分享:
分享到微信朋友圈
X
综述
MRI在椎间盘退变导致的椎间盘源性下腰痛诊断与评估中的应用进展
赵海峰 赵祥博 杜雯娟 张皓

Cite this article as: ZHAO H F, ZHAO X B, DU W J, et al. Advances in the application of MRI in the diagnosis and evaluation of discogenic low back pain caused by intervertebral disc degeneration[J]. Chin J Magn Reson Imaging, 2024, 15(9): 224-229.本文引用格式:赵海峰, 赵祥博, 杜雯娟, 等. MRI在椎间盘退变导致的椎间盘源性下腰痛诊断与评估中的应用进展[J]. 磁共振成像, 2024, 15(9): 224-229. DOI:10.12015/issn.1674-8034.2024.09.039.


[摘要] 下腰痛是常见的健康问题,对个人和社会造成了沉重的负担,椎间盘退变引起的椎间盘源性下腰痛是最常见的病因之一。MR技术常用于椎间盘退变及其并发症的常规诊断。近年来,随着人工智能和定量技术的发展,基于T2WI的纹理分析以及各种MR定量技术逐渐成为椎间盘源性下腰痛早期诊断、致痛性椎间盘识别以及治疗方案决策、椎间盘再生医学疗效评估的重要工具。多模态影像融合、人工智能辅助诊断等有望在椎间盘源性下腰痛的诊断和治疗、椎间盘新兴治疗的发展中发挥不可替代的作用,致痛性椎间盘的高特异性识别序列如CEST、MRS等的应用以及椎间盘源性下腰痛与脑功能结合研究也将带来临床治疗方案的优化。本文重点对T2WI、定量MRI等MRI技术在腰椎退行性改变引起的椎间盘源性下腰痛中的应用现状和发展趋势予以综述,旨在为其早期诊断和椎间盘再生医学疗效评估提供更具潜力的MRI技术支持。
[Abstract] Lower back pain is a prevalent health issue that imposes a significant burden on individuals and society, and discogenic lower back pain caused by disc degeneration is one of the most common etiologic factors. MR techniques are widely used for the routine diagnosis of disc degeneration and its complications. In recent years, with the advancement of artificial intelligence and quantitative techniques, T2WI-based texture analysis as well as various quantitative MR techniques have gradually become important tools for the early diagnosis of discogenic low back pain, the identification of painful discs, and the decision-making of treatment plans, as well as the evaluation of the efficacy of disc regenerative medicine. Multimodal image fusion and artificial intelligence-assisted diagnosis are expected to play an irreplaceable role in the diagnosis and treatment of discogenic low back pain and in the development of new disc therapies, and the application of highly specific disc identification sequences such as CEST and MRS, as well as research on the association between discogenic low back pain and brain function, will also lead to the optimization of clinical treatment plans. In this paper, the current applications and developmental trends of MRI technologies such as T2WI and quantitative MRI in discogenic low back pain caused by lumbar intervertebral disc degenerative are reviewed, with the aim of providing more potential MRI technical support for its early diagnosis and the evaluation of the efficacy of disc regenerative medicine.
[关键词] 腰痛;椎间盘退变;椎间盘源性腰痛;磁共振成像;定量技术;早期诊断
[Keywords] low back pain;intervertebral disc degeneration;discogenic low back pain;magnetic resonance imaging;quantitative technique;early diagnosis

赵海峰 1, 2   赵祥博 1, 2   杜雯娟 1, 2   张皓 2*  

1 兰州大学第一临床医学院,兰州 730000

2 兰州大学第一医院放射科,甘肃省智能影像医学工程研究中心,兰州 730000

通信作者:张皓,E-mail: zhanghao@lzu.edu.cn

作者贡献声明::张皓负责研究方案的构思和设计,稿件全文的审阅和重要内容的修改,以及研究数据的解释;赵海峰负责研究方案的设计和稿件撰写,对本研究中获取的数据进行分析和解释;杜雯娟、赵祥博负责研究方案的完善和本研究中数据的获取、初步分析,并对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2024-05-09
接受日期:2024-09-10
中图分类号:R445.2  R681.53 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.09.039
本文引用格式:赵海峰, 赵祥博, 杜雯娟, 等. MRI在椎间盘退变导致的椎间盘源性下腰痛诊断与评估中的应用进展[J]. 磁共振成像, 2024, 15(9): 224-229. DOI:10.12015/issn.1674-8034.2024.09.039.

0 引言

       下腰痛(low back pain, LBP)是全球范围内导致残疾和生产力损失的主要原因之一,据统计,约80%的人一生中至少会经历一次LBP,其中相当一部分会发展为慢性疼痛[1]。LBP的病因复杂多样,椎间盘退变(intervertebral disc degeneration, IVDD)是引起LBP的最常见原因之一,尤其在50岁及以下的个体中[2]。在脊柱生理老化和多种致痛因素并存的复杂情况下,准确识别导致LBP的责任椎间盘是制订精准治疗方案的前提。椎间盘造影目前被视为诊断椎间盘源性LBP的金标准,但有创性和操作难度限制了其广泛应用[3]。传统的影像学检查依赖于观察者主观的视觉定性和半定量评估,难以识别致痛性椎间盘,导致治疗方案的选择缺乏针对性,影响治疗效果[4, 5, 6]。因此,开发高特异性的无创检查技术,对于提高LBP诊疗水平和改善患者预后至关重要。

       近年来,纹理分析、MRI定量技术等新兴影像技术的出现,为观察椎间盘的微观结构和成分变化提供了可能,并逐渐揭示了椎间盘变化与临床症状之间的相关性。此外,这些技术也为椎间盘再生医学治疗(如细胞治疗、基因治疗、组织工程等)的疗效提供了更精细、客观的评估手段。本文综述了不同MRI技术在IVDD导致的椎间盘源性LBP中的应用现状和发展趋势,旨在为其早期诊断和椎间盘再生医学疗效评估提供更具潜力的MRI技术支持,进而改善该LBP人群的治疗效果和生活质量。

1 IVDD引起椎间盘源性LBP的发病机制概述

       椎间盘复合体由中心的髓核(nucleus pulposus, NP)、周围的纤维环(annulus fibrosus, AF)及上下方软骨终板(cartilage endplate, CEP)构成。随着IVDD进展,椎间盘微环境失衡、细胞退变,细胞外基质退化、脱水并纤维化,导致NP和AF分界逐渐模糊、AF裂隙、椎间盘高度减低[7, 8]。椎间盘微环境变化引起炎症因子上调、巨噬细胞趋化,导致局部组织炎症和神经敏感性增加,并且促进椎间盘内血管和神经生长,导致LBP的发生[9, 10]

       IVDD的进展也导致了CEP损伤,椎间盘与椎体骨髓间串扰增加,可能导致相邻椎体骨髓的Modic改变[9]。此外,终板(包括CEP及软骨下骨)退变损伤又导致NP营养供应减少,加速椎间盘的退变,是椎间盘再生治疗面临的巨大挑战之一[11, 12]。因此,早期识别和干预IVDD及终板损伤有助于预防或延缓IVDD导致的椎间盘源性LBP的发生,有助于改善患者预后。

2 MRI在IVDD导致的椎间盘源性LBP的NP、AF中的进展

2.1 T2WI

       目前,Pfirrmann分级和改良Pfirrmann分级仍是最广泛应用的椎间盘评价方法。然而,尽管重度IVDD与LBP显著相关,但当排除了Modic改变和椎间盘突出等因素后这种关联不再明显[13],同时重度IVDD在部分无症状人群中存在,这些都限制了椎间盘半定量评估在LBP患者中的应用。近年来,有学者使用椎间盘高度进行定量分析,发现椎间盘高度可以区分Pfirrmann Ⅳ级和Ⅴ级椎间盘,且Pfirrmann Ⅳ级和Ⅴ级椎间盘与LBP相关[14],但这种评价方式忽视了椎间盘信号的变化,无法应用于早期IVDD患者。高信号区(high-intensity zone, HIZ)被认为反映了AF裂隙和NP组织向裂隙突出,与LBP相关[15],但该征象在部分无症状人群中也存在,因此其临床价值尚待进一步提高。有文献报道,体外实验发现超高场MRI下AF特征与镜下微观结构具有对应关系[16],可能在未来的研究中更有应用价值。此外,近年来基于T2WI的纹理特征分析也逐渐用于椎间盘的评估,分形维数、直方图分析、深度学习等与Pfirrmann分级具有良好的相关性[17, 18, 19],影像组学特征已被证实可以客观地揭示AF裂隙与相邻椎体骨髓间的串扰,有助于LBP患者的客观纵向研究[20]。随着超高场MRI的商用和人工智能技术的普及,T2WI可能在IVDD导致的椎间盘源性LBP的评估中发挥更重要的作用。

2.2 MRI定量技术

2.2.1 T2 mapping

       T2 mapping通过T2值变化定量评估椎间盘内蛋白多糖、水含量以及胶原蛋白排列结构的各向同性变化,在正常椎间盘与伴有突出或AF裂隙的椎间盘之间存在显著性差异[21]。OGON等[22]测量了前AF、NP和后AF的T2值,发现后AF的T2值与慢性LBP存在相关性,认为T2 mapping可用于椎间盘源性LBP的诊断。LIU等[23]使用T2 mapping评估腰椎牵引治疗后椎间盘含水量的短期变化,发现治疗后Pfirrmann Ⅱ~Ⅳ级椎间盘中NP的T2值增加、患者的临床症状缓解,还发现椎间盘NP的平均T2值和Oswestry残疾指数、视觉模拟量表评分的变化相关。此外,T2 mapping技术的改进也是目前的研究方向之一。RAUDNER等[24]采用基于GRAPPATINI技术的T2 mapping评估腰椎间盘,发现有AF撕裂的NP与正常对照间T2值存在差异,且采集时间明显缩短。他们还在另一项研究中推荐轴位T2 mapping提高读者内部和读者间的一致性[25]。因此,T2 mapping在IVDD导致的椎间盘源性LBP的诊断和治疗中都有一定的应用价值,且序列的改进促进了其临床实践的可行性。

2.2.2 T1ρ mapping

       T1ρ mapping对大分子和自由水质子间的慢运动敏感,与NP细胞外基质中葡胺聚糖(glycosaminoglycan, GAG)含量相关。以往研究发现T1ρ值在LBP患者与正常对照间的椎间盘存在差异,能够用于诊断甚至预测椎间盘源性LBP[26, 27]。然而,YANG等[28]比较了LBP患者T1ρ、T2 mapping与Pfirrmann分级、形态学变化间的相关性,发现T1ρ值检测早期IVDD能力不及T2值。近年来,T1ρ mapping主要作为椎间盘再生治疗的评价工具[2, 29]。因此,T1ρ值在椎间盘研究中可能存在一定的局限性。虽然与T2 值合用可能有助于提高其诊断IVDD导致的椎间盘源性LBP的能力,但该序列的扫描时间较长,限制了其临床应用。

2.2.3 T1 mapping和T2* mapping

       T1 mapping和T2* mapping目前主要用于评估IVDD,而对LBP的应用相对较少。有研究表明,基于T1值和T2值建立的有限元模型能够区分正常与损伤椎间盘间应力分布形态和生物力学变化差异[3],可能有助于椎间盘新兴疗法的疗效验证。另外,可变翻转角的T1 mapping能够快速成像,有望在椎间盘再生治疗的纵向疗效评估中发挥重要作用[30]。而KOLF等在采用T2* mapping评估腰IVDD时,并未观察到T2*值在昼夜变化方面类似T2值或T1值的差异[31]。因此,T1 mapping可能有诊断IVDD导致的椎间盘源性LBP的潜力,而T2* mapping在椎间盘研究中可能存在一定的局限性。

2.2.4 扩散成像技术

       扩散成像技术能够评估IVDD过程中组织微结构和水分子扩散的变化,主要包括扩散加权成像(diffusion weighted imaging, DWI)以及在其基础上发展而来的扩散张量成像(difusion tensor imaging, DTI)、扩散峰度成像(difusion kurtosis imaging, DKI)和体素内不相干运动(intravoxel incoherent motion, IVIM)等。DWI的定量参数表观扩散系数(apparent diffusion coefficient, ADC)值与椎间盘内各向同性扩散有关,是椎间盘研究中最早应用的参数之一。SHALASH等[32]采用ADC值等定量数据建立的二维稳态有限元模型研究了椎间盘的营养环境,证实葡萄糖和氧气等营养物质的浓度随着与CEP距离的增加而降低,而酸度增加,这与椎间盘干细胞治疗的疗效密切相关。因此,DWI在反映椎间盘的微环境变化和干细胞治疗疗效监测方面可能有一定潜力,但其与IVDD导致的椎间盘源性LBP的关系目前仍缺少足够的研究支持。

       DTI能利用水分子的各向异性扩散特性,通过平均扩散系数(mean diffusivity, MD)值和各向异性分数(fractional anisotropy, FA)值定量NP中微观成分和结构变化[33],还能通过纤维束追踪可视化并定量AF中胶原纤维排列[34]。基于非高斯分布模型的DKI能更真实地反映组织内水分子扩散和组织微结构的复杂程度,MD值和平均扩散峰度(mean kurtosis, MK)值对椎间盘微观结构改变的定量检测能力优于T2* mapping[35]。LI等[36]还发现,相比较于无症状人群,慢性LBP患者NP的FA值、MK值略增高,ADC值、MD值略降低,但无显著差异,而AF纤维束追踪的定量参数(长度和体积)在两组间存在差异。因此,DTI及DKI,尤其是纤维束追踪技术可能有助于慢性LBP患者的评估。基于双指数模型的IVIM能够同时获得组织的扩散和微循环灌注信息,对退变椎间盘的血管形成情况和IVDD程度进行评估[37],可能进一步反映致痛性椎间盘的复杂微观变化。总之,这些DWI的衍生序列从NP和AF两方面分别探索致痛性椎间盘的微观变化,可能为椎间盘治疗方案的选择提供思路,但其临床应用价值仍需进一步验证。

2.2.5 化学交换饱和转移成像

       化学交换饱和转移(chemical exchange saturation transfer, CEST)成像对难以直接检测的低浓度化合物具有较高的敏感度。与T2、T1ρ mapping等定量技术相比,CEST能够直接检测椎间盘内源性GAG浓度。PELLED等[38]及BEZ等[39]基于IVDD动物模型发现定量CEST能够检测椎间盘中pH值变化,后续研究又发现LBP患者发生疼痛的椎间盘定量CEST值显著高于非疼痛椎间盘,认为定量CEST可用于椎间盘源性LBP的诊断。在CEST的基础上,采集多参数代谢和微环境信息的Z-光谱MRI也有用于椎间盘研究的报道。LI等[40]采用CEST收集LBP患者的Z光谱MRI数据,发现LBP组的椎间盘含水量、胶原结合水和胶原蛋白较少,pH值可能较低,认为pH降低可能是导致LBP的重要病理因素。此外,还有学者通过Ω图的应用以及表观交换依赖性弛豫、洛伦兹分析等方法使定量CEST实现了椎间盘的双质子池(GAG和pH)成像[41]。因此,定量CEST有望在IVDD导致的椎间盘源性LBP的诊断和治疗中发挥更大的价值,具有广阔的应用前景。

2.2.6 磁共振波谱

       磁共振波谱(MR spectroscopy, MRS)通过对整合到水信号中的各种代谢物的信号进行分离,得到体内单个代谢物状态的无创定量结果。GORNET等[42, 43]将MRS与椎间盘造影结果进行比较,发现MRS能够准确识别致痛性椎间盘和评估椎间盘结构完整性,能够作为量化疼痛椎间盘化学特征(如乳酸、丙酸盐)的生物标志物,随后又在椎间盘术后6~24个月随访患者的临床症状,发现MRS有阳性发现的患者手术成功率更高,认为MRS有助于LBP临床治疗策略的选择和提高远期疗效。此外,越来越多的研究采用分子生物学技术和MRS代谢组学对致痛性椎间盘的物质代谢及相互作用机制进行探索。GUO等[44]采用MRS通过动物模型发现致痛性椎间盘的代谢特征主要与乳酸、N-乙酰基/蛋白聚糖、胆碱含量有关,而炎性介质含量变化与甘氨酸-丝氨酸-苏氨酸轴有关。TOCZYLOWSKA等[45]在LBP患者的致痛性椎间盘中发现类似的化合物含量变化。因此,MRS能够从生化成分变化角度更特异地识别致痛性椎间盘,这使临床能更早地诊断和干预IVDD导致的椎间盘源性LBP,也可能有助于相关的靶向药物的研究,在LBP的诊断和治疗中有巨大的应用价值。

3 MRI在IVDD导致的椎间盘源性LBP的终板中的进展

       CEP组成的生理变化与IVDD和椎间盘源性LBP的发生有关[46],CEP的靶向治疗也逐渐成为延缓IVDD新兴的治疗方法之一[47]。因此,CEP评估是IVDD和LBP研究的重要内容。虽然CEP的短T2特性使其成像存在困难,但超短回波时间(ultrashort echo time, UTE)等序列的应用使CEP的可视化和无创评估成为可能。WEI等[48]使用UTE-T1ρ替代传统T1ρ对LBP患者的CEP进行可视化定量评估,发现外后AF、下CEP和NP的T1ρ值与正常对照间存在差异。BONNHEIM等[49]发现慢性LBP患者CEP的UTE-T2*值与NP的T1ρ值相关。因此,UTE序列能够对包括CEP在内的整个椎间盘进行可视化定量评价,可能更真实地反映致痛性椎间盘的微观变化,对于LBP的病因诊断具有重要价值。随着UTE序列的不断改进和完善,其可能在CEP与IVDD和致痛性椎间盘间作用机制、椎间盘再生医学的研究中发挥更大价值。

       相比较于CEP,骨性终板与椎间盘的关系更容易被忽视。作为晚期IVDD的常见表现,以往的研究认为Modic Ⅰ型改变与椎间盘源性LBP相关[50],但近年来的观点认为Modic改变、终板缺损等终板病变与椎体性LBP有关[6]。然而,骨性终板对椎间盘的营养作用,仍然使骨性终板在IVDD及其导致的椎间盘源性LBP中具有一定的研究价值。目前,关于骨性终板的定量研究仍较少。LAGERSTRAND等[51]发现负载MRI下LBP患者上终板的T2值变化较对照组增大,认为这可能与早期炎症或营养运输受损相关,但他们没有揭示这种变化与椎间盘微观变化的关系。此外,骨性终板的厚度、孔隙数量、血管密度等微观结构的变化能否采用MRI进行定量分析尚缺乏足够的文献支持。基于UTE序列的固态定量1H和31P已被证实能够评价皮质骨的孔隙率(孔隙水)、类骨密度(胶原结合水)和矿化程度(31P含量)[52],可能具有评估骨性终板微观结构的潜力。IVIM成像能够量化的骨髓微循环灌注变化[53],也可能在骨性终板的研究中发挥重要作用。总之,UTE技术的应用使CEP在IVDD导致的椎间盘源性LBP的研究中逐渐被重视,但骨性终板在IVDD及其导致的椎间盘源性LBP中的研究价值尚待进一步拓展。

4 局限性与未来研究前景

       目前,T2 mapping、T1ρ mapping、DKI、CEST、MRS等技术的定量参数已被证实在LBP患者与无症状人群间存在差异,其中T1ρ、CEST及MRS甚至能够识别致痛性椎间盘。然而,这些研究一般仅评价临床症状与椎间盘定量数据的相关性,样本量偏小,且大多存在缺乏病理金标准、LBP患者病因异质性等问题,可能需要更大样本量、纵向的研究进一步验证。此外,硬件设施也使这些特异性较高的序列存在扫描时间长、分辨率低等问题,限制了其临床应用。

       未来关于致痛性椎间盘的影像医学研究可能主要集中在以下几个方面:(1)通过多模态影像融合,如双模态MRI(dual MRI)、合成MRI等,更全面了解椎间盘的健康状况,提高诊断的准确性和特异性,甚至多参数联合构建NP细胞的生境成像模型,用于预测IVDD导致的椎间盘源性LBP的发生发展,以及评估椎间盘再生治疗和靶向治疗的效果。(2)利用深度学习等人工智能技术,自动识别致痛性椎间盘,提高诊断效率。(3)随着硬件设施和数学模型的改善,CEST、MRS等定量技术的准确性、临床应用的可行性将大幅增加;另外,新的成像方法如振荡梯度自旋回波(oscillating gradient spin-echo, OGSE)序列可以实现对更精细微观尺度信息的提取[54]。这些序列未来可能在椎间盘定量研究中广泛应用。(4)LBP的发生还涉及脑功能的改变[55],未来对于IVDD导致的椎间盘源性LBP的研究可能将临床症状、脑功能MRI与腰椎MRI结合,更全面地解析IVDD导致的椎间盘源性LBP发生的神经机制,探索更完善的临床治疗方案。

5 总结

       综上所述,MRI对于IVDD导致的椎间盘源性LBP的评估目前仍处于初步研究阶段,未来随着MRI技术的不断发展和临床应用,MRI有望服务于该LBP人群的早期诊断、治疗方案选择和调整、疗效评估全过程,实现IVDD导致的椎间盘源性LBP患者的个体化治疗。

[1]
BERG-JOHANSEN B, HAN M, FIELDS A J, et al. Cartilage endplate thickness variation measured by ultrashort echo-time MRI is associated with adjacent disc degeneration[J/OL]. Spine, 2018, 43(10): E592-E600 [2024-02-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882595. DOI: 10.1097/BRS.0000000000002432.
[2]
CHERIF H, LI L, SNUGGS J, et al. Injectable hydrogel induces regeneration of naturally degenerate human intervertebral discs in a loaded organ culture model[J]. Acta Biomater, 2024, 176: 201-220. DOI: 10.1016/j.actbio.2023.12.041.
[3]
DENEUVILLE J P, YUSHCHENKO M, VENDEUVRE T, et al. Quantitative MRI to characterize the nucleus pulposus morphological and biomechanical variation according to sagittal bending load and radial fissure, an ex vivo ovine specimen proof-of-concept study[J/OL]. Front Bioeng Biotechnol, 2021, 9: 676003 [2024-05-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8220087. DOI: 10.3389/fbioe.2021.676003.
[4]
SOARES FONSECA L, PEREIRA SILVA J, BASTOS SOUZA M, et al. Effectiveness of pharmacological and non-pharmacological therapy on pain intensity and disability in older people with chronic nonspecific low back pain: a systematic review with meta-analysis[J]. Eur Spine J, 2023, 32(9): 3245-3271. DOI: 10.1007/s00586-023-07857-4.
[5]
KNEZEVIC N N, CANDIDO K D, VLAEYEN J W S, et al. Low back pain[J]. Lancet, 2021, 398(10294): 78-92. DOI: 10.1016/S0140-6736(21)00733-9.
[6]
VAN DER GRAAF J W, KROEZE R J, BUCKENS C F M, et al. MRI image features with an evident relation to low back pain: a narrative review[J]. Eur Spine J, 2023, 32(5): 1830-1841. DOI: 10.1007/s00586-023-07602-x.
[7]
WOCIAL K, FELDMAN B A, MRUK B, et al. Imaging features of the aging spine[J]. Pol J Radiol, 2021, 86: 380-386. DOI: 10.5114/pjr.2021.107728.
[8]
XIN J G, WANG Y J, ZHENG Z, et al. Treatment of intervertebral disc degeneration[J]. Orthop Surg, 2022, 14(7): 1271-1280. DOI: 10.1111/os.13254.
[9]
BERMUDEZ-LEKERIKA P, CRUMP K B, TSERANIDOU S, et al. Immuno-modulatory effects of intervertebral disc cells[J/OL]. Front Cell Dev Biol, 2022, 10: 924692 [2024-03-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277224. DOI: 10.3389/fcell.2022.924692.
[10]
YE F B, LYU F J, WANG H, et al. The involvement of immune system in intervertebral disc herniation and degeneration[J/OL]. JOR Spine, 2022, 5(1): e1196 [2024-03-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8966871. DOI: 10.1002/jsp2.1196.
[11]
LI W H, ZHAO H, ZHOU S B, et al. Does vertebral osteoporosis delay or accelerate lumbar disc degeneration? A systematic review[J]. Osteoporos Int, 2023, 34(12): 1983-2002. DOI: 10.1007/s00198-023-06880-x.
[12]
BINCH A L A, FITZGERALD J C, GROWNEY E A, et al. Cell-based strategies for IVD repair: clinical progress and translational obstacles[J]. Nat Rev Rheumatol, 2021, 17(3): 158-175. DOI: 10.1038/s41584-020-00568-w.
[13]
KOVACS F M, ARANA E, ROYUELA A, et al. Disc degeneration and chronic low back pain: an association which becomes nonsignificant when endplate changes and disc contour are taken into account[J]. Neuroradiology, 2014, 56(1): 25-33. DOI: 10.1007/s00234-013-1294-y.
[14]
CHEN X L, LI X Y, WANG Y, et al. Relation of lumbar intervertebral disc height and severity of disc degeneration based on Pfirrmann scores[J/OL]. Heliyon, 2023, 9(10): e20764 [2024-03-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585210. DOI: 10.1016/j.heliyon.2023.e20764.
[15]
SIMA S, CHEN X L, SHELDRICK K, et al. Reconsidering high intensity zones: its role in intervertebral disk degeneration and low back pain[J]. Eur Spine J, 2024, 33(4): 1474-1483. DOI: 10.1007/s00586-024-08185-x.
[16]
WADE K, BERGER-ROSCHER N, SAGGESE T, et al. How annulus defects can act as initiation sites for herniation[J]. Eur Spine J, 2022, 31(6): 1487-1500. DOI: 10.1007/s00586-022-07132-y.
[17]
MA J C, WANG R F, YU Y, et al. Is fractal dimension a reliable imaging biomarker for the quantitative classification of an intervertebral disk?[J]. Eur Spine J, 2020, 29(5): 1175-1180. DOI: 10.1007/s00586-020-06370-2.
[18]
WALDENBERG C, HEBELKA H, BRISBY H, et al. MRI histogram analysis enables objective and continuous classification of intervertebral disc degeneration[J]. Eur Spine J, 2018, 27(5): 1042-1048. DOI: 10.1007/s00586-017-5264-7.
[19]
GAO F, LIU S, ZHANG X D, et al. Automated grading of lumbar disc degeneration using a push-pull regularization network based on MRI[J]. J Magn Reson Imaging, 2021, 53(3): 799-806. DOI: 10.1002/jmri.27400.
[20]
WALDENBERG C, BRISBY H, HEBELKA H, et al. Associations between vertebral localized contrast changes and adjacent annular fissures in patients with low back pain: a radiomics approach[J/OL]. J Clin Med, 2023, 12(15): 4891 [2024-04-26]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10420134. DOI: 10.3390/jcm12154891.
[21]
TRATTNIG S, STELZENEDER D, GOED S, et al. Lumbar intervertebral disc abnormalities: comparison of quantitative T2 mapping with conventional MR at 3.0 T[J]. Eur Radiol, 2010, 20(11): 2715-2722. DOI: 10.1007/s00330-010-1843-2.
[22]
OGON I, TAKEBAYASHI T, TAKASHIMA H, et al. Analysis of neuropathic pain using magnetic resonance imaging T2 mapping of intervertebral disc in chronic low back pain[J]. Asian Spine J, 2019, 13(3): 403-409. DOI: 10.31616/asj.2018.0147.
[23]
LIU Z Z, WEN H Q, ZHU Y Q, et al. Short-term effect of lumbar traction on intervertebral discs in patients with low back pain: correlation between the T2 value and ODI/VAS score[J]. Cartilage, 2021, 13(1_suppl): 414S-423S. DOI: 10.1177/1947603521996793.
[24]
RAUDNER M, SCHREINER M M, HILBERT T, et al. Clinical implementation of accelerated T2 mapping: quantitative magnetic resonance imaging as a biomarker for annular tear and lumbar disc herniation[J]. Eur Radiol, 2021, 31(6): 3590-3599. DOI: 10.1007/s00330-020-07538-6.
[25]
RAUDNER M, SCHREINER M M, WEBER M, et al. Compositional magnetic resonance imaging in the evaluation of the intervertebral disc: Axial vs sagittal T2 mapping[J]. J Orthop Res, 2020, 38(9): 2057-2064. DOI: 10.1002/jor.24691.
[26]
BORTHAKUR A, MAURER P M, FENTY M, et al. T1ρ magnetic resonance imaging and discography pressure as novel biomarkers for disc degeneration and low back pain[J]. Spine, 2011, 36(25): 2190-2196. DOI: 10.1097/BRS.0b013e31820287bf.
[27]
FENTY M, CRESCENZI R, FRY B, et al. Novel imaging of the intervertebral disk and pain[J]. Global Spine J, 2013, 3(3): 127-132. DOI: 10.1055/s-0033-1347930.
[28]
YANG L, SUN C, GONG T, et al. T1ρ, T2 and T2* mapping of lumbar intervertebral disc degeneration: a comparison study[J/OL]. BMC Musculoskelet Disord, 2022, 23(1): 1135 [2024-03-26]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793566. DOI: 10.1186/s12891-022-06040-y.
[29]
LIU Z G, LI J W, HU M, et al. The optimal timing of hydrogel injection for treatment of intervertebral disc degeneration: quantitative analysis based on T1ρ MR imaging[J/OL]. Spine, 2020, 45(22): E1451-E1459 [2024-03-25]. https://journals.lww.com/spinejournal/abstract/2020/11150/the_optimal_timing_of_hydrogel_injection_for.2.aspx. DOI: 10.1097/BRS.0000000000003667.
[30]
BOUHSINA N, DECANTE C, HARDEL J B, et al. Comparison of MRI T1, T2, and T2* mapping with histology for assessment of intervertebral disc degeneration in an ovine model[J/OL]. Sci Rep, 2022, 12(1): 5398 [2024-03-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8967912. DOI: 10.1038/s41598-022-09348-w.
[31]
KOLF A K, KONIECZNY M, HESPER T, et al. T2* mapping of the adult intervertebral lumbar disc: normative data and analysis of diurnal effects[J]. J Orthop Res, 2019, 37(9): 1956-1962. DOI: 10.1002/jor.24327.
[32]
SHALASH W, AHRENS S R, BARDONOVA L A, et al. Patient-specific apparent diffusion maps used to model nutrient availability in degenerated intervertebral discs[J/OL]. JOR Spine, 2021, 4(4): e1179 [2024-03-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717112. DOI: 10.1002/jsp2.1179.
[33]
SHEN S, WANG H, ZHANG J, et al. Diffusion weighted imaging, diffusion tensor imaging, and T2* mapping of lumbar intervertebral disc in young healthy adults[J/OL]. Iran J Radiol, 2016, 13(1): e30069 [2024-06-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841898. DOI: 10.5812/iranjradiol.30069.
[34]
STEIN D, ASSAF Y, DAR G, et al. 3D virtual reconstruction and quantitative assessment of the human intervertebral disc's annulus fibrosus: a DTI tractography study[J/OL]. Sci Rep, 2021, 11(1): 6815 [2024-04-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994907. DOI: 10.1038/s41598-021-86334-8.
[35]
ZENG F F, ZHA Y F, LI L, et al. A comparative study of diffusion kurtosis imaging and T2* mapping in quantitative detection of lumbar intervertebral disk degeneration[J]. Eur Spine J, 2019, 28(9): 2169-2178. DOI: 10.1007/s00586-019-06007-z.
[36]
LI L, ZHOU Z G, XIONG W, et al. Characterization of the microstructure of the intervertebral disc in patients with chronic low back pain by diffusion kurtosis imaging[J]. Eur Spine J, 2019, 28(11): 2517-2525. DOI: 10.1007/s00586-019-06095-x.
[37]
李瑞梅, 王丹, 魏小二, 等. DCE-MRI和IVIM-DWI对下腰痛患者退变椎间盘新生血管的研究[J]. 磁共振成像, 2018, 9(9): 667-672. DOI: 10.12015/issn.1674-8034.2018.09.005.
LI R M, WANG D, WEI X E, et al. Study of DCE-MRI and IVIM-DWI on degenerative intervertebral disc neovascularization in patients with low back pain[J]. Chin J Magn Reson Imag, 2018, 9(9): 667-672. DOI: 10.12015/issn.1674-8034.2018.09.005.
[38]
PELLED G, SALAS M M, HAN P, et al. Intradiscal quantitative chemical exchange saturation transfer MRI signal correlates with discogenic pain in human patients[J/OL]. Sci Rep, 2021, 11(1): 19195 [2024-04-14]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8478892. DOI: 10.1038/s41598-021-97672-y.
[39]
BEZ M, ZHOU Z W, SHEYN D, et al. Molecular pain markers correlate with pH-sensitive MRI signal in a pig model of disc degeneration[J/OL]. Sci Rep, 2018, 8(1): 17363 [2024-04-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6255799. DOI: 10.1038/s41598-018-34582-6.
[40]
LI L, ZHOU Z G, XIONG W, et al. Characterization of microenvironmental changes in the intervertebral discs of patients with chronic low back pain using multiparametric MRI contrasts extracted from Z-spectrum[J]. Eur Spine J, 2021, 30(4): 1063-1071. DOI: 10.1007/s00586-021-06733-3.
[41]
RADKE K L, WILMS L M, FRENKEN M, et al. Lorentzian-corrected apparent exchange-dependent relaxation (LAREX) Ω-plot analysis-an adaptation for qCEST in a multi-pool system: comprehensive in silico, in situ, and in vivo studies[J/OL]. Int J Mol Sci, 2022, 23(13): 6920 [2024-06-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9266897. DOI: 10.3390/ijms23136920.
[42]
GORNET M F, EASTLACK R K, PEACOCK J, et al. Magnetic resonance spectroscopy (MRS) identification of chemically painful lumbar discs leads to improved 6-, 12-, and 24-month outcomes for discogenic low back pain surgeries[J]. Eur Spine J, 2023, 32(6): 1973-1984. DOI: 10.1007/s00586-023-07665-w.
[43]
GORNET M G, PEACOCK J, RYKEN T, et al. Establishing a gold standard for noninvasive identification of painful lumbar discs: prospective comparison of magnetic resonance spectroscopy vs low-pressure provocation discography[J/OL]. Int J Spine Surg, 2024, 18(1): 91-100 [2024-03-24]. https://www.ijssurgery.com/content/18/1/91. DOI: 10.14444/8574.DOI:10.14444/8574.
[44]
GUO Z Y, MA Y Y, WANG Y Q, et al. The role of IL-6 and TMEM100 in lumbar discogenic pain and the mechanism of the Glycine-serine-threonine metabolic axis: a metabolomic and molecular biology study[J]. J Pain Res, 2023, 16: 437-461. DOI: 10.2147/JPR.S400871.
[45]
TOCZYLOWSKA B, WOZNICA M, ZIEMINSKA E, et al. Metabolic biomarkers differentiate a surgical intervertebral disc from a nonsurgical intervertebral disc[J/OL]. Int J Mol Sci, 2023, 24(13): 10572 [2024-04-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341471. DOI: 10.3390/ijms241310572.
[46]
CRUMP K B, ALMINNAWI A, BERMUDEZ-LEKERIKA P, et al. Cartilaginous endplates: a comprehensive review on a neglected structure in intervertebral disc research[J/OL]. JOR Spine, 2023, 6(4): e1294 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10751983. DOI: 10.1002/jsp2.1294.
[47]
JING X Z, WANG W C, HE X N, et al. HIF-2α/TFR1 mediated iron homeostasis disruption aggravates cartilage endplate degeneration through ferroptotic damage and mtDNA release: a new mechanism of intervertebral disc degeneration[J]. J Orthop Translat, 2024, 46: 65-78. DOI: 10.1016/j.jot.2024.03.005.
[48]
WEI Z, LOMBARDI A F, LEE R R, et al. Comprehensive assessment of in vivo lumbar spine intervertebral discs using a 3D adiabatic T1ρ prepared ultrashort echo time (UTE-Adiab-T1ρ) pulse sequence[J]. Quant Imaging Med Surg, 2022, 12(1): 269-280. DOI: 10.21037/qims-21-308.
[49]
BONNHEIM N B, WANG L, LAZAR A A, et al. Deep-learning-based biomarker of spinal cartilage endplate health using ultra-short echo time magnetic resonance imaging[J]. Quant Imaging Med Surg, 2023, 13(5): 2807-2821. DOI: 10.21037/qims-22-729.
[50]
THOMPSON K J, DAGHER A P, ECKEL T S, et al. Modic changes on MR images as studied with provocative diskography: clinical relevance: a retrospective study of 2457 disks[J]. Radiology, 2009, 250(3): 849-855. DOI: 10.1148/radiol.2503080474.
[51]
LAGERSTRAND K, HEBELKA H, BRISBY H. Low back pain patients and controls display functional differences in endplates and vertebrae measured with T2-mapping[J]. Eur Spine J, 2019, 28(2): 234-240. DOI: 10.1007/s00586-018-5824-5.
[52]
JONES B C, LEE H, CHENG C C, et al. MRI quantification of cortical bone porosity, mineralization, and morphologic structure in postmenopausal osteoporosis[J/OL]. Radiology, 2023, 307(2): e221810 [2024-04-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102628. DOI: 10.1148/radiol.221810.
[53]
LIU J, KARFOUL A, MARAGE L, et al. Estimation of intravoxel incoherent motion (IVIM) parameters in vertebral bone marrow: a comparative study of five algorithms[J]. MAGMA, 2023, 36(5): 837-847. DOI: 10.1007/s10334-023-01064-4.
[54]
MAZZOLI V, MOULIN K, KOGAN F, et al. Diffusion tensor imaging of skeletal muscle contraction using oscillating gradient spin echo[J/OL]. Front Neurol, 2021, 12: 608549 [2024-06-19]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7917051. DOI: 10.3389/fneur.2021.608549.
[55]
MEI Y D, GAO H, CHEN W F, et al. Research on the multidimensional brain remodeling mechanisms at the level of brain regions, circuits, and networks in patients with chronic lower back pain caused by lumbar disk herniation[J/OL]. Front Neurosci, 2024, 18: 1357269 [2024-04-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956359. DOI: 10.3389/fnins.2024.1357269.

上一篇 MRI在子宫肉瘤术前诊断中的研究进展
下一篇 影像组学在多发性骨髓瘤中的临床研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2