的乳腺癌病变区域的DCE-MRI数据和HER-2、雌激素受体(estrogen receptor, ER)、孕激素受体(progesterone receptor, PR)和Ki-67分子分型数据被用作多模态联合模型的输入参数,多模态联合模型的准确率达到85%,AUC为0.81。GAN等[54]学者基于DCE-MRI提取的影像组学特征建立了临床-影像组学模型,用于预测乳腺癌ALNM患者的ALN pCR,在训练集、验证集和测试集中AUC值分别为0.924、0.851和0.878,显示出预测腋窝pCR的良好性能。此外,多项研究也表明基于MRI的影像组学对于乳腺癌患者NAC后腋窝pCR显示出较高的预测价值[55, 56]。但目前利用MRI技术评估腋窝pCR方面的研究仍较少,由于不同患者NAC的治疗方案不一致,而且NAC的疗效会受乳腺癌不同分子亚型、肿瘤异质性等多因素的影响,所以未来需要更大样本量的研究来探讨MRI技术在预测腋窝pCR中的价值及应用于临床疗效评估中的可行性。

5 总结与展望

       综上所述,常规与功能MRI技术以及基于MRI的影像组学方法,在评估乳腺癌ALNM的诊断及疗效评估中体现出重要价值,但目前多为回顾性、单中心研究,且仍未确立统一的标准及相对稳定的预测模型应用于临床实践。今后,随着计算机及影像技术的不断发展和应用,通过多中心、多参数及大样本量的研究,以及多种成像方法的联合应用建立更完善的模型来预测乳腺癌ALNM,此外,影像组学与人工智能在评价乳腺癌ALNM方面的应用价值也有待进一步挖掘,通过应用于临床实践助力提高乳腺癌ALNM的精准诊疗水平。

[1]
HUANG J J, CHAN P S, LOK V, et al. Global incidence and mortality of breast cancer: a trend analysis[J]. Aging, 2021, 13(4): 5748-5803. DOI: 10.18632/aging.202502.
[2]
熊洁, 段志财, 左怀全, 等. 中美乳腺癌流行病学特征对比及防控策略分析[J]. 中国普外基础与临床杂志, 2024, 31(1): 50-55. DOI: 10.7507/1007-9424.202311024.
XIONG J, DUAN Z C, ZUO H Q, et al. Comparison of epidemiological characteristics and prevention of breast cancer in China and the United States[J]. Chinese Journal of Bases and Clinics in General Surgery, 2024, 31(1): 50-55. DOI: 10.7507/1007-9424.202311024.
[3]
WANG J, WU S G. Breast cancer: an overview of current therapeutic strategies, challenge, and perspectives[J/OL]. Breast Cancer (Dove Med Press), 2023, 15: 721-730 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/37881514/. DOI: 10.2147/BCTT.S432526.
[4]
LI L, ZHAO J, ZHANG Y, et al. Nomogram based on multiparametric analysis of early-stage breast cancer: prediction of high burden metastatic axillary lymph nodes[J]. Thorac Cancer, 2023, 14(35): 3465-3474. DOI: 10.1111/1759-7714.15139.
[5]
LIU Y, LI X, ZHU L N, et al. Preoperative prediction of axillary lymph node metastasis in breast cancer based on intratumoral and peritumoral DCE-MRI radiomics nomogram[J/OL]. Contrast Media Mol Imaging, 2022, 2022: 6729473 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/36051932/. DOI: 10.1155/2022/6729473.
[6]
BODE, SCHRADING S, MASOUMI A, et al. Abbreviated MRI for comprehensive regional lymph node staging during pre-operative breast MRI[J/OL]. Cancers, 2023, 15(6): 1859 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/36980744/. DOI: 10.3390/cancers15061859.
[7]
CHEN H, LI W, WAN C, et al. Correlation of dynamic contrast-enhanced MRI and diffusion-weighted MR imaging with prognostic factors and subtypes of breast cancers[J/OL]. Front Oncol, 2022, 12: 942943 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/35992872/. DOI: 10.3389/fonc.2022.942943.
[8]
LIU Y Y, LUO H B, WANG C H, et al. Diagnostic performance of T2-weighted imaging and intravoxel incoherent motion diffusion-weighted MRI for predicting metastatic axillary lymph nodes in T1 and T2 stage breast cancer[J]. Acta Radiol, 2022, 63(4): 447-457. DOI: 10.1177/02841851211002834.
[9]
SUN K, ZHU H, CHAI W M, et al. Whole-lesion histogram and texture analyses of breast lesions on inline quantitative DCE mapping with CAIPIRINHA-Dixon-TWIST-VIBE[J]. Eur Radiol, 2020, 30(1): 57-65. DOI: 10.1007/s00330-019-06365-8.
[10]
SONG D L, YANG F, ZHANG Y J, et al. Dynamic contrast-enhanced MRI radiomics nomogram for predicting axillary lymph node metastasis in breast cancer[J/OL]. Cancer Imaging, 2022, 22(1): 17 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/35379339/. DOI: 10.1186/s40644-022-00450-w.
[11]
KORDE L A, SOMERFIELD M R, CAREY L A, et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline[J]. J Clin Oncol, 2021, 39(13): 1485-1505. DOI: 10.1200/JCO.20.03399.
[12]
PILEWSKIE M, MORROW M. Axillary nodal management following neoadjuvant chemotherapy: a review[J]. JAMA Oncol, 2017, 3(4): 549-555. DOI: 10.1001/jamaoncol.2016.4163.
[13]
KIM R, CHANG J M, LEE H B, et al. Predicting axillary response to neoadjuvant chemotherapy: breast MRI and US in patients with node-positive breast cancer[J]. Radiology, 2019, 293(1): 49-57. DOI: 10.1148/radiol.2019190014.
[14]
CIROCCHI R, AMABILE M I, LUCA A D, et al. New classifications of axillary lymph nodes and their anatomical-clinical correlations in breast surgery[J/OL]. World J Surg Oncol, 2021, 19(1): 93 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/33781279/. DOI: 10.1186/s12957-021-02209-2.
[15]
于海童, 李芹, 吴莎莎, 等. MRI影像组学在乳腺癌腋窝淋巴结转移预测中的研究进展[J]. 磁共振成像, 2023, 14(7): 176-180. DOI: 10.12015/issn.1674-8034.2023.07.032.
YU H T, LI Q, WU S S, et al. Research progress of radiomics based on MRI for prediction of axillary lymph node metastasis in breast cancer[J]. Chin J Magn Reson Imag, 2023, 14(7): 176-180. DOI: 10.12015/issn.1674-8034.2023.07.032.
[16]
BARAN M T, GUNDOGDU H, DEMIRAL G, et al. PET-CT and MR imaging in the management of axillary nodes in early stage breast cancer[J]. J Coll Physicians Surg Pak, 2020, 30(9): 946-950. DOI: 10.29271/jcpsp.2020.09.946.
[17]
CHE BAKRI N A, KWASNICKI R M, KHAN N, et al. Impact of axillary lymph node dissection and sentinel lymph node biopsy on upper limb morbidity in breast cancer patients: a systematic review and meta-analysis[J]. Ann Surg, 2023, 277(4): 572-580. DOI: 10.1097/SLA.0000000000005671.
[18]
SZEP M, PINTICAN R, BOCA B, et al. Multiparametric MRI features of breast cancer molecular subtypes[J/OL]. Medicina, 2022, 58(12): 1716 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/36556918/. DOI: 10.3390/medicina58121716.
[19]
CHANG J M, LEUNG J W T, MOY L, et al. Axillary nodal evaluation in breast cancer: state of the art[J]. Radiology, 2020, 295(3): 500-515. DOI: 10.1148/radiol.2020192534.
[20]
MARINO M A, AVENDANO D, ZAPATA P, et al. Lymph node imaging in patients with primary breast cancer: concurrent diagnostic tools[J/OL]. Oncologist, 2020, 25(2): e231-e242 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/32043792/. DOI: 10.1634/theoncologist.2019-0427.
[21]
HANKÓ-BAUER O, PODOLEANU C, GEORGESCU R, et al. The accuracy of the preoperative axillary ultrasound examination in predicting the status of the sentinel lymph node involvement in patients with infiltrating breast carcinoma[J]. Chirurgia, 2019, 114(3): 384-391. DOI: 10.21614/chirurgia.114.3.384.
[22]
MORAWITZ J, BRUCKMANN N M, DIETZEL F, et al. Comparison of nodal staging between CT, MRI, and [18F]-FDG PET/MRI in patients with newly diagnosed breast cancer[J]. Eur J Nucl Med Mol Imaging, 2022, 49(3): 992-1001. DOI: 10.1007/s00259-021-05502-0.
[23]
HA S M, CHAE E Y, CHA J H, et al. Diagnostic performance of standard breast MR imaging compared to dedicated axillary MR imaging in the evaluation of axillary lymph node[J/OL]. BMC Med Imaging, 2020, 20(1): 45 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/32357942/. DOI: 10.1186/s12880-020-00449-4.
[24]
ARSLAN G, ALTINTOPRAK K M, YIRGIN I K, et al. Diagnostic accuracy of metastatic axillary lymph nodes in breast MRI[J/OL]. Springerplus, 2016, 5(1): 735 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/27376003/. DOI: 10.1186/s40064-016-2419-7.
[25]
ABDEL KHALEK ABDEL RAZEK A, ABDEL LATTIF M, DENEWER A, et al. Assessment of axillary lymph nodes in patients with breast cancer with diffusion-weighted MR imaging in combination with routine and dynamic contrast MR imaging[J]. Breast Cancer, 2016, 23(3): 525-532. DOI: 10.1007/s12282-015-0598-7.
[26]
CUI Q, SUN L, ZHANG Y, et al. Value of breast MRI omics features and clinical characteristics in Breast Imaging Reporting and Data System (BI-RADS) category 4 breast lesions: an analysis of radiomics-based diagnosis[J/OL]. Ann Transl Med, 2021, 9(22): 1677 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/34988186/. DOI: 10.21037/atm-21-5441.
[27]
CLAUSER P, KRUG B, BICKEL H, et al. Diffusion-weighted imaging allows for downgrading MR BI-RADS 4 lesions in contrast-enhanced MRI of the breast to avoid unnecessary biopsy[J]. Clin Cancer Res, 2021, 27(7): 1941-1948. DOI: 10.1158/1078-0432.CCR-20-3037.
[28]
JIN Y N, ZHANG Y, CHENG J L, et al. The role of histogram analysis in diffusion-weighted imaging in the differential diagnosis of benign and malignant breast lesions[J/OL]. BMC Med Inform Decis Mak, 2020, 20(1): 239 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/32957985/. DOI: 10.1186/s12911-020-01257-0.
[29]
KIM S H, SHIN H J, SHIN K C, et al. Diagnostic performance of fused diffusion-weighted imaging using T1-weighted imaging for axillary nodal staging in patients with early breast cancer[J]. Clin Breast Cancer, 2017, 17(2): 154-163. DOI: 10.1016/j.clbc.2016.10.010.
[30]
CHO P, PARK C S, PARK G E, et al. Diagnostic usefulness of diffusion-weighted MRI for axillary lymph node evaluation in patients with breast cancer[J/OL]. Diagnostics, 2023, 13(3): 513 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/36766617/. DOI: 10.3390/diagnostics13030513.
[31]
CATALDO C D, BRUNO F, PALUMBO P, et al. Apparent diffusion coefficient magnetic resonance imaging (ADC-MRI) in the axillary breast cancer lymph node metastasis detection: a narrative review[J]. Gland Surg, 2020, 9(6): 2225-2234. DOI: 10.21037/gs-20-546.
[32]
LIMA M, HONDA M, SIGMUND E E, et al. Diffusion MRI of the breast: current status and future directions[J]. J Magn Reson Imaging, 2020, 52(1): 70-90. DOI: 10.1002/jmri.26908.
[33]
KURT N, BINBOGA KURT B, GULSARAN U, et al. Diffusion tensor imaging and diffusion-weighted imaging on axillary lymph node status in breast cancer patients[J]. Diagn Interv Radiol, 2022, 28(4): 329-336. DOI: 10.5152/dir.2022.21460.
[34]
SODANO C, CLAUSER P, DIETZEL M, et al. Clinical relevance of total choline (tCho) quantification in suspicious lesions on multiparametric breast MRI[J]. Eur Radiol, 2020, 30(6): 3371-3382. DOI: 10.1007/s00330-020-06678-z.
[35]
王卓, 吴祺, 宁宁, 等. mDixon-Quant 技术在乳腺浸润性导管癌诊断与预后评估中的价值研究[J]. 磁共振成像, 2023, 14(3): 65-71. DOI: 10.12015/issn.1674-8034.2023.03.012.
WANG Z, WU Q, NING N, et al. Study on the value of mDixon-Quant technique in the diagnosis and prognosis evaluation of invasive ductal breast cancer[J]. Chin J Magn Reson Imaging, 2023, 14(3): 65-71. DOI: 10.12015/issn.1674-8034.2023.03.012.
[36]
BUUS T W, SIVESGAARD K, FRIS T L, et al. Fat fractions from high-resolution 3D radial Dixon MRI for predicting metastatic axillary lymph nodes in breast cancer patients[J/OL]. Eur J Radiol Open, 2020, 7:100284 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/33204769/. DOI: 10.1016/j.ejro.2020.100284.
[37]
梁泓冰, 宁宁, 赵思奇, 等. 基于DCE-MRI的3D-MIP 重建及多参数评估BI-RADS 4类乳腺肿瘤[J]. 磁共振成像, 2024, 15(5): 94-101. DOI: 10.12015/issn.1674-8034.2024.05.016.
LIANG H B, NIN N, ZHAO S Q, et al. 3D-MIP reconstruction and multi parameter evaluation of BI-RADS 4 breast tumors based on DCE-MRI[J]. Chin J Magn Reson Imaging, 2024, 15(5): 94-101. DOI: 10.12015/issn.1674-8034.2024.05.016.
[38]
中国抗癌协会乳腺癌专业委员会, 中华医学会肿瘤学分会乳腺肿瘤学组. 中国抗癌协会乳腺癌诊治指南与规范(2024年版)[J]. 中国癌症杂志, 2023, 33(12): 1092-1186. DOI: 10.19401/j.cnki.1007-3639.2023.12.004.
The Society of Breast Cancer China Anti-Cancer Association, Breast Oncology Group of the Oncology Branch of the Chinese Medical Association. Guidelines for breast cancer diagnosis and treatment by China Anti-cancer Association(2024 edition)[J]. China Oncol, 2023, 33(12): 1092-1186. DOI: 10.19401/j.cnki.1007-3639.2023.12.004.
[39]
YUN S J, SOHN Y M, SEO M. Differentiation of benign and metastatic axillary lymph nodes in breast cancer: additive value of MRI computer-aided evaluation[J/OL]. Clin Radiol, 2016, 71(4): 403.e1-403.e7 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/26875621/. DOI: 10.1016/j.crad.2016.01.008.
[40]
阮玫, 汪登斌, 陈文辉, 等. MRI鉴别诊断乳腺癌腋窝淋巴结转移[J]. 中国介入影像与治疗学, 2017, 14(8): 484-488. DOI: 10.13929/j.1672-8475.201703041.
RUAN M, WANG D B, CHEN W H, et al. MRI in differential diagnosis of metastatic axillary lymph nodes in breast cancer[J]. Chin J Interv Imag Ther, 2017, 14(8): 484-488. DOI: 10.13929/j.1672-8475.201703041.
[41]
GAO Y, FENG W, LU X R, et al. Difference of DCE-MRI parameters at different time points and their predictive value for axillary lymph node metastasis of breast cancer[J/OL]. Acad Radiol, 2022, 29: S79-S86 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/33504446/. DOI: 10.1016/j.acra.2021.01.013.
[42]
KATAOKA M, HONDA M, OHASHI A, et al. Ultrafast dynamic contrast-enhanced MRI of the breast: how is it used?[J]. Magn Reson Med Sci, 2022, 21(1): 83-94. DOI: 10.2463/mrms.rev.2021-0157.
[43]
KIKUCHI Y, MORI M, FUJIOKA T, et al. Feasibility of ultrafast dynamic magnetic resonance imaging for the diagnosis of axillary lymph node metastasis: a case report[J/OL]. Eur J Radiol Open, 2020, 7: 100261 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/32944596/. DOI: 10.1016/j.ejro.2020.100261.
[44]
YAMAGUCHI K, NAKAZONO T, EGASHIRA R, et al. Maximum slope of ultrafast dynamic contrast-enhanced MRI of the breast: comparisons with prognostic factors of breast cancer[J]. Jpn J Radiol, 2021, 39(3): 246-253. DOI: 10.1007/s11604-020-01049-6.
[45]
CONTI A, DUGGENTO A, INDOVINA I, et al. Radiomics in breast cancer classification and prediction[J/OL]. Semin Cancer Biol, 2021, 72: 238-250 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/32371013/. DOI: 10.1016/j.semcancer.2020.04.002.
[46]
CHAI R M, MA H, XU M J, et al. Differentiating axillary lymph node metastasis in invasive breast cancer patients: a comparison of radiomic signatures from multiparametric breast MR sequences[J]. J Magn Reson Imaging, 2019, 50(4): 1125-1132. DOI: 10.1002/jmri.26701.
[47]
SHIMIZU H, MORI N, MUGIKURA S, et al. Application of texture and volume model analysis to dedicated axillary high-resolution 3D T2-weighted MR imaging: a novel method for diagnosing lymph node metastasis in patients with clinically node-negative breast cancer[J]. Magn Reson Med Sci, 2024, 23(2): 161-170. DOI: 10.2463/mrms.mp.2022-0091.
[48]
SONG S E, WOO O H, CHO Y, et al. Prediction of axillary lymph node metastasis in early-stage triple-negative breast cancer using multiparametric and radiomic features of breast MRI[J/OL]. Acad Radiol, 2023, 30(Suppl 2): S25-S37 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/37331865/. DOI: 10.1016/j.acra.2023.05.025.
[49]
WANG Y X, SHANG Y Y, GUO Y X, et al. Clinical study on the prediction of ALN metastasis based on intratumoral and peritumoral DCE-MRI radiomics and clinico-radiological characteristics in breast cancer[J/OL]. Front Oncol, 2024, 14: 1357145 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/38567148/. DOI: 10.3389/fonc.2024.1357145.
[50]
CHEN M Z, KONG C L, LIN G H, et al. Development and validation of convolutional neural network-based model to predict the risk of sentinel or non-sentinel lymph node metastasis in patients with breast cancer: a machine learning study[J/OL]. EClinicalMedicine, 2023, 63: 102176 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/37662514/. DOI: 10.1016/j.eclinm.2023.102176.
[51]
AN J S, PENG C, TANG H L, et al. New advances in the research of resistance to neoadjuvant chemotherapy in breast cancer[J/OL]. Int J Mol Sci, 2021, 22(17): 9644 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/34502549/. DOI: 10.3390/ijms22179644.
[52]
MANN R M, CHO N, MOY L. Breast MRI: state of the art[J]. Radiology, 2019, 292(3): 520-536. DOI: 10.1148/radiol.2019182947.
[53]
LIU Y, CHEN Z H, CHEN J H, et al. Pathologic complete response prediction in breast cancer lesion segmentation and neoadjuvant therapy[J/OL]. Front Med, 2023, 10: 1188207 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/38143443/. DOI: 10.3389/fmed.2023.1188207.
[54]
GAN L Y, MA M M, LIU Y H, et al. A clinical-radiomics model for predicting axillary pathologic complete response in breast cancer with axillary lymph node metastases[J/OL]. Front Oncol, 2021, 11: 786346 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/34993145/. DOI: 10.3389/fonc.2021.786346.
[55]
LIU S S, DU S Y, GAO S, et al. A delta-radiomic lymph node model using dynamic contrast enhanced MRI for the early prediction of axillary response after neoadjuvant chemotherapy in breast cancer patients[J/OL]. BMC Cancer, 2023, 23(1): 15 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/36604679/. DOI: 10.1186/s12885-022-10496-5.
[56]
YU Y F, HE Z F, OUYANG J, et al. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: a machine learning, multicenter study[J/OL]. EBioMedicine, 2021, 69: 103460 [2024-05-03]. https://pubmed.ncbi.nlm.nih.gov/34233259/. DOI: 10.1016/j.ebiom.2021.103460.

上一篇 多模态心脏磁共振在非致密性心肌病诊断及预后评估中的应用进展
下一篇 基于不同磁共振成像技术的影像组学在乳腺病变鉴别诊断中的应用
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2