分享:
分享到微信朋友圈
X
临床研究
多PLD ASL成像预测急性缺血性脑卒中机械取栓术后远期神经功能良好的价值
段琳言 於帆 王静娟 张苗 卢洁

Cite this article as: DUAN L Y, YU F, WANG J J, et al. Efficacy of multidelay arterial spin labeling MRI in predicting long-term favorable neurological function in acute ischemic stroke patients after mechanical thrombectomy[J]. Chin J Magn Reson Imaging, 2024, 15(10): 86-92.本文引用格式:段琳言, 於帆, 王静娟, 等. 多PLD ASL成像预测急性缺血性脑卒中机械取栓术后远期神经功能良好的价值[J]. 磁共振成像, 2024, 15(10): 86-92. DOI:10.12015/issn.1674-8034.2024.10.015.


[摘要] 目的 探讨多标记后延迟(post labeling delay, PLD)时间的动脉自旋标记(arterial spin labeling, ASL)成像预测急性缺血性脑卒中(acute ischemic stroke, AIS)患者机械取栓术后远期神经良好的价值。材料与方法 回顾性纳入2021年6月至2023年11月于首都医科大学宣武医院急性卒中绿色通道行机械取栓治疗的AIS患者病例。所有患者机械取栓前均接受头部CT平扫、CT灌注(CT perfusion, CTP)及CT血管成像(CT angiography, CTA),术后24小时内均行扩散加权成像(diffusion weighted imaging, DWI)及多PLD ASL成像(PLD=1.00 s、1.22 s、1.48 s、1.78 s、2.15 s、2.62 s、3.32 s)。依据术后患侧与健侧脑组织低灌注区域体积分为良好灌注组和低灌注组,比较两组的临床一般资料。采用改良Rankin量表(modified Rankin Scale, mRS)评价患者术后90天神经功能预后,定义0~2分为神经功能良好,通过二元logistic回归、受试者工作特征(receiver operating characteristic curve, ROC)曲线分析多PLD ASL预测患者术后90天神经功能良好的价值。结果 共纳入机械取栓术后的AIS患者32例,其中良好灌注组14例(43.8%),低灌注组18例(56.2%)。良好灌注组7天内美国国立卫生研究院卒中量表(National Institutes of Health Stroke Scale, NIHSS)评分(4.10±3.76)显著低于低灌注组(7.80±4.51)(P=0.02);∆NIHSS(8.10±4.99)显著高于低灌注组(4.20±3.81)(P=0.016);90天功能良好发生率(92.9%)显著高于低灌注组(50.0%)(P=0.019)。32例患者中22例实现90天神经功能良好(68.8%)。校正年龄、NIHSS入院、术前缺血半暗带等因素后发现术后多PLD ASL良好灌注是90天神经功能良好的独立预测指标(OR=14.246;95% CI:1.090~186.273,P=0.043),ROC曲线下面积为0.828(95% CI: 0.666~0.990),预测90天神经功能良好的敏感度为75.0%,特异度为87.0%。结论 术后24小时内多PLD ASL良好灌注与低灌注组间近期及远期神经功能预后均有显著差异,且术后24小时内多PLD ASL良好灌注是患者90天神经功能预后良好的独立预测指标。
[Abstract] Objective To explore the efficacy of multidelay arterial spin labeling imaging (ASL) MRI in predicting long-term favorable neurological function after mechanical thrombectomy in patients with acute ischemic stroke (AIS).Materials and Methods Patients who received mechanical thrombectomy in the AIS Greenway Department of Xuanwu Hospital, Capital Medical University from June 2021 to November 2023 were retrospectively analyzed. All patients underwent noncontrast CT, CT perfusion (CTP), and CT angiography (CTA) before mechanical thrombectomy. Diffusion weighted imaging (DWI) and multidelay ASL MRI [post labeling delay (PLD)=1.00, 1.22, 1.48, 1.78, 2.15, 2.62, 3.32 s] were performed within 24 hours after surgery. Patients were divided into good perfusion group and poor perfusion group according to the volume of hypoperfusion in the affected side and unaffected side. Clinical data of the two groups were compared. The modified Rankin Scale (mRS) was used to evaluate the 90 d post-surgery neurological function prognosis of patients. 0~2 was defined as favorable function. The value of multidelay ASL MRI in predicting favorable neurological function at 90 d after surgery was analyzed by binary logistic regression model and receiver operating characteristic (ROC) curve.Results A total of 32 patients with AIS after mechanical thrombectomy were included, with 14 (43.8%) in good perfusion group and 18 (56.2%) in poor perfusion group. Compared to poor perfusion group, NIHSS7 d (4.10±3.76 vs. 7.80±4.51, P=0.02) was significantly lower in good perfusion group, ∆NIHSS (8.10±4.99 vs. 4.20±3.81, P=0.016) and the incidence of favorable neurological function at 90 d (92.9% vs. 50.0%, P=0.019) were significantly higher in good perfusion group. Of the 32 patients, 22 achieved favorable neurological function at 90 d (68.8%). After adjusting age, NIHSS at admission, pre-surgery ischemic penumbra, the binary logistic regression showed that 24-hour post-surgery good perfusion in multidelay ASL MRI was an independent predictor of favorable neurological function at 90 d (OR=14.246; 95% CI: 1.090-186.273, P=0.043). The area under ROC curve was 0.828 (95% CI: 0.666-0.990), the sensitivity was 75.0% and the specificity was 87.0%.Conclusions There were significant differences in short-term and long-term neurological function prognosis between the good perfusion group and the poor perfusion group. 24-hour post-surgery good perfusion in multidelay ASL MRI could be used as an independent predictor of the favorable neurological function at 90 d.
[关键词] 急性缺血性卒中;动脉自旋标记成像;磁共振成像;机械取栓;预后;标记后延迟时间
[Keywords] acute ischemic stroke;arterial spin labeling;magnetic resonance imaging;mechanical thrombectomy;prognosis;post-labeling delay

段琳言 1, 2   於帆 1, 2   王静娟 1, 2   张苗 1, 2   卢洁 1, 2*  

1 首都医科大学宣武医院放射与核医学科,北京 100053

2 磁共振成像脑信息学北京市重点实验室,北京 100053

通信作者:卢洁,E-mail: imaginglu@hotmail.com

作者贡献声明:卢洁设计本研究的方案,对稿件重要内容进行了修改;段琳言起草和撰写稿件,获取、分析和解释本研究的数据;於帆,王静娟,张苗获取、分析或解释本研究的数据,对稿件重要内容进行了修改;卢洁获得了宣武医院汇智人才工程-支持计划-领军人才项目的资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 宣武医院汇智人才工程-支持计划-领军人才项目 HZ2021ZCLJ005
收稿日期:2024-06-27
接受日期:2024-10-10
中图分类号:R445.2  R743.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.10.015
本文引用格式:段琳言, 於帆, 王静娟, 等. 多PLD ASL成像预测急性缺血性脑卒中机械取栓术后远期神经功能良好的价值[J]. 磁共振成像, 2024, 15(10): 86-92. DOI:10.12015/issn.1674-8034.2024.10.015.

0 引言

       脑卒中以其高发病率、高致残率及高死亡率造成了沉重的社会负担,2020年我国脑卒中发病率已跃居世界首位,全年发病人数达340万[1, 2]。急性缺血性脑卒中(acute ischemic stroke, AIS)是脑卒中的最常见类型,早期识别AIS患者并快速展开临床治疗可以降低脑卒中的致死率及致残率[3, 4]。前循环大血管闭塞主要指颈内动脉系统的供血血管受累,大量研究表明,脑血运重建治疗对此类患者有效[5]。机械取栓是大血管闭塞AIS患者的有效治疗方式,可以通过恢复脑组织供血挽救缺血半暗带[6, 7]。然而即使机械取栓术后成功再通,部分患者梗死组织仍呈现低灌注状态,可能归因于毛细血管床水肿、微血管损伤或术中栓子脱落等因素引起的无复流现象[8]

       传统用于评估AIS患者灌注水平的成像方式包括CT灌注成像(CT perfusion, CTP)及动态磁敏感对比增强(dynamic susceptibility contrast agent-enhanced, DSC)灌注加权成像[9, 10]。二者均需使用外源性对比剂来计算相对脑血流量(relative cerebral blood flow, rCBF),存在引起肾功能损害加重、对比剂过敏等风险,且由于健侧代偿水平不同,量化计算的rCBF值可靠性也会减低[11]。动脉自旋标记(arterial spin labeling, ASL)成像通过标记动脉血中的内源性水质子定量测量脑组织血流灌注水平,兼具无创、无辐射、无对比剂等优势,已被纳入AIS MRI方案[12, 13]。LU等[14]研究证明机械取栓术后ASL高灌注可作为90天神经功能预后良好的独立预测因子,敏感度和特异度分别达到84.8%及61.9%。早期预测AIS患者机械取栓术后的临床预后在评价疗效的同时,为不同患者进行个体化治疗提供了影像学依据。既往研究多采用单一标记后延迟时间(post-labeling delay, PLD)的ASL成像,在定量计算脑血流量(cerebral blood flow, rCBF)时没有考虑到AIS患者不同脑区之间动脉传输时间存在差异[15, 16]。多PLD ASL扫描能够提供血液流入采集层面的动态变化图像,获得动脉传输时间及CBF等多模态参数的同时解决血液到达时间在不同脑区之间有差异的问题[17]。因此,本研究拟采用多PLD ASL成像,获得血液流入采集层面的动态变化图像,评估AIS患者机械取栓术后脑血流灌注情况,分析其与90天神经功能预后的关系,以期为临床评价机械取栓远期疗效提供有意义的影像学指标。

1 材料与方法

1.1 研究对象

       本研究回顾性连续纳入2021年6月至2023年11月就诊于宣武医院急性卒中绿色通道的42例AIS患者病例。纳入标准:(1)年龄≥18岁,符合《中国急性缺血性脑卒中诊治指南2018》[18]的AIS诊断标准;(2)发病至入院时间不超过24小时;(3)行头部CT平扫、CTP、CT血管成像(CT angiography, CTA),证实前循环大血管闭塞并接受机械取栓治疗;(4)术后24小时内行MRI检查,包括多PLD ASL成像及扩散加权成像(diffusion weighted imaging, DWI)。

       排除标准:(1)术后7天内发生不良事件(脑出血、癫痫发作、恶性脑水肿、死亡等);(2)CTP或ASL图像运动伪影重、原始数据部分缺失,无法重建或进行后处理;(3)合并后循环大血管受累;(4)90天改量Rankin量表(modified Rankin Scale, mRS)评分失访。

       本研究遵守《赫尔辛基宣言》,经宣武医院伦理委员会批准,免除受试者知请同意,批准文号:LYS[2020]132。

1.2 研究方法

1.2.1 临床资料

       收集患者的临床资料,包括:性别、年龄、卒中相关危险因素(高血压、糖尿病、冠心病、吸烟饮酒史等)、是否接受静脉溶栓治疗、入院美国国立卫生研究院卒中量表(National Institutes of Health Stroke Scale, NIHSS)评分(NIHSS入院)、术后24小时及7天内NIHSS评分(NIHSS24 h, NIHSS7 d)。计算∆NIHSS=NIHSS7 d-NIHSS入院,通过电话随访患者术后90天mRS(90 d mRS)评分,0~2为功能良好,3~6为功能不良[19]

1.2.2 CT平扫、CTP、CTA扫描及处理方法

       所有患者机械取栓术前采用256排螺旋CT扫描仪(GE Revolution, 美国)行一站式成像,包括CT平扫、CTP及CTA。(1)头部CT平扫:层厚及层间距均为5 mm;(2)CTP:管电压70 kV,管电流100 mAs,使用高压注射器经肘静脉或前臂静脉团注40 mL碘普罗胺(370 mgI/mL;拜耳药业,德国),随后立即注射生理盐水40 mL,速度均为6 mL/s,注射后4 s开始扫描, 持续时间60 s;(3)CTA:管电压80~140 kV,管电流200 mAs,团注50 mL碘普罗胺及50 mL生理盐水,速度均为5 mL/s,矩阵512×512,由主动脉弓扫描至颅顶,层厚0.625 mm。

       基于CT智能分析系统(V2.4.3;数坤网络科技股份有限公司)评价患者入院Alberta卒中项目早期CT评分(Alberta Stroke Program Early CT Score, ASPECTS)。将大脑中动脉供血区分为10个区域,分别为:(1)大脑皮层:大脑中动脉前皮质区(M1)、大脑中动脉岛叶外侧皮质区(M2)、大脑中动脉后皮质区(M3)、M1~M3上方的大脑中动脉皮层(M4~M6)及岛叶皮质(I);(2)皮层下核团:豆状核(L)、尾状核(C)及内囊(IC)[20]

       基于CTP智能分析系统(V2.4.3;数坤网络科技股份有限公司)对CTP原始图像进行分析,以健侧大脑中动脉为输入动脉、上失状窦为输出静脉,自动生成伪彩图像并计算一系列灌注参数。以残余功能达峰时间(time to maximum of the residual function, Tmax)>6 s为CT灌注减低区,rCBF<30%为CT梗死核心,二者差值为缺血半暗带。

       由2位5年以上工作经验的神经影像学医师对CTA原始图像进行分析,评价术前CTA闭塞部位(颅内颈内动脉、M1、M2、大脑前动脉),意见不一致时由第3位20年以上工作经验的神经影像学医师进行评价。

1.2.3 MRI扫描及处理方法

       术后采用3.0 T MRI、32通道头线圈扫描仪(GE Discovery MR750, 美国)行ASL及DWI扫描。(1)ASL:采用伪连续ASL(pseudo-Continuous ASL, pCASL)扫描序列,TR 14.08 ms,TE 10 476 ms,视野22 cm×22 cm,矩阵128×128,翻转角111°,PLD=1.00、1.22、1.48、1.78、2.15、2.62、3.32 s,层厚3.5 cm,层数36,总扫描时间6分36秒;(2)DWI:采用自旋回波序列,b值=0或1000 s/mm2,TR 83.3ms,TE 3000 ms,视野24 cm×24 cm,矩阵256×256,翻转角90°,层厚5 cm,层数42,总扫描时间24秒。

       采用CereFlow系统(安影科技有限公司, 北京)对ASL原始数据进行自动处理,定量计算脑组织灌注水平。将CBF<10 mL/(100 g·min)的脑组织定义为低灌注区。AIS患者机械取栓术后24小时内ASL成像中,将患侧低灌注区体积等于或小于健侧者分为良好灌注组,将患侧低灌注区体积大于健侧分为低灌注组[13]。试验流程图见图1

图1  试验流程图。CTP:CT灌注成像;CTA:CT血管成像;多PLD ASL:多标记后延迟时间的动脉自旋标记成像;mRS:改良Rankin量表;ASPECTS:Alberta卒中项目早期CT评分。
Fig. 1  Flow chart. CTP: CT perfusion; CTA: CT angiography; PLD: post labeling delay; ASL: arterial spin labeling; mRS: modified Rankin Scale; ASPECTS: Alberta Stroke Program Early CT Score.

1.3 统计学方法

       采用SPSS Statistics 29.0软件进行统计。对良好灌注组及低灌注组患者的临床资料进行分析,对计量资料采用Shapiro-Wilk检验,符合正态分布的参数以均数±标准差表示,行独立样本t检验;不符合正态分布的参数以中位数(四分位数间距)表示,行Mann-Whitney秩和检验。计数资料以频数及百分比表示,采用Fisher精确概率法进行比较。同理对功能良好组及功能不良组患者的影像学资料进行分析,将组间差异有统计学意义(P<0.05)的参数纳入二元logistic回归分析,计算优势比(odds ratio, OR)及95%置信区间(confidence interval, CI)。进一步绘制受试者工作特征(receiver operating characteristic, ROC)曲线并计算敏感度、特异度及曲线下面积(area under the curve, AUC)。

2 结果

2.1 临床资料

       本研究共纳入前循环大血管闭塞接受机械取栓治疗的AIS患者32例,其中男21例,女11例,年龄32~80岁。术前ASPECTS中位数为8.50(6.25,9.75),NIHSS入院中位数为11.00(9.00,15.75),NIHSS7 d及∆NIHSS均值分别为6.20±4.53、5.90±4.73。32例AIS患者中14例(43.8%)机械取栓术后24小时ASL达到良好灌注,18例(56.3%)机械取栓术后24小时ASL显示为低灌注。良好灌注组NIHSS7 d评分(4.10±3.76)显著低于低灌注组(7.80±4.51)(P=0.02);∆NIHSS(8.10±4.99)显著高于低灌注组(4.20±3.81)(P=0.016);90天功能良好发生率(92.9%)显著高于低灌注组(50.0%)(P=0.019)。两组患者性别、年龄、危险因素、静脉溶栓治疗、术前ASPECTS及NIHSS入院评分差异均无统计学意义(P>0.05,表1)。

表1  良好灌注组与低灌注组患者临床资料比较
Tab. 1  Comparison of clinical data between good perfusion group and poor perfusion group

2.2 ASL良好灌注与90天功能良好的相关性

       将所有患者根据90天mRS评分将患者分为功能良好(n=22)及功能不良(n=10)组,两组间影像学资料等比较见表2。相较于功能不良组,术后90天神经功能良好组患侧低灌注体积[51.56(30.31,71.16)]与对侧[59.21(30.47,75.14)]相比较低(P=0.028),获得良好灌注的比例更高(59.1% vs. 1.1%,P=0.019),见图23。两组患者年龄、NIHSS入院、术前影像学指标(ASPECTS、CT灌注减低区、CT梗死核心、缺血半暗带体积及CTA血管闭塞部位)、术后低灌注区体积差异均无统计学意义(P>0.05)。

       将术后ASL良好灌注纳入二元logistic回归分析,校正年龄、NIHSS入院、术前缺血半暗带等因素后发现术后ASL良好灌注是90天功能良好的独立预测指标(OR=14.246;95% CI: 1.090~186.273,P=0.043),ROC曲线下面积为0.828(95% CI:0.666~0.990),预测90天功能良好的敏感度为75.0%,特异度为87.0%,见表3

图2  术后良好灌注组。男,37岁,入院NIHSS评分15分,术后7天NIHSS评分1分,90天mRS评分0分,达到神经功能良好结局。术前CTP CBF图(2A~2B)示右侧额颞叶及基底节区CBF较对侧减低;术后24小时DWI(2C~2D)示右侧额颞叶及基底节区新发急性脑梗死;术后24小时ASL CBF图(2E~2F)示机械取栓术后右侧额颞叶及基底节低灌注区体积较健侧略小,为33.008 mL,低灌注体积比值约为0.80。NIHSS:美国国立卫生研究院卒中量表;mRS:改良Rankin量表;CTP:CT灌注成像;CBF:脑血流量;DWI:扩散加权成像;ASL:动脉自旋标记。DWI (2C-2D) 24 hours post-surgery shows new acute cerebral infarction in the right frontotemporal lobe and basal ganglia. ASL CBF images (2E-2F) shows that the volume of the hypoperfusion area of the right frontotemporal lobe and basal ganglion after mechanical thrombectomy is slightly smaller than that of the healthy side (33.008 mL), and the hypoperfusion volume ratio is about 0.80. NIHSS: National Institutes of Health Stroke Scale; mRS: modified Rankin Scale; CTP: CT perfusion; CBF: cerebral blood flow; DWI: diffusion weighted imaging; ASL: arterial spin labeling.
Fig. 2  Post-surgery good perfusion group. Male, 37-year-old, a NIHSS score of 15 at admission, a NIHSS score of 1 at 7 days post-surgery, and a mRS score of 0 at 90 days post-surgery, which achieved favorable neurological function. Post-surgery CTP CBF (2A-2B) shows that cerebral blood flow in the right frontotemporal lobe and basal ganglia is lower than that in the contralateral region. DWI (2C-2D) 24 hours post-surgery shows new acute cerebral infarction in the right frontotemporal lobe and basal ganglia. ASL CBF images (2E-2F) shows that the volume of the hypoperfusion area of the right frontotemporal lobe and basal ganglion after mechanical thrombectomy is slightly smaller than that of the healthy side (33.008 mL), and the hypoperfusion volume ratio is about 0.80. NIHSS: National Institutes of Health Stroke Scale; mRS: modified Rankin Scale; CTP: CT perfusion; CBF: cerebral blood flow; DWI: diffusion weighted imaging; ASL: arterial spin labeling.
图3  术后低灌注组。女,72岁,入院NIHSS评分12分,术后7天NIHSS评分10分,90天mRS评分3分,未达到神经功能良好结局。术前CTP CBF图(3A~3B)示右侧额顶颞岛叶CBF较对侧减低;术后24小时DWI(3C~3D)示右侧额顶颞岛叶新发急性脑梗死;术后24小时ASL CBF图(3E~3F)示机械取栓术后右侧额顶颞岛叶低灌注区体积较健侧明显增大,为68.616 mL,低灌注体积比值约为1.61。NIHSS:美国国立卫生研究院卒中量表;mRS:改良Rankin量表;CTP:CT灌注成像;CBF:脑血流量;DWI:扩散加权成像;ASL:动脉自旋标记。contralateral side. DWI (3C-3D) 24 hours post-surgery shows new acute cerebral infarction in the right frontal parietal lobe, temporal lobe and insula lobe. ASL CBF images (3E-3F) shows that the volume of the hypoperfusion area in the right frontal parietal lobe, temporal lobe and insula lobe after mechanical thrombectomy is significantly larger than that on the healthy side (68.616 mL), and the hypoperfusion volume ratio is about 1.61. NIHSS: National Institutes of Health Stroke Scale; mRS: modified Rankin Scale; CTP: CT perfusion; CBF: cerebral blood flow; DWI: diffusion weighted imaging; ASL: arterial spin labeling.
Fig. 3  Post-surgery poor perfusion group. Female, 72-year-old, a NIHSS score of 12 at admission, a NIHSS score of 10 at 7 days post-surgery, and a mRS score of 3 at 90 days post-surgery, which didn't achieve favorable neurological function. Post-surgery CTP CBF (3A-3B) shows that cerebral blood flow in the right frontal parietal lobe, temporal lobe and insula lobe is lower than that on the contralateral side. DWI (3C-3D) 24 hours post-surgery shows new acute cerebral infarction in the right frontal parietal lobe, temporal lobe and insula lobe. ASL CBF images (3E-3F) shows that the volume of the hypoperfusion area in the right frontal parietal lobe, temporal lobe and insula lobe after mechanical thrombectomy is significantly larger than that on the healthy side (68.616 mL), and the hypoperfusion volume ratio is about 1.61. NIHSS: National Institutes of Health Stroke Scale; mRS: modified Rankin Scale; CTP: CT perfusion; CBF: cerebral blood flow; DWI: diffusion weighted imaging; ASL: arterial spin labeling.
表2  功能良好与功能不良组患者影像学指标比较
Tab. 2  Comparison of imaging indexes between favorable neurological function group and unfavorable neurological function group
表3  AIS患者机械取栓术后24小时ASL良好灌注预测90天功能良好的价值
Tab. 3  Value of 24-hour post-surgery good perfusion in multidelay ASL MRI to predict favorable neurological function at 90 days in AIS patients

3 讨论

       本研究对32例前循环大血管闭塞所致的AIS患者机械取栓术后灌注水平与90天功能预后的关系进行分析,结果提示在纳入年龄、入院NIHSS水平与术前缺血半暗带体积等校正因素后,ASL良好灌注仍可作为90天功能良好的独立预测指标,证明了多PLD ASL在机械取栓术后早期预测临床结局的作用。

3.1 ASL成像预测脑卒中患者机械取栓术后预后的价值

       机械取栓作为国际卒中指南推荐的大血管闭塞AIS患者的一线治疗手段,近年来已被多项随机对照试验证实与患者的良好临床结局存在显著相关性[21, 22]。然而,既往常用于评价患者术后灌注水平的影像学方法包括CTP及DSC灌注加权成像,这两种手段均需注射外源性对比剂,此外DSC灌注加权成像依赖血脑屏障的完整性,在临床应用中受限。ASL采用脉冲序列标记动脉中的水质子,获得采集层面的灌注图像,为定量测量患者脑灌注水平提供了无创、无辐射、无对比剂的成像方法[23, 24]。YOO等[13]术前及术后分别对51例接受血管内治疗的AIS患者进行ASL成像,发现治疗前后ASL测量灌注体积的差值与术后24小时NIHSS、术后5~7天NIHSS及其差值均有相关性(P<0.05)。LU等[14]的研究则证明了机械取栓术后ASL高灌注与90天神经功能预后良好的相关性。然而脉冲式ASL采用短反转脉冲对一段较厚的层面进行标记,存在标记时间短及标记范围受限等问题,信噪比较低[25, 26]。此外,过去的研究均采用单一PLD的ASL成像,在大血管闭塞导致的AIS患者中,由于缺血脑组织血流动力学改变,标记后血液流入采集层面不同脑区的时间也有差异,单一的PLD可能导致定量测量的误差[27, 28]。多PLD ASL扫描技术不仅能够提供血液流入脑部的动态图像,还能在测量动脉传输时间、脑血流量等多模态参数的同时,解决血液到达不同脑区的时间差异问题[29, 30, 31]。本研究对机械取栓术后临床结局的预测敏感度为75.0%,低于LU等[14]的结果(84.8%),这可能是因为本研究在对图像进行自动计算处理时,在健康脑的测量中存在系统性低估的问题,因此在患侧与健侧进行比较时rCBF减低不显著,导致敏感度较低。本研究首次对机械取栓术后患者24小时内行多PLD ASL扫描,并随访其远期神经功能预后评价量表,发现达到ASL良好灌注的患者∆NIHSS及90 d功能良好均与低灌注组有显著差异,且术后良好灌注可作为90天功能良好的独立预测指标,与既往的研究结果一致。

3.2 AIS患者机械取栓术后脑高灌注综合征

       脑高灌注综合征(cerebral hyperperfusion syndrome, CHS)是血管内治疗术后具有重要意义的并发症,表现为术后局部脑组织CBF水平比基线水平增加>100% [32, 33, 34]。CHS可能与脑灌注压变化引起的脑血管自身调节相关[35, 36]。FAN等[37]对颈动脉狭窄患者动脉内膜剥脱术前、术后分别进行伪连续ASL扫描,发现术前基于ASPECTS对患者ASL图像上的血管高信号进行评分可独立预测术后CHS。本研究纳入的32例患者中,有2例术后出现梗死脑区灌注水平增高[CBF>100 mL/(100 g·min)],但未观察到术后出血转化。这可能是因为扫描时间窗较短,术后24小时内脑血管的高灌注损伤较轻,且术后脑灌注水平未与基线水平进行比较,无法确定诊断CHS。

3.3 本研究的局限性

       本研究存在一定的局限性:(1)本研究样本量较小,为单中心回顾性研究,因此,未来仍需开展多中心、前瞻性研究验证多PLD ASL预测AIS患者机械取栓术后远期功能结局的价值;(2)在评价90天临床功能结局时,本研究未对患者进行进一步影像学检查,未来仍需随访观察患者远期脑灌注水平改善情况;(3)本研究证明了多PLD ASL在机械取栓术后早期预测临床结局的价值,然而并未同单一PLD的ASL成像进行比较,未充分体现多PLD ASL的优势。

4 结论

       多PLD ASL成像采集血液流入脑组织感兴趣区的动态图像,具有解决血液到达不同脑区存在的时间差异问题的优点,可定量测量脑组织灌注水平,评价机械取栓术后AIS患者的神经功能恢复情况。术后24小时ASL成像良好灌注与低灌注组间近期及远期神经功能预后均有显著差异,且术后24小时ASL成像达良好灌注可作为患者90天神经功能预后良好的独立预测指标。

[1]
TU W J, ZHAO Z, YIN P, et al. Estimated burden of stroke in China in 2020[J/OL]. JAMA Netw Open, 2023, 6(3): 231455 [2024-05-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/36862407/ DOI: 10.1001/jamanetworkopen.2023.1455.
[2]
GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Neurol, 2021, 20(10): 795-820. DOI: 10.1016/S1474-4422(21)00252-0.
[3]
SAINI V, GUADA L, YAVAGAL D R. Global epidemiology of stroke and access to acute ischemic stroke interventions[J]. Neurology, 2021, 97(20Suppl 2): S6-S16. DOI: 10.1212/WNL.0000000000012781.
[4]
KAESMACHER J, CAVALCANTE F, KAPPELHOF M, et al. Time to treatment with intravenous thrombolysis before thrombectomy and functional outcomes in acute ischemic stroke: a meta-analysis[J]. JAMA, 2024, 331(9): 764-777. DOI: 10.1001/jama.2024.0589.
[5]
KIM H J, ROH H G. Imaging in acute anterior circulation ischemic stroke: current and future[J]. Neurointervention, 2022, 17(1): 2-17. DOI: 10.5469/neuroint.2021.00465.
[6]
GOYAL M, MENON B K, van ZWAM W H, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials[J]. Lancet, 2016, 387(10029): 1723-1731. DOI: 10.1016/S0140-6736(16)00163-X.
[7]
SARRAJ A, HASSAN A E, ABRAHAM M G, et al. Endovascular thrombectomy for large ischemic stroke across ischemic injury and penumbra profiles[J]. JAMA, 2024, 331(9): 750-763. DOI: 10.1001/jama.2024.0572.
[8]
del ZOPPO G J, MABUCHI T. Cerebral microvessel responses to focal ischemia[J]. J Cereb Blood Flow Metab, 2003, 23(8): 879-894. DOI: 10.1097/01.WCB.0000078322.96027.78.
[9]
MUBARAK F, FATIMA H, MUSTAFA M S, et al. Assessment precision of CT perfusion imaging in the detection of acute ischemic stroke: a systematic review and meta-analysis[J/OL]. Cureus, 2023, 15(8): 44396 [2024-05-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/37791142/. DOI: 10.7759/cureus.44396.
[10]
FERNANDEZ-RODICIO S, FERRO-COSTAS G, SAMPEDRO-VIANA A, et al. Perfusion-weighted software written in Python for DSC-MRI analysis[J/OL]. Front Neuroinform, 2023, 17: 1202156 [2024-05-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/37593674/ DOI: 10.3389/fninf.2023.1202156.
[11]
CALAMANTE F, GANESAN V, KIRKHAM F J, et al. MR perfusion imaging in moyamoya syndrome: Potential implications for clinical evaluation of occlusive cerebrovascular disease[J]. Stroke, 2001, 32(12): 2810-2816. DOI: 10.1161/hs1201.099893.
[12]
LIU S, FAN D, ZANG F, et al. Collateral circulation detected by arterial spin labeling predicts outcome in acute ischemic stroke[J]. Acta Neurol Scand, 2022, 146(5): 635-642. DOI: 10.1111/ane.13694.
[13]
YOO R E, YUN T J, YOO D H, et al. Monitoring cerebral blood flow change through use of arterial spin labelling in acute ischaemic stroke patients after intra-arterial thrombectomy[J]. Eur Radiol, 2018, 28(8): 3276-3284. DOI: 10.1007/s00330-018-5319-0.
[14]
LU S S, CAO Y Z, SU C Q, et al. Hyperperfusion on arterial spin labeling MRI predicts the 90‐day functional outcome after mechanical thrombectomy in ischemic stroke[J]. J Magn Reson Imaging, 2021, 53(6): 1815-1822. DOI: 10.1002/jmri.27455.
[15]
WOODS J G, CHAPPELL M A, OKELL T W. Designing and comparing optimized pseudo-continuous Arterial Spin Labeling protocols for measurement of cerebral blood flow[J/OL]. Neuroimage, 2020, 223: 117246 [2024-05-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/32853814/. DOI: 10.1016/j.neuroimage.2020.117246.
[16]
ZHAO M Y, ARMINDO R D, GAUDEN A J, et al. Revascularization improves vascular hemodynamics - a study assessing cerebrovascular reserve and transit time in Moyamoya patients using MRI[J]. J Cereb Blood Flow Metab, 2023, 43(2_suppl): 138-151. DOI: 10.1177/0271678X221140343.
[17]
KOSAKA N, KIMURA H. Editorial for "arterial transit time–based multidelay combination strategy improves arterial spin labeling MRI cerebral blood flow measurement accuracy in severe steno‐occlusive diseases"[J]. J Magn Reson Imaging, 2022, 55(1): 188-189. DOI: 10.1002/jmri.27901.
[18]
中华医学会神经病学分会,中华医学会神经病学分会脑血管病学组. 中国急性缺血性脑卒中诊治指南2018[J].中华神经科杂志, 2018, 51(9): 666-682. DOI: 10.3760/cma.j.issn.1006-7876.2018.09.004.
Chinese Society of Neurology, Chinese Stroke Society. Chinese guidelines for diagnosis and treatment of acute ischemic stroke 2018[J]. Chinese Journal of Neurology, 2018, 51(9): 666-682. DOI: 10.3760/cma.j.issn.1006-7876.2018.09.004.
[19]
NIE X, LENG X, MIAO Z, et al. Clinically ineffective reperfusion after endovascular therapy in acute ischemic stroke[J]. Stroke, 2023, 54(3): 873-881. DOI: 10.1161/STROKEAHA.122.038466.
[20]
ERMINE C M, BIVARD A, PARSONS M W, et al. The ischemic penumbra: From concept to reality[J]. Int J Stroke, 2021, 16(5): 497-509. DOI: 10.1177/1747493020975229.
[21]
BRACARD S, DUCROCQ X, MAS J L, et al. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial[J]. Lancet Neurol, 2016, 15(11): 1138-1147. DOI: 10.1016/S1474-4422(16)30177-6.
[22]
POWERS W J, RABINSTEIN A A, ACKERSON T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the american heart association/american stroke association[J]. Stroke, 2019, 50(12): 344-418. DOI: 10.1161/STR.0000000000000211.
[23]
YAN C, YU F, ZHANG Y, et al. Multidelay arterial spin labeling versus computed tomography perfusion in penumbra volume of acute ischemic stroke[J]. Stroke, 2023, 54(4): 1037-1045. DOI: 10.1161/STROKEAHA.122.040759.
[24]
RAVULA S, PATIL C, KUMAR KS P, et al. A study to evaluate the role of three-dimensional pseudo-continuous arterial spin labelling in acute ischemic stroke[J]. Cureus, 2023, 15(8): 44030 [2024-05-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/37746491/. DOI: 10.7759/cureus.44030.
[25]
WONG E C. An introduction to ASL labeling techniques[J]. J Magn Reson Imaging, 2014, 40(1): 1-10. DOI: 10.1002/jmri.24565.
[26]
ANDRE J B, OZTEK M A, ANZAI Y, et al. Evaluation of 3-dimensional stereotactic surface projection rendering of arterial spin labeling data in a clinical cohort[J]. J Neuroimaging, 2023, 33(6): 933-940. DOI: 10.1111/jon.13153.
[27]
ZHANG Z, PU Y, MI D, et al. Cerebral hemodynamic evaluation after cerebral recanalization therapy for acute ischemic stroke[J/OL]. Front Neurol, 2019, 10: 719 [2024-05-16]. https://pubmed.ncbi.nlm.nih.gov/31333570/. DOI: 10.3389/fneur.2019.00719.
[28]
NAM K W, KIM C K, YOON B W, et al. Multiphase arterial spin labeling imaging to predict early recurrent ischemic lesion in acute ischemic stroke[J/OL]. Sci Rep, 2022, 12(1): 1456 [2024-05-16]. https://pubmed.ncbi.nlm.nih.gov/35087157/. DOI: 10.1038/s41598-022-05465-8.
[29]
AMEMIYA S, WATANABE Y, TAKEI N, et al. Arterial transit time-based multidelay combination strategy improves arterial spin labeling cerebral blood flow measurement accuracy in severe steno-occlusive diseases[J]. J Magn Reson Imaging, 2022, 55(1): 178-187. DOI: 10.1002/jmri.27823.
[30]
GUO Y, DOU W, WANG X, et al. Can combined high-resolution vessel wall imaging and multiple post-labeling delay 3D pseudo-continuous arterial spin labeling differentiate moyamoya disease from atherosclerotic moyamoya syndrome?[J/OL]. Eur J Radiol, 2023, 169: 111184 [2024-05-16]. https://linkinghub.elsevier.com/retrieve/pii/S0720-048X(23)00498-9. DOI: 10.1016/j.ejrad.2023.111184.
[31]
LINDNER T, BOLAR D S, CHTEN E A, et al. Current state and guidance on arterial spin labeling perfusion MRI in clinical neuroimaging[J]. Magn Reson Med, 2023, 89(5): 2024-2047. DOI: 10.1002/mrm.29572.
[32]
KIRCHOFF-TORRES K F, Bakradze E. Cerebral hyperperfusion syndrome after carotid revascularization and acute ischemic stroke[J/OL]. Curr Pain Headache Rep, 2018, 22(4): 24 [2024-05-16]. https://pubmed.ncbi.nlm.nih.gov/29556806/. DOI: 10.1007/s11916-018-0678-4.
[33]
YU J, ZHANG J, CHEN J. Arterialized vein immediately after direct bypass surgery indicates cerebral hyperperfusion syndrome in moyamoya disease[J]. Stroke, 2024, 55(1): 3-4. DOI: 10.1161/STROKEAHA.123.045471.
[34]
SHI Z, WU L, WANG Y, et al. Risk factors of postoperative cerebral hyperperfusion syndrome and its relationship with clinical prognosis in adult patients with moyamoya disease[J/OL]. Chin Neurosurg J, 2023, 9(1): 10 [2024-05-16]. https://pubmed.ncbi.nlm.nih.gov/37013602/. DOI: 10.1186/s41016-023-00321-8.
[35]
FAROOQ M U, GOSHGARIAN C, MIN J, et al. Pathophysiology and management of reperfusion injury and hyperperfusion syndrome after carotid endarterectomy and carotid artery stenting[J/OL]. Exp Transl Stroke Med, 2016, 8(1): 7 [2024-05-16]. https://pubmed.ncbi.nlm.nih.gov/27602202/. DOI: 10.1186/s13231-016-0021-2.
[36]
WU L, LIU Y, ZHU L, et al. MRI arterial spin labeling in evaluating hemorrhagic transformation following endovascular recanalization of subacute ischemic stroke[J/OL]. Front Neurosci, 2023, 17: 1105816 [2024-05-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/36937682/. DOI: 10.3389/fnins.2023.1105816.
[37]
FAN X, ZUO Z, LIN T, et al. Arterial transit artifacts on arterial spin labeling MRI can predict cerebral. hyperperfusion after carotid endarterectomy: an initial study[J]. Eur Radiol, 2022, 32(9): 6145-6157. DOI: 10.1007/s00330-022-08755-x.

上一篇 基于rs-fMRI探究孤独症谱系障碍儿童左侧海马全脑功能连接的异常表现
下一篇 前庭性偏头痛患者丘脑谷氨酸-谷氨酰胺复合物代谢和相关因素分析
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2