分享:
分享到微信朋友圈
X
综述
MRI对非酒精性脂肪性肝病定量评估研究进展
刘冠辰 张红霞

Cite this article as: LIU G C, ZHANG H X. Progress in MRI evaluation of nonalcoholic fatty liver disease[J]. Chin J Magn Reson Imaging, 2024, 15(9): 201-204.本文引用格式:刘冠辰, 张红霞. MRI对非酒精性脂肪性肝病定量评估研究进展[J]. 磁共振成像, 2024, 15(9): 201-204. DOI:10.12015/issn.1674-8034.2024.09.035.


[摘要] 非酒精性脂肪性肝病(non-alcoholic fatty liver disease, NAFLD)是慢性肝病的常见原因。NAFLD主要分为非酒精性脂肪肝(non-alcoholic fatty liver, NAFL)和非酒精性脂肪性肝炎(non-alcoholic steatohepatitis, NASH)两种亚型。NASH是NAFLD的进展形式,可进一步促进肝纤维化并增加发生肝硬化的风险。因此,准确地区分出NAFL和NASH以及评估肝脏炎症和纤维化程度对于预防疾病的进展和不良后果至关重要。MRI检查是一种非侵入性的肝脏评估方法,可以提供肝脏解剖学、功能及代谢信息,对于NAFLD的诊断和分期具有重要价值。本文主要介绍了磁共振质子密度脂肪分数(magnetic resonance imaging proton density fat fraction, MRI-PDFF)、纵向弛豫时间定量成像(T1 mapping)及磁共振弹性成像(magnetic resonance elastography, MRE)的技术原理并总结了这三种定量成像技术在NAFLD评估中的研究现状,旨在讨论MR定量成像技术在NAFLD评估中的优势及面临的一些挑战,为MR量化NAFLD病理改变提供新的研究思路。
[Abstract] Non-alcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disease. NAFLD is divided into two main subtypes, non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH). NASH is a progressive form of NAFLD that can further promote liver fibrosis and increase the risk of developing cirrhosis, so accurately distinguishing between nonalcoholic fatty liver disease and NASH and assessing the extent of liver inflammation and fibrosis is critical to prevent progression and adverse outcomes of the disease. MRI is a non-invasive method of liver evaluation, which can provide anatomical, functional and metabolic information of the liver, and is of great value in the diagnosis and staging of NAFLD. This review introduces the technical principles of magnetic resonance imaging proton density fat fraction (MRI-PDFF), magnetic resonance elastography (MRE) and longitudinal relaxation time quantitative imaging (T1 mapping), and summarizes the research status of these quantitative imaging techniques in the evaluation of NAFLD. This review aims to discuss the advantages and challenges of MR quantitative imaging in the assessment of NAFLD, and provide new research ideas for quantifying the pathological changes of NAFLD.
[关键词] 非酒精性脂肪性肝病;肝纤维化;磁共振成像;定量评估
[Keywords] non-alcoholic fatty liver disease;liver fibrosis;magnetic resonance imaging;quantitative evaluation

刘冠辰    张红霞 *  

哈尔滨医科大学附属肿瘤医院影像中心,哈尔滨 150081

通信作者:张红霞,E-mail: zhanghongxia2k@163.com

作者贡献声明::张红霞完成论文设计,对稿件重要内容进行了修改;刘冠辰起草和撰写稿件,获取、分析或解释本研究的数据;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2024-04-24
接受日期:2024-08-09
中图分类号:R445.2  R657.31 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.09.035
本文引用格式:刘冠辰, 张红霞. MRI对非酒精性脂肪性肝病定量评估研究进展[J]. 磁共振成像, 2024, 15(9): 201-204. DOI:10.12015/issn.1674-8034.2024.09.035.

0 引言

       非酒精性脂肪性肝病(non-alcoholic fatty liver disease, NAFLD)是指除外其他原因(包括过度饮酒、致脂性药物及其他肝脏疾病因素)所致,以肝细胞内脂肪过度沉积为主要特征的慢性肝脏疾病[1]。NAFLD主要分为非酒精性脂肪肝(non-alcoholic fatty liver, NAFL)和非酒精性脂肪性肝炎(non-alcoholic steatohepatitis, NASH)两种亚型,NAFL是最常见的类型,被认为是NAFLD最轻度的表现,组织学上以>5%的肝细胞脂肪变性,但没有肝细胞损伤为特征[2, 3]。NASH被定义为存在NAFL并伴有肝细胞炎症损伤,是NAFLD的进展形式[4]。NASH可进一步导致晚期肝纤维化和NASH相关肝硬化,增加发生肝细胞癌的风险[5]。因此,准确和可重复性地评估对于临床决策和预后至关重要[6]。肝活检作为诊断NAFLD的金标准,可以准确地区分出NAFL和NASH以及评估肝脏炎症和纤维化程度,然而它属于有创性检查,而且存在取样误差,限制了其普遍应用[7, 8]。所以临床需要一种无创而又可靠的方法来诊断和监测NAFLD[9]。MRI检查是一种非侵入性的肝脏评估方法。随着多种MR定量成像技术的不断研发和应用,MRI技术能更准确地提供肝脏解剖学、功能及代谢信息,对于NAFLD的诊断和分期有重要价值[10]。本综述主要介绍了磁共振质子密度脂肪分数(magnetic resonance imaging proton density fat fraction, MRI-PDFF)、纵向弛豫时间定量成像(T1 mapping)及磁共振弹性成像(magnetic resonance elastography, MRE)的技术原理并总结了这三种定量成像技术评估NAFLD患者脂肪变性、炎症及纤维化的最新进展,旨在讨论MR定量成像技术在NAFLD评估中的优势及面临的一些挑战,为MR量化NAFLD病理改变提供新的研究思路。

1 MRI-PDFF在NAFLD中的研究进展

       肝脏脂肪含量的MRI测量可以采用多种技术,临床工作中常用的同、反相位信号测量容易受到扫描参数、铁沉积、纤维化等因素的影响,在肝内脂肪变性的评估中多用于定性,无法精准定量肝脏内脂肪含量[11]。磁共振波谱成像(magnetic resonance spectroscopy, MRS)通过共振频率测量质子信号,判断存储在肝脏中的不同脂肪酸的组成,在肝脏脂肪量化中展现出了良好的准确性和一致性[12]。然而,MRS采集时间较长,在有限的空间覆盖情况下可能存在采样误差[13]。MRI-PDFF是目前检测肝脏脂肪变性的一类新技术,即明确游离状态下水与脂肪中的质子密度比值,可以在一次屏气时间内完成覆盖整个肝脏的脂肪含量评估,避免了采样误差及后处理复杂等问题[14]。最近的一项Meta分析结果表明MRI-PDFF在 NAFLD患者脂肪含量的评估和分类中具有很高的诊断价值[15]。MCDONALD等[16]研究发现,MRI-PDFF与组织学脂肪变性分级呈显著正相关,对于各个级别的脂肪变性,MRI-PDFF均具有良好的预测准确性,受试者工作特征(receiver operating characteristic, ROC)曲线下面积范围为0.90~0.94。TANG等[17]研究发现,与肝活检相比,MRI-PDFF为肝脏脂肪变性提供了可靠和准确的无创性分类。RODGE等[18]通过MRI-PDFF量化疑似NAFLD患者的肝内脂肪,并将其与代谢综合征(metabolicsyndrome, MetS)及肝功能检查(liver function test, LFT)进行了关联,结果发现,与没有MetS的患者相比,MetS患者高级别脂肪变性的比例更高(MRI-PDFF分级:0级为<6.4%,1级为6.4%~17.3%,2级为17.4%~22.0%,3级为≥22.1%)。该研究还发现,与MRI-PDFF评估为0级和1级肝脏脂肪变性患者相比,2级和3级脂肪变性患者的LFT异常比例更高。KIM等[19]研究发现,与MRI-PDFF相比,组织学检查高估了脂肪变性的等级,特别对于晚期NASH患者,在炎症增加的情况下病理学更有可能高估脂肪变性程度,该研究认为MRI-PDFF可能是评估肝脏脂肪变性更有效的定量生物标志物。MRI-PDFF非侵入性和重复性高的特点也使其越来越多地被用于NASH临床试验终点以评估NASH患者肝脏脂肪变性的纵向变化[20]。最近的研究表明[21],在临床试验干预后,MRI-PDFF有变化者比无变化者更有可能出现组织学改善,MRI-PDFF下降≥30%与NASH缓解和NAS评分改善≥2分显著相关[NAFLD活动度评分是指包括肝细胞脂肪变性(0~3)分、肝小叶炎症(0~3)分和气球样变(0~2)分的综合评分]。

       以上研究表明,MRI-PDFF是一种理想的非侵入性技术和定量生物标志物,在检测肝脏脂肪变化方面比肝活检表现出了更高的准确性。MRI-PDFF能够准确地定量肝脏脂肪含量,这也为临床干预效果的评估提供了帮助。未来还需要进一步研究MRI-PDFF对高级别肝脏脂肪变性的预后意义。此外,当NASH临床试验的干预措施没有抗脂肪变性作用时,可能不适合选择MRI-PDFF评估NASH的治疗反应[22]

2 T1 mapping在NAFLD中的研究进展

       MRI-PDFF对肝脏脂肪变性的诊断具有较高的准确性,但由于肝脏脂肪随着纤维化程度增加而下降,因此在疾病严重程度分期或识别有显著肝纤维化的NASH患者方面存在局限性[23]。T1 mapping是一种测量T1弛豫时间的技术,炎症及纤维化会增加细胞外间隙导致组织水分含量增加,因此可通过T1弛豫时间的延长来反映[24]。由于肝脏中的铁沉积会降低T1弛豫时间,这项技术通常使用补偿算法来考虑铁,称为铁校正T1弛豫时间(cT1)[25]。cT1在识别NAFLD、NASH和具有较高肝纤维化阶段的NASH患者方面表现出很高的诊断准确性[26]。ANDERSSON等[27]研究发现,对于高风险NASH患者,cT1≥875 ms与疾病活动性和显著肝纤维化相关,cT1≥925 ms则是最佳阈值,特异度为90%,假阳性最小。JAYASWAL等[28]研究发现,cT1对于预测肝脏相关临床事件预后要优于血清学检查中的纤维化指数(FIB-4)及天冬氨酸转氨酶(aspartate aminotransferase, AST)/丙氨酸转氨酶(alanine aminotransferase, ALT),cT1≥825 ms被认为可以识别代偿期慢性肝病患者的不良预后。EDDOWES等[29]在NAFLD评估中发现,cT1可以很好地区分出健康志愿者和NAFLD患者,ROC曲线下面积为0.93,同时,在区分高风险NAFLD患者(伴有NASH或Kleiner纤维化评分>F1)方面cT1相比于其他评估测试表现出了更高的准确性,阴性预测值为80.0%~83.3%。cT1在NASH临床试验中同样被认为是可靠的定量生物标记物,既可以作为筛选工具来确定合适的入组患者,也可以是治疗效果的探索性终点[30]。DENNIS等[31]研究发现,将cT1和血清标志物中的空腹血糖及AST数值相结合,能够提高NASH临床试验入组患者(NAS评分≥4及Kleiner纤维化评分≥F2)识别的准确性,ROC曲线下面积为0.90。肝脏cT1在早期肝纤维炎性疾病的筛查过程中也表现出了良好的效能。TONEV等[32]研究发现,cT1临界值为800ms时对于NAFL和NASH的诊断性能显示出良好的敏感性和特异性,并认为当cT1低于此临界值时无需进一步诊断评估。在最近的人群研究中[33]确定了健康人群的cT1参考值,范围为573~852 ms,中位数为666 ms,95%可信区间为600~763 ms,该研究还发现年龄和性别对cT1的影响很小,在临床实践中,可能无需根据年龄和性别对cT1进行校正。这一研究结果也表明800 ms可以被认为是cT1的正常上限。

       以上研究表明,cT1可用于NAFLD患者不同阶段的评估并监测对治疗的反应。cT1与NASH的组织病理学特征相关,由于MRI-PDFF主要以脂肪变性为主,当关注肝脏炎症或纤维化的变化时,cT1显示出优势[34]。未来将MRI-PDFF与cT1联合使用,对于了解治疗反应的变化以及区分特异性治疗效果,可能比单独使用它们中的任何一种更好。此外,cT1对肝纤维化和炎症分期的有效临界值还需要更大规模的研究来完善[35]

3 MRE在NAFLD中的研究进展

       MRE是一种测量组织力学性质的动态成像技术,它可以检测组织的弹性(刚度),这一特点使其在诊断NAFLD肝纤维化分期方面具有明显优势[36]。MRE技术通常分为三步:第一步通过外部驱动器创建的机械波传播到所需测量的组织部位,引起微米量级的组织位移;第二步通过MR脉冲序列编码组织位移;第三步对数据进行处理生成反映组织机械性能的定量图像,又称弹性图[37]。通过检测正常肝组织与纤维化肝组织之间的波长差异,MRE可用于肝纤维化不同阶段的检测和评估[38]。LIANG等[39]在NAFLD患者肝纤维化分期评估研究中发现,MRE诊断肝纤维化分期(F≥1期、F≥2期、F≥3期、F≥4期,Scheuor评分系统)的敏感度为77%、87%、89%、94%,ROC曲线下面积为0.89、0.93、0.93、0.95,提示MRE对肝纤维化分期具有良好的鉴别能力,其中对F≥4期的诊断准确率最高。XIAO等[40]在一项基于628例NAFLD患者的荟萃分析中发现,MRE对晚期肝纤维化的检测具有很高的诊断准确性,ROC曲线下面积为0.96。HSU等[41]在对230名经活检证实为NAFLD参与者数据分析中发现,MRE在检测不同阶段肝纤维化方面要优于基于超声的瞬时弹性成像,该研究还确定了MRE检测各期肝纤维化(F≥1期、F≥2期、F≥3期、F≥4期,Scheuor评分系统)的最佳阈值,分别为2.61、2.97、3.62和4.69 kPa。AJMERA等[42]对NAFLD患者研究发现,MRE的增加与肝纤维化进展相关,与年龄、性别和BMI无关,当肝脏硬度增加>15%时有助于识别早期肝纤维化进展为晚期肝纤维化的患者,该研究认为MRE增加>15%是早期肝纤维化进展到晚期肝纤维化的有效预测因子。JUNG等[43]研究发现,结合MRE和FIB-4计算出的MEFIB指数(MRE≥3.3 kPa,FIB-4≥1.6)能够准确识别出NAFLD背景下显著肝纤维化患者(F>2期),阳性预测值为97.1%,可用于NASH临床试验入组患者的筛选。

       以上研究表明,MRE在诊断NAFLD肝纤维化分期方面具有较高的准确性。MRE相对不受患者腹水和肥胖等因素的影响,检查失败率较低,观察者间一致性很好,在肝纤维化的评估中发挥了突出的作用[44]。然而,MRE由于会受到肝脏铁沉积的干扰,在肝脏铁沉积过高患者中的可靠性较低,因此未来应进一步优化MRE技术,为治疗方案和疾病预后提供影像学依据。

4 小结与展望

       综上所述,以上几种MR定量成像技术对NAFLD患者的定量评估均有一定价值。MRI-PDFF可以对整个肝脏脂肪进行准确和可重复的定量评估,cT1对NAFLD患者疾病活动性及肝脏炎症变化表现出很高的敏感性,可能比MRI-PDFF更适合作为NASH临床试验终点,MRE在NAFLD肝纤维化分期检测方面表现出了良好的诊断性能。MR定量成像技术为NAFLD患者的诊断和临床治疗提供了多个潜在影像学标志物,但仍然存在一些不足,未来还需要更多的多中心纵向研究来完善MR定量参数的敏感性和特异性,为NAFLD的诊断和治疗提供更好的指导,减少对肝活检的依赖。

[1]
IONITA-RADU F, PATONI C, NANCOFF A S, et al. Berberine effects in pre-fibrotic stages of non-alcoholic fatty liver disease-clinical and pre-clinical overview and systematic review of the literature[J/OL]. Int J Mol Sci, 2024, 25(8): 4201 [2024-07-07]. https://pubmed.ncbi.nlm.nih.gov/38673787/. DOI: 10.3390/ijms25084201.
[2]
POUWELS S, SAKRAN N, GRAHAM Y, et al. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss[J/OL]. BMC Endocr Disord, 2022, 22(1): 63 [2024-07-07]. https://pubmed.ncbi.nlm.nih.gov/35287643/. DOI: 10.1186/s12902-022-00980-1.
[3]
WONG V W, EKSTEDT M, WONG G L, et al. Changing epidemiology, global trends and implications for outcomes of NAFLD[J]. J Hepatol, 2023, 79(3): 842-852. DOI: 10.1016/j.jhep.2023.04.036.
[4]
YOUNOSSI Z M, GOLABI P, PAIK J M, et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review[J]. Hepatology, 2023, 77(4): 1335-1347. DOI: 10.1097/HEP.0000000000000004.
[5]
HUANG D Q, SINGAL A G, KONO Y, et al. Changing global epidemiology of liver cancer from 2010 to 2019: NASH is the fastest growing cause of liver cancer[J]. Cell Metab, 2022, 34(7): 969-977. DOI: 10.1016/j.cmet.2022.05.003.
[6]
QUEK J, CHAN K E, WONG Z Y, et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: a systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2023, 8(1): 20-30. DOI: 10.1016/S2468-1253(22)00317-X.
[7]
ŞENDUR A B, ŞENDUR H N. A standardized approach for MRI-PDFF is necessary in the assessment of diagnostic performances of the ultrasound-based hepatic fat quantification tools[J]. J Ultrasound Med, 2022, 41(12): 3159-3161. DOI: 10.1002/jum.16102.
[8]
LOOMBA R, RATZIU V, HARRISON S A, et al. Expert panel review to compare FDA and EMA guidance on drug development and endpoints in nonalcoholic steatohepatitis[J]. Gastroenterology, 2022, 162(3): 680-688. DOI: 10.1053/j.gastro.2021.10.051.
[9]
NOUREDDIN M, TRUONG E, GORNBEIN J A, et al. MRI-based (MAST) score accurately identifies patients with NASH and significant fibrosis[J]. J Hepatol, 2022, 76(4): 781-787. DOI: 10.1016/j.jhep.2021.11.012.
[10]
王晓培, 杨大为, 杨正汉. MRI定量评估慢性肝病病理改变的研究进展[J]. 中国医学影像学杂志, 2022, 30(2): 172-178. DOI: 10.3969/j.issn.1005-5185.2022.02.015.
WANG X P, YANG D W, YANG Z H. Research progress in quantitative assessment of pathological changes of chronic liver disease via MRI[J]. Chin J Med Imag, 2022, 30(2): 172-178. DOI: 10.3969/j.issn.1005-5185.2022.02.015.
[11]
IDILMAN I S, ANIKTAR H, IDILMAN R, et al. Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy[J]. Radiology, 2013, 267(3): 767-775. DOI: 10.1148/radiol.13121360.
[12]
KIM J W, LEE C H, YANG Z P, et al. The spectrum of magnetic resonance imaging proton density fat fraction (MRI-PDFF), magnetic resonance spectroscopy (MRS), and two different histopathologic methods (artificial intelligence vs. pathologist) in quantifying hepatic steatosis[J]. Quant Imaging Med Surg, 2022, 12(11): 5251-5262. DOI: 10.21037/qims-22-393.
[13]
SHIH K L, SU W W, CHANG C C, et al. Comparisons of parallel potential biomarkers of 1H-MRS-measured hepatic lipid content in patients with non-alcoholic fatty liver disease[J/OL]. Sci Rep, 2016, 6: 24031 [2024-07-07]. https://pubmed.ncbi.nlm.nih.gov/27079922/. DOI: 10.1038/srep24031.
[14]
TAMAKI N, MUNAGANURU N, JUNG J, et al. Clinical utility of 30% relative decline in MRI-PDFF in predicting fibrosis regression in non-alcoholic fatty liver disease[J]. Gut, 2022, 71(5): 983-990. DOI: 10.1136/gutjnl-2021-324264.
[15]
GU J L, LIU S S, DU S X, et al. Diagnostic value of MRI-PDFF for hepatic steatosis in patients with non-alcoholic fatty liver disease: a meta-analysis[J]. Eur Radiol, 2019, 29(7): 3564-3573. DOI: 10.1007/s00330-019-06072-4.
[16]
MCDONALD N, EDDOWES P J, HODSON J, et al. Multiparametric magnetic resonance imaging for quantitation of liver disease: a two-centre cross-sectional observational study[J/OL]. Sci Rep, 2018, 8(1): 9189 [2024-07-07]. https://pubmed.ncbi.nlm.nih.gov/29907829/. DOI: 10.1038/s41598-018-27560-5.
[17]
TANG A, TAN J, SUN M, et al. Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis[J]. Radiology, 2013, 267(2): 422-431. DOI: 10.1148/radiol.12120896.
[18]
RODGE G A, GOENKA M K, GOENKA U, et al. Quantification of liver fat by MRI-PDFF imaging in patients with suspected non-alcoholic fatty liver disease and its correlation with metabolic syndrome, liver function test and ultrasonography[J]. J Clin Exp Hepatol, 2021, 11(5): 586-591. DOI: 10.1016/j.jceh.2020.11.004.
[19]
KIM B K, BERNSTEIN N, HUANG D Q, et al. Clinical and histologic factors associated with discordance between steatosis grade derived from histology vs. MRI-PDFF in NAFLD[J]. Aliment Pharmacol Ther, 2023, 58(2): 229-237. DOI: 10.1111/apt.17564.
[20]
SHEN W, MIDDLETON M S, CUNHA G M, et al. Changes in abdominal adipose tissue depots assessed by MRI correlate with hepatic histologic improvement in non-alcoholic steatohepatitis[J]. J Hepatol, 2023, 78(2): 238-246. DOI: 10.1016/j.jhep.2022.10.027.
[21]
LOOMBA R, NEUSCHWANDER-TETRI B A, SANYAL A, et al. Multicenter validation of association between decline in MRI-PDFF and histologic response in NASH[J]. Hepatology, 2020, 72(4): 1219-1229. DOI: 10.1002/hep.31121.
[22]
HARRISON S A, GAWRIEH S, ROBERTS K, et al. Prospective evaluation of the prevalence of non-alcoholic fatty liver disease and steatohepatitis in a large middle-aged US cohort[J]. J Hepatol, 2021, 75(2): 284-291. DOI: 10.1016/j.jhep.2021.02.034.
[23]
CAUSSY C, REEDER S B, SIRLIN C B, et al. Noninvasive, quantitative assessment of liver fat by MRI-PDFF as an endpoint in NASH trials[J]. Hepatology, 2018, 68(2): 763-772. DOI: 10.1002/hep.29797.
[24]
PARISINOS C A, WILMAN H R, THOMAS E L, et al. Genome-wide and Mendelian randomisation studies of liver MRI yield insights into the pathogenesis of steatohepatitis[J]. J Hepatol, 2020, 73(2): 241-251. DOI: 10.1016/j.jhep.2020.03.032.
[25]
WELLE C L, OLSON M C, REEDER S B, et al. Magnetic resonance imaging of liver fibrosis, fat, and iron[J]. Radiol Clin North Am, 2022, 60(5): 705-716. DOI: 10.1016/j.rcl.2022.04.003.
[26]
MAHALINGAM N, TROUT A T, GANDHI D B, et al. Associations between MRI T1 mapping, liver stiffness, quantitative MRCP, and laboratory biomarkers in children and young adults with autoimmune liver disease[J/OL]. Abdom Radiol (NY), 2022, 47(2): 672-683 [2024-07-07]. https://pubmed.ncbi.nlm.nih.gov/34932136/. DOI: 10.1007/s00261-021-03378-0.
[27]
ANDERSSON A, KELLY M, IMAJO K, et al. Clinical utility of magnetic resonance imaging biomarkers for identifying nonalcoholic steatohepatitis patients at high risk of progression: a multicenter pooled data and meta-analysis[J]. Clin Gastroenterol Hepatol, 2022, 20(11): 2451-2461. DOI: 10.1016/j.cgh.2021.09.041.
[28]
JAYASWAL A N A, LEVICK C, SELVARAJ E A, et al. Prognostic value of multiparametric magnetic resonance imaging, transient elastography and blood-based fibrosis markers in patients with chronic liver disease[J]. Liver Int, 2020, 40(12): 3071-3082. DOI: 10.1111/liv.14625.
[29]
EDDOWES P J, MCDONALD N, DAVIES N, et al. Utility and cost evaluation of multiparametric magnetic resonance imaging for the assessment of non-alcoholic fatty liver disease[J]. Aliment Pharmacol Ther, 2018, 47(5): 631-644. DOI: 10.1111/apt.14469.
[30]
LI J H, LU X, ZHU Z, et al. Head-to-head comparison of magnetic resonance elastography-based liver stiffness, fat fraction, and T1 relaxation time in identifying at-risk NASH[J]. Hepatology, 2023, 78(4): 1200-1208. DOI: 10.1097/HEP.0000000000000417.
[31]
DENNIS A, KELLY M D, FERNANDES C, et al. Correlations between MRI biomarkers PDFF and cT1 with histopathological features of non-alcoholic steatohepatitis[J/OL]. Front Endocrinol, 2020, 11: 575843 [2024-07-07]. https://pubmed.ncbi.nlm.nih.gov/33584535/. DOI: 10.3389/fendo.2020.575843.
[32]
TONEV D, SHUMBAYAWONDA E, TETLOW L A, et al. The effect of multi-parametric magnetic resonance imaging in standard of care for nonalcoholic fatty liver disease: protocol for a randomized control trial[J/OL]. JMIR Res Protoc, 2020, 9(10): e19189 [2024-07-07]. https://pubmed.ncbi.nlm.nih.gov/33104014/. DOI: 10.2196/19189.
[33]
MOJTAHED A, KELLY C J, HERLIHY A H, et al. Reference range of liver corrected T1 values in a population at low risk for fatty liver disease-a UK Biobank sub-study, with an appendix of interesting cases[J]. Abdom Radiol, 2019, 44(1): 72-84. DOI: 10.1007/s00261-018-1701-2.
[34]
AMANATIDOU A I, KALIORA A C, AMERIKANOU C, et al. Association of dietary patterns with MRI markers of hepatic inflammation and fibrosis in the MAST4HEALTH study[J/OL]. Int J Environ Res Public Health, 2022, 19(2): 971 [2024-07-07]. https://pubmed.ncbi.nlm.nih.gov/35055797/. DOI: 10.3390/ijerph19020971.
[35]
KOUTOUKIDIS D A, MOZES F E, JEBB S A, et al. A low-energy total diet replacement program demonstrates a favorable safety profile and improves liver disease severity in nonalcoholic steatohepatitis[J]. Obesity, 2023, 31(7): 1767-1778. DOI: 10.1002/oby.23793.
[36]
MOURA CUNHA G, FAN B Y, NAVIN P J, et al. Interpretation, reporting, and clinical applications of liver MR elastography[J/OL]. Radiology, 2024, 310(3): e231220 [2024-07-07]. https://pubmed.ncbi.nlm.nih.gov/38470236/. DOI: 10.1148/radiol.231220.
[37]
MANDUCA A, BAYLY P J, EHMAN R L, et al. MR elastography: principles, guidelines, and terminology[J]. Magn Reson Med, 2021, 85(5): 2377-2390. DOI: 10.1002/mrm.28627.
[38]
OZTURK A, OLSON M C, SAMIR A E, et al. Liver fibrosis assessment: MR and US elastography[J]. Abdom Radiol (NY), 2022, 47(9): 3037-3050. DOI: 10.1007/s00261-021-03269-4.
[39]
LIANG Y Z, LI D W. Magnetic resonance elastography in staging liver fibrosis in non-alcoholic fatty liver disease: a pooled analysis of the diagnostic accuracy[J/OL]. BMC Gastroenterol, 2020, 20(1): 89 [2024-07-07]. https://pubmed.ncbi.nlm.nih.gov/32254641/. DOI: 10.1186/s12876-020-01234-x.
[40]
XIAO G Q, ZHU S X, XIAO X, et al. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: a meta-analysis[J]. Hepatology, 2017, 66(5): 1486-1501. DOI: 10.1002/hep.29302.
[41]
HSU C, CAUSSY C, IMAJO K, et al. Magnetic resonance vs transient elastography analysis of patients with nonalcoholic fatty liver disease: a systematic review and pooled analysis of individual participants[J]. Clin Gastroenterol Hepatol, 2019, 17(4): 630-637. DOI: 10.1016/j.cgh.2018.05.059.
[42]
AJMERA V H, LIU A, SINGH S, et al. Clinical utility of an increase in magnetic resonance elastography in predicting fibrosis progression in nonalcoholic fatty liver disease[J]. Hepatology, 2020, 71(3): 849-860. DOI: 10.1002/hep.30974.
[43]
JUNG J, LOOMBA R R, IMAJO K, et al. MRE combined with FIB-4 (MEFIB) index in detection of candidates for pharmacological treatment of NASH-related fibrosis[J]. Gut, 2021, 70(10): 1946-1953. DOI: 10.1136/gutjnl-2020-322976.
[44]
TORRES L, SCHUCH A, LONGO L, et al. New FIB-4 and NFS cutoffs to guide sequential non-invasive assessment of liver fibrosis by magnetic resonance elastography in NAFLD[J/OL]. Ann Hepatol, 2023, 28(1): 100774 [2024-07-07]. https://pubmed.ncbi.nlm.nih.gov/36280013/. DOI: 10.1016/j.aohep.2022.100774.

上一篇 基于非高斯分布模型扩散加权成像在肝细胞癌中的研究进展
下一篇 肝细胞癌影像基因组学的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2