分享:
分享到微信朋友圈
X
临床研究
评估PI-RADS v2.1及多参数MRI衍生标志物用于移行带临床显著性前列腺癌检测价值的研究
林燕顺 张丽 郑鹏翔 高永清 赵莹莹 徐伟

Cite this article as: LIN Y S, ZHANG L, ZHENG P X, et al. Evaluation of the value of PI-RADS v2.1 and multiparametric MRI-derived biomarkers in detecting clinically significant prostate cancer in transition zone[J]. Chin J Magn Reson Imaging, 2024, 15(10): 109-114.本文引用格式:林燕顺, 张丽, 郑鹏翔, 等. 评估PI-RADS v2.1及多参数MRI衍生标志物用于移行带临床显著性前列腺癌检测价值的研究[J]. 磁共振成像, 2024, 15(10): 109-114. DOI:10.12015/issn.1674-8034.2024.10.019.


[摘要] 目的 评估基于前列腺成像报告和数据系统2.1版本(prostate imaging-reporting and data system version 2.1, PI-RADS v2.1)及多参数磁共振成像(multiparametric magnetic resonance imaging, mp-MRI)衍生标志物用于移行带临床显著性前列腺癌(clinically significant prostate cancer, csPCa)检测的价值。材料与方法 回顾性分析2020年1月至2024年2月在我院行mp-MRI及病理活检的移形带前列腺疾病患者的临床及影像学资料。由具有8年前列腺成像经验的主治医生基于PI-RADS v2.1对MRI图像进行评估,并勾画病变轮廓,从而获得包括三维直径、相对病变体积(病变体积除以前列腺体积)、球形度、平整度及表面体积比等MRI特征。使用logistic分析,确定PI-RADS评分及多参数MRI衍生标志物与移行带csPCa检测的关系。结果 纳入的403例患者中PI-RADS 1(n=25)、2(n=119)、3(n=130)、4(n=43)和5(n=86)类病变的csPCa检出率分别为0.00%、0.00%、3.85%、32.56%和70.93%。PI-RADS 3类、4类、5类的csPCa检出率差异具有统计学意义(P<0.001)。移行带csPCa的预测因子包括血清前列腺特异性抗原(prostate-specific antigen,PSA)[OR=1.05(95% CI:1.00~1.10);P=0.047]、PI-RADS [OR=8.92(95% CI:2.94~27.13);P<0.001]、最大二维直径 [OR=0.84(95% CI:0.71~0.98);P=0.046]及网格体积[OR=1.00(95% CI:1.00~1.00);P=0.041]。结论 血清PSA、PI-RADS评分、病灶直径及网格体积等是移行带csPCa的独立预测因子。
[Abstract] Objective To assess the value of prostate imaging-reporting and data system version 2.1 (PI-RADS v2.1) and multi-parametric magnetic resonance imaging (mp-MRI) derived biomarkers in detecting clinically significant prostate cancer (csPCa) in transition zone.Materials and Methods A retrospective analysis was conducted on clinical and imaging data from patients with transition zone prostate disease who underwent mp-MRI and pathological biopsy at our hospital from January 2020 to February 2024. MRI images were evaluated by a chief physician with 8 years of experience in prostate imaging, using PI-RADS v2.1 to assess the images and outline lesion contours. This provided MRI characteristics including 3D diameter, relative lesion volume (calculated by dividing the lesion volume by the prostate volume), sphericity, flatness, and surface volume ratio. Logistic analysis was used to determine the relationship between PI-RADS scores, multiparametric MRI-derived biomarkers, and the detection of csPCa in the transition zone.Results The study included 403 patients. The detection rates of csPCa for PI-RADS categories 1 (n=25), 2 (n=119), 3 (n=130), 4 (n=43), and 5 (n=86) were 0.00%, 0.00%, 3.85%, 32.56%, and 70.93%, respectively. The differences in csPCa detection rates among PI-RADS categories 3, 4, and 5 were statistically significant (P<0.001). Predictive factors for csPCa in the transition zone included serum prostate-specific antigen (PSA) [OR=1.05 (95% CI: 1.00-1.10); P=0.047], PI-RADS score [OR=8.92 (95% CI: 2.94-27.13); P<0.001], maximum two-dimensional diameter [OR=0.84 (95% CI: 0.71-0.98); P=0.046], and grid volume [OR=1.00 (95% CI: 1.00-1.00); P=0.041].Conclusions Serum PSA, PI-RADS score, lesion diameter, and grid volume are independent predictors of clinically significant prostate cancer in the transition zone.
[关键词] 临床显著性前列腺癌;移行带;衍生标志物;磁共振成像;前列腺成像报告和数据系统
[Keywords] clinically significant prostate cancer;transitional zone;derived marker;magnetic resonance imaging;prostate imaging reporting and data system

林燕顺 1   张丽 1   郑鹏翔 2   高永清 1   赵莹莹 1   徐伟 1*  

1 福建医科大学附属福清市医院影像科,福清 350300

2 福建医科大学附属福清市医院泌尿外科,福清 350300

通信作者:徐伟,E-mail: 1584016959@qq.com

作者贡献声明:徐伟设计本研究的方案,对稿件重要内容进行了修改;林燕顺起草和撰写稿件,获取、分析和解释本研究的数据;张丽、郑鹏翔、高永清及赵莹莹获取、分析和解释本研究的数据,对稿件重要内容进行了修改;郑鹏翔获得了福建省卫生健康科技计划项目资助、赵莹莹获得了福州市卫生健康系统科技计划项目及福建医科大学启航基金项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 福建省卫生健康科技计划项目 2021QNA067 福州市卫生健康系统科技计划项目 2022-S-wq17 福建医科大学启航基金项目 2023QH1371
收稿日期:2024-04-10
接受日期:2024-10-10
中图分类号:R445.2  R737.25 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.10.019
本文引用格式:林燕顺, 张丽, 郑鹏翔, 等. 评估PI-RADS v2.1及多参数MRI衍生标志物用于移行带临床显著性前列腺癌检测价值的研究[J]. 磁共振成像, 2024, 15(10): 109-114. DOI:10.12015/issn.1674-8034.2024.10.019.

0 引言

       移行带前列腺癌(prostate cancer, PCa)的精确诊断是临床实践的一大挑战[1, 2, 3]。近年来,前列腺多参数磁共振成像(multi-parametric magnetic resonance imaging, mp-MRI)在移行带PCa的评估方面取得了显著进展[4, 5, 6],并通过MRI引导的靶向活检提升了移行带PCa的检出率[7, 8, 9]。然而,由于老年男性前列腺移行带好发增生,且病变组织混杂[10, 11],在此背景下准确评估病变类别十分困难。既往研究报道,MRI的误诊比例高达58%,而移行带病变占误诊的绝大多数[12, 13]。因此,移行带病变的阅片者一致性明显低于外周带病变[12, 14, 15],且PCa的检出率亦表现出较大的差异性[16, 17, 18]。前列腺成像报告和数据系统(prostate imaging-reporting and data system, PI-RADS)是一套用于全面评估临床显著性前列腺癌(clinically significant prostate cancer, csPCa)的指南,csPCa通常指Gleason评分分级分组(Gleason grade group, GG)≥2的情况。自推出以来,PI-RADS经过了多次更新和改进,使对病变的评估更加标准化和精准。

       目前,PI-RADS对病变进行不同类别的评估主要依赖于对病变信号强度[如T2WI均匀/不均匀稍低信号、中等低信号,扩散加权成像(diffusion weighted imaging, DWI)明显高信号及表观扩散系数(apparent diffusion coefficient, ADC)低信号等]和二维形状(如楔形、圆形、椭圆形以及透镜状等)的主观评估[10]。考虑到阅片者一致性,使用从信号强度及形状特征(病变信号及形状的定量分析)获得的多维信息进行更客观的评估可能有助于PI-RADS v2.1的分类。因此,本研究采用定量分析方法,旨在基于PI-RADS v2.1及多参数MRI衍生标志物对移行带csPCa的诊断效能进行探讨,为临床诊疗提供依据。

1 材料与方法

1.1 研究对象

       本研究遵守《赫尔辛基宣言》,经福建医科大学附属福清市医院伦理委员会批准,免除受试者知情同意,批准文号:k(2022)42号。我们回顾性地收集了自2020年1月至2024年2月期间,接受MRI和病理组织学检查的患者数据。纳入标准:(1)前列腺移行带PI-RADS 1~5类病变(依据PI-RADS v2.1标准),前列腺移行带病变定义为肿瘤体积的70%以上位于移行带的病灶[19];(2)须得到病理结果证实,并且与同一区域的MRI图像相匹配;(3)在MRI检查后2个月内接受超声引导前列腺活检或根治性手术。排除标准:(1)MRI检查前有PCa活检或治疗史(如抗激素治疗、放疗、局灶治疗、前列腺切除术)的患者;(2)存在其他原发癌症或既往有癌症史;(3)MRI图像序列不完整或存在严重伪影;(4)病变位于外周带。

       收集以下临床和实验室数据:患者的年龄、近期血清总前列腺特异性抗原(total prostate-specific antigen,tPSA;单位:ng/mL)、游离前列腺特异性抗原(free prostate-specific antigen,fPSA;单位:ng/mL)、fPSA与tPSA的比值(f/t)、前列腺体积(V,单位:cm3)、前列腺特异性抗原密度(prostate-specific antigen density,PSAD;等于tPSA/V;单位:ng/mL2)、平均ADC值(mm2/s)及T2WI信号值等。

1.2 图像采集和评估

       所有患者均采用3.0 T(Spectra, Siemens Healthineers)扫描仪,以体线圈为射频发射线圈,32通道心脏相控阵线圈为接收线圈。扫描参数如下:T2WI序列,TE 72 ms,TR 4000 ms,矩阵128×128,FOV 360 mm×360 mm,层厚4 mm,层间距0.5 mm;DWI序列,TE 91 ms,TR 4500 ms,矩阵128×128,FOV 170 mm×400 mm,层厚3.5 mm,层间距0.5 mm,b值分别为0、800、2000 s/mm2,激励次数均为6。总扫描时长为12 min 28 s。

       所有MRI图像均由同一位具有超过8年前列腺成像经验的主治医生在不知晓最终病理结果的情况下基于PI-RADS v2.1进行解读[10],PI-RADS v2.1将T2WI评分为2分的移行带病灶,即局部有包膜或无包膜的局限均匀信号的结节(不典型结节),并且弥散明显受限的结节(DWI评分≥4),升级为3分病变,定义为升级的3分(2+1)病灶;而T2WI评分为3分,且DWI评分小于或等于4分的移行带病灶,定义为不升级的3分(3+0)病灶;将T2WI评分为3分,且DWI评分为5分的移行带病灶,定义为升级的4分(3+1)病灶。

       阅片者记录每个PI-RADS v2.1定义的病变的位置(基底、中部或尖部)、大小(通常在T2WI轴位图像上测量病灶的最大二维直径)、信号强度特征(T2WI信号值及ADC值)以及每个序列的PI-RADS评分(T2WI、DWI)和整体PI-RADS类别。对于有多个病灶的病例,选择MRI可显示的最高级别、最大的病灶。在轴位及矢状位/冠状位的单轴切片上测量前列腺最大二维直径,并用平面法计算前列腺体积,即长椭球体体积计算公式(左右径×前后径×上下径×π/6)[20]。由另一名具有10年腹部MRI诊断经验的副主任医师随机抽取60例患者重复上述操作。以组内相关系数(intra-class correlation coefficient, ICC)评价观察者间的一致性,ICC>0.75为一致性较好[21]

       将原始图像以医学数字成像和通信(digital imaging and communications in medicine, DICOM)格式导出并传入开源软件ITK-SNAP(version 3.8.0 for Win,http://www.itksnap.org/),根据三维感兴趣区法及详细的病理结果在轴向T2WI图像上对目标病灶进行逐层勾画(图1),并获得病灶的轮廓体积、相对病变体积(目标病变体积除以前列腺体积)及信号强度。此外,为了更全面地评估病变特征,我们使用Python 3.7.1的影像组学包(PyRadiomics 3.0)提取了14个病灶轮廓形状特征,包括最大三维直径、表面体积比、球度、延伸度和平整度等。

图1  男,65岁,前列腺腺癌。1A:移行带0~3点钟方向结节,T2WI评分为5类;1B:ITK-SNAP勾画病灶区示意图;1C:DWI图,b=2000 s/mm2;1D:ADC图,评分5类,最终评分为5类;1E:病理图(HE ×20),Gleason评分3+5=8分。DWI:扩散加权成像;ADC:表观扩散系数。
Fig. 1  Male, 65 years old, prostate adenocarcinoma. 1A: Nodule in the transition zone 0-3 o'clock direction, T2WI scored 5 categories; 1B: Schematic diagram of the focal area delineated by ITK-SNAP; 1C: DWI image, b=2000s/mm2; 1D: ADC image, scored 5 categories, and ultimately scored 5 categories; 1E: Pathological image (HE ×20), Gleason score 3+5=8. DWI: diffusion weighted imaging; ADC: apparent diffusion coefficient.

1.3 统计学分析

       所有数据的统计学分析均使用Python(version 3.7.3,https://www.python.org/downloads/)和R软件(version 4.0.1, https://www.r-project.org)进行。对于人口统计学数据,连续变量采用t检验或Mann-Whitney U检验。具有正态分布的连续变量以平均数±标准差表示,非正态分布的连续变量以中位数(上下四分位数)表示。分类变量采用χ2检验或Fisher精确检验进行分析。采用单因素和多因素logistic回归分析来确定csPCa的显著预测因素。采用逐步logistic回归模型分析预测PCa检出率的独立因素。在logistic回归模型中,将PI-RADS、年龄、前列腺特异性抗原(prostate-specific antigen,PSA)、前列腺体积、病灶最大二维直径、ADC值、T2WI图像上的信号强度、形态变量等作为自变量,PCa作为因变量,筛选出有价值的特征进行拟合,建立一个联合模型。所有检验均为双侧检验,P<0.05被认为差异具有统计学意义。

2 结果

2.1 患者的人口统计学和临床数据

       最终有403例患者纳入本研究,年龄为72(66,78)岁;其中PCa患者108例,低级别PCa 28例,csPCa 80例,良性疾病患者295例;PSA水平为11.03(6.84,19.10)ng/mL,详见表1。PI-RADS 1(n=25)、2(n=119)、3(n=130)、4(n=43)和5(n=86)类病变的癌症检出率见表2图2。两名阅片者观察者间一致性分析ICC为0.78(95% CI:0.67~0.86)。

图2  不同PI-RADS类别病灶的PCa和csPCa的癌症检出率。***表示P<0.001。PCa:前列腺癌;csPCa:临床显著性前列腺癌。
Fig. 2  Cancer detection rates of PCa and csPCa for lesions of different PI-RADS categories. *** for P<0.001. PCa: prostate cancer; csPCa: clinically significant prostate cancer.
表1  患者的人口统计学和临床变量
Tab. 1  Demographic and clinical variables of patients
表2  PI-RADS v2.1不同类别的PCa及csPCa检出率
Tab. 2  Detection rates of PCa and csPCa in different categories based on PI-RADS v2.1

2.2 PI-RADS不同类别病灶的癌症检出率

       PI-RADS v2.1的1类典型结节及2类非典型结节的病变中未发现csPCa,2类非典型结节中有5例诊断为低级别PCa(ISUP≦1),PCa检出率为4.20%。3类病变的PCa及csPCa检出率较低,分别为13.08%(17/130)及3.85%(5/130)。27个DWI升级的非典型结节(2+1)中仅有1例被诊断为csPCa(3.70%)。4类(41.86%,18/43)和5类(79.07%,68/86)病变的癌症检出率较高(P<0.001);4类和5类病变的csPCa的检出率分别为32.56%(14/43)和70.93%(61/86),P<0.001。

2.3 csPCa相关预测因子分析及模型效能分析

       单因素、多因素logistic分析显示,血清PSA [OR=1.05(95% CI:1.00~1.10);P=0.047]、PI-RADS [OR=8.92(95% CI:2.94~27.13);P<0.001]与csPCa相关(表3)。基于病灶体积和最大直径的指标,最大二维直径[OR=0.84(95% CI:0.71~0.98);P=0.046]及网格体积[OR=1.00(95% CI:1.00~1.00);P=0.041]与csPCa相关。然而,其他三维形状特征,如表面体积比(P=0.442)、球形度(P=0.687)、延伸度(P=0.209)和平整度(P=0.460)等与csPCa没有相关性。PI-RADS及联合模型预测csPCa的受试者工作特征(receiver operating characteristic, ROC)曲线下面积(area under the curve, AUC)分别为0.948(95% CI:0.911~0.980)、0.960(95% CI:0.918~0.992),详见图3

图3  PI-RADS及联合模型预测csPCa的ROC曲线。PI-RADS:前列腺成像报告和数据系统;csPCa:非临床显著性前列腺癌;ROC:受试者工作特征;AUC:曲线下面积;CI为置信区间。
Fig. 3  The ROC curve of predicting csPCa with PI-RADS and combined model. PI-RADS: prostate imaging-reporting and data system; csPCa: clinically significant prostate cancer; ROC: receiver operating characteristic; AUC: area under the curve; CI: confidence interval.
表3  各参数与csPCa的单因素、多因素logistic分析
Tab. 3  Univariable and multivariable analyses for clinically significant prostate cancer

3 讨论

       本研究探讨了PI-RADS v2.1不同类别移行带病变的csPCa的检出率。结果显示,PI-RADS≥3类移行带病变的csPCa检出率存在显著性差异。进一步使用定量方法提取出病灶的形状特征和信号特征,发现PI-RADS评分、病灶直径及网格体积是csPCa的独立预测因子。

3.1 PI-RADS v2.1不同类别病灶的癌症检出率

       我们的结果显示,PI-RADS 4类、5类病灶的PCa和csPCa检出率均较高,分别为41.86%、79.07%(PCa)和32.56%、70.93%(csPCa)。这一结果与THAI等[16]的研究相近,他们从600多个移行带靶向活检队列中发现,PI-RADS v2 4类和5类病灶的csPCa检出率分别为29.1%和77.6%。相比之下,PI-RADS 3类病灶的PCa及csPCa检出率明显低于PI-RADS 4类和5类病灶,分别为14.44%和3.84%。这与其他研究一致[18, 22, 23],进一步验证了PI-RADS 3类病变中csPCa的发生率普遍较低,即便是在PCa高发病率的群体中亦是如此。YANG等[23]发现PI-RADS 3类病变在移行带的出现频率显著高于外周带。然而,csPCa的检出率在移行带中明显低于外周带(6.0% vs. 18.5%,P<0.05)。此外,我们还发现,非典型结节(PI-RADS 2类)及典型结节(PI-RADS 1类)中未检出csPCa。这一发现强调了PI-RADS v2.1中非典型移行带结节DWI升级规则的重要性。尽管3类结节中csPCa的发生率较低,然而,考虑到大多数临床中心针对PI-RADS 3类或更高类别的病变实施活检[24],在PI-RADS v2.1更新之前,并不会对升级的3(2+1)类移行带病变进行活检。在我们的研究中,涉及27例升级的3(2+1)类移行带病变中,其中仅有1例(3.70%)确诊为csPCa。因此,这些病例的数量似乎并不足以证明这一类别的癌症检出率,可能导致不必要的活检。同样,在一项有359个病变的研究中,6个被升级为3类移行带病变中无一例为csPCa[25]。因此,可能需要更多确凿的证据来重新评估在PI-RADS v2.1中将移行带病变升级到3类的附加价值。

3.2 与csPCa相关的独立预测因子

       我们的结果显示,PI-RADS评分是csPCa的独立预测因子,有助于对前列腺移行带病变进行风险分层。近年的研究表明,PI-RADS v2.1评分在诊断PCa,尤其是csPCa方面具有很高的应用价值[26, 27, 28]。有研究报道[26],以PI-RADS v2.1评分4分为截断值,AUC值达0.95,阴性预测值(negative predictive value, NPV)高达98.2%,本研究结果显示以PI-RADS v2.1评分4分为截断值,AUC为0.948,也证实了PI-RADS v2.1评分的诊断效能。

       经过分析并未发现与csPCa直接相关的特定病变形状,但能够确认某些相关性。例如,病灶的最大二维直径及网格体积与csPCa存在相关性[OR=0.84(0.71~0.98)、1.00(1.00~1.00),P<0.05]。这些发现进一步证实了前列腺病灶的大小与csPCa之间存在显著的关联,这一结论在相关的研究中也得到了证实[28, 29, 30],病灶主轴长度与病灶体积在T分期中逐渐增加,表明肿瘤的大小是PCa诊断的重要指标。然而,需要指出的是,单纯依赖病灶大小作为评估标准,可能忽略了其他的重要特征。事实上,即使病灶小于1.5 cm,仍可能表现出侵袭性疾病的特性[31]。据多项研究[30, 32, 33]表明,ADC值在识别csPCa方面具有一定的价值。另有研究表明,采用局灶性病灶与正常前列腺实质,甚至与整个腺体的ADC值之间的比值,可能有助于降低这些定量指标在不同平台间的变异性[34, 35]。然而,遗憾的是,在本研究中ADC值以及其他定量特征并未为前列腺病灶的风险分层提供额外价值,这也说明PI-RADS v2.1评分系统已为病灶的风险分层提供了较高的诊断效能及诊断依据。

3.3 局限性

       本研究的不足之处:(1)研究大部分病理结果为经直肠超声引导下系统穿刺,与MRI病灶不能完全一一对应,结果可能存在偏差;(2)本文为回顾性研究,且高级别PCa病例数过多,样本选择可能存在偏倚;(3)样本量相对不足,部分分类下的数据集非常小且不平衡,今后仍需要大样本多中心研究进一步证实。

4 总结

       综上所述,PI-RADS评分、病灶的定量特征如直径及网格体积是csPCa的独立预测因子,可为临床诊疗提供依据。

[1]
LIM C S, ABREU-GOMEZ J, CARRION I, et al. Prevalence of prostate cancer in PI-RADS version 2.1 transition zone atypical nodules upgraded by abnormal DWI: correlation with MRI-directed TRUS-guided targeted biopsy[J]. AJR Am J Roentgenol, 2021, 216(3): 683-690. DOI: 10.2214/AJR.20.23932.
[2]
LIU Y Y, WANG S, XU G, et al. Effectiveness and accuracy of MRI-ultrasound fusion targeted biopsy based on PI-RADS v2.1 category in transition/peripheral zone of the prostate[J]. J Magn Reson Imaging, 2023, 58(3): 709-717. DOI: 10.1002/jmri.28614.
[3]
PARK K J, CHOI S H, KIM M H, et al. Performance of prostate imaging reporting and data system version 2.1 for diagnosis of prostate cancer: a systematic review and meta-analysis[J]. J Magn Reson Imaging, 2021, 54(1): 103-112. DOI: 10.1002/jmri.27546.
[4]
KIM H S, KWON G Y, KIM M J, et al. Prostate imaging-reporting and data system: comparison of the diagnostic performance between version 2.0 and 2.1 for prostatic peripheral zone[J]. Korean J Radiol, 2021, 22(7): 1100-1109. DOI: 10.3348/kjr.2020.0837.
[5]
BJURLIN M A, CARROLL P R, EGGENER S, et al. Update of the standard operating procedure on the use of multiparametric magnetic resonance imaging for the diagnosis, staging and management of prostate cancer[J]. J Urol, 2020, 203(4): 706-712. DOI: 10.1097/JU.0000000000000617.
[6]
EXTERKATE L, WEGELIN O, BARENTSZ J O, et al. Is there still a need for repeated systematic biopsies in patients with previous negative biopsies in the era of magnetic resonance imaging-targeted biopsies of the prostate?[J]. Eur Urol Oncol, 2020, 3(2): 216-223. DOI: 10.1016/j.euo.2019.06.005.
[7]
ROUVIÈRE O, PUECH P, RENARD-PENNA R, et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study[J]. Lancet Oncol, 2019, 20(1): 100-109. DOI: 10.1016/S1470-2045(18)30569-2.
[8]
AHDOOT M, WILBUR A R, REESE S E, et al. MRI-targeted, systematic, and combined biopsy for prostate cancer diagnosis[J]. N Engl J Med, 2020, 382(10): 917-928. DOI: 10.1056/NEJMoa1910038.
[9]
KIM C H, KIM C K, PARK J J, et al. Yield of concurrent systemic biopsy during MRI-targeted biopsy according to Prostate Imaging Reporting and Data System version 2 in patients with suspected prostate cancer[J]. Eur Radiol, 2021, 31(3): 1667-1675. DOI: 10.1007/s00330-020-07167-z.
[10]
TURKBEY B, ROSENKRANTZ A B, HAIDER M A, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3): 340-351. DOI: 10.1016/j.eururo.2019.02.033.
[11]
WEINREB J C. Organized chaos: does PI-RADS version 2 work in the transition zone?[J]. Radiology, 2018, 288(2): 492-494. DOI: 10.1148/radiol.2018180123.
[12]
LEE C H, VELLAYAPPAN B, TAN C H. Comparison of diagnostic performance and inter-reader agreement between PI-RADS v2.1 and PI-RADS v2: systematic review and meta-analysis[J/OL]. Br J Radiol, 2022, 95(1131): 20210509 [2024-02-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8978226/. DOI: 10.1259/bjr.20210509.
[13]
BOROFSKY S, GEORGE A K, GAUR S, et al. What are we missing? false-negative cancers at multiparametric MR imaging of the prostate[J]. Radiology, 2018, 286(1): 186-195. DOI: 10.1148/radiol.2017152877.
[14]
KIM N, KIM S, PRABHU V, et al. Comparison of prostate imaging and reporting data system V2.0 and V2.1 for evaluation of transition zone lesions: a 5-reader 202-patient analysis[J]. J Comput Assist Tomogr, 2022, 46(4): 523-529. DOI: 10.1097/RCT.0000000000001313.
[15]
CHIU P K F, LEOW J J, CHIANG C H, et al. Prostate health index density outperforms prostate-specific antigen density in the diagnosis of clinically significant prostate cancer in equivocal magnetic resonance imaging of the prostate: a multicenter evaluation[J]. J Urol, 2023, 210(1): 88-98. DOI: 10.1097/JU.0000000000003450.
[16]
THAI J N, NARAYANAN H A, GEORGE A K, et al. Validation of PI-RADS version 2 in transition zone lesions for the detection of prostate cancer[J]. Radiology, 2018, 288(2): 485-491. DOI: 10.1148/radiol.2018170425.
[17]
OERTHER B, ENGEL H, BAMBERG F, et al. Cancer detection rates of the PI-RADSv2.1 assessment categories: systematic review and meta-analysis on lesion level and patient level[J]. Prostate Cancer Prostatic Dis, 2022, 25(2): 256-263. DOI: 10.1038/s41391-021-00417-1.
[18]
KWE J, BAUNACKE M, BOEHM K, et al. PI-RADS upgrading as the strongest predictor for the presence of clinically significant prostate cancer in patients with initial PI-RADS-3 lesions[J/OL]. World J Urol, 2024, 42(1): 84 [2024-02-11]. https://link.springer.com/article/10.1007/s00345-024-04944-z. DOI: 10.1007/s00345-024-04776-x.
[19]
BOUYÉ S, POTIRON E, PUECH P, et al. Transition zone and anterior stromal prostate cancers: zone of origin and intraprostatic patterns of spread at histopathology[J]. Prostate, 2009, 69(1): 105-113. DOI: 10.1002/pros.20859.
[20]
王劲夫, 吴鹏杰, 刘圣杰, 等. 坦索罗辛治疗前列腺体积小于40 ml的前列腺增生合并膀胱过度活动症患者有效性的相关因素分析[J]. 中华老年医学杂志, 2023, 42(1): 62-66. DOI: 10.3760/cma.j.issn.0254-9026.2023.01.012.
WANG J F, WU P J, LIU S J, et al. Analysis of factors related to the efficacy of Tamsulosin monotherapy for overactive bladder symptoms in benign prostatic hyperplasia patients with the prostate volume 40 ml[J]. Chin J Geriatr, 2023, 42(1): 62-66. DOI: 10.3760/cma.j.issn.0254-9026.2023.01.012.
[21]
HUANG Y H, ZHU T, ZHANG X L, et al. Longitudinal MRI-based fusion novel model predicts pathological complete response in breast cancer treated with neoadjuvant chemotherapy: a multicenter, retrospective study[J/OL]. EClinicalMedicine, 2023, 58: 101899 [2024-02-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10050775/. DOI: 10.1016/j.eclinm.2023.101899.
[22]
TAMADA T, KIDO A, YAMAMOTO A, et al. Comparison of biparametric and multiparametric MRI for clinically significant prostate cancer detection with PI-RADS version 2.1[J]. J Magn Reson Imaging, 2021, 53(1): 283-291. DOI: 10.1002/jmri.27283.
[23]
YANG S, ZHAO W L, TAN S X, et al. Combining clinical and MRI data to manage PI-RADS 3 lesions and reduce excessive biopsy[J]. Transl Androl Urol, 2020, 9(3): 1252-1261. DOI: 10.21037/tau-19-755.
[24]
PADHANI A R, BARENTSZ J, VILLEIRS G, et al. PI-RADS steering committee: the PI-RADS multiparametric MRI and MRI-directed biopsy pathway[J]. Radiology, 2019, 292(2): 464-474. DOI: 10.1148/radiol.2019182946.
[25]
RUDOLPH M M, BAUR A D J, CASH H, et al. Diagnostic performance of PI-RADS version 2.1 compared to version 2.0 for detection of peripheral and transition zone prostate cancer[J/OL]. Sci Rep, 2020, 10(1): 15982 [2024-02-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525456/. DOI: 10.1038/s41598-020-72544-z.
[26]
LEI Y, LI T J, GU P, et al. Combining prostate-specific antigen density with prostate imaging reporting and data system score version 2.1 to improve detection of clinically significant prostate cancer: A retrospective study[J/OL]. Front Oncol, 2022, 12: 992032 [2024-01-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9539128/. DOI: 10.3389/fonc.2022.992032.
[27]
姜贤梅, 陈云辉, 董诗存, 等. PI-RADS v2.1联合PSAD对临床显著性前列腺癌的诊断效能[J]. 大连医科大学学报, 2024, 46(2): 138-143. DOI: 10.11724/jdmu.2024.02.08.
JIANG X M, CHEN Y H, DONG S C, et al. Diagnostic efficacy of PI-RADS v2.1 in combination with prostate-specific antigen density for clinically significant prostate cancer[J]. J Dalian Med Univ, 2024, 46(2): 138-143. DOI: 10.11724/jdmu.2024.02.08.
[28]
XU S S, LIU X B, ZHANG X Q, et al. Prostate zones and tumor morphological parameters on magnetic resonance imaging for predicting the tumor-stage diagnosis of prostate cancer[J]. Diagn Interv Radiol, 2023, 29(6): 753-760. DOI: 10.4274/dir.2023.232284.
[29]
YUK H D, BYUN S S, HONG S K, et al. The tumor volume after radical prostatectomy and its clinical impact on the prognosis of patients with localized prostate cancer[J/OL]. Sci Rep, 2022, 12(1): 6003 [2024-01-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8994775/. DOI: 10.1038/s41598-022-09431-2.
[30]
ABREU-GOMEZ J, WALKER D, ALOTAIBI T, et al. Effect of observation size and apparent diffusion coefficient (ADC) value in PI-RADS v2.1 assessment category 4 and 5 observations compared to adverse pathological outcomes[J]. Eur Radiol, 2020, 30(8): 4251-4261. DOI: 10.1007/s00330-020-06725-9.
[31]
ROSENKRANTZ A B, BABB J S, TANEJA S S, et al. Proposed adjustments to PI-RADS version 2 decision rules: impact on prostate cancer detection[J]. Radiology, 2017, 283(1): 119-129. DOI: 10.1148/radiol.2016161124.
[32]
ZHAO Y Y, XIONG M L, LIU Y F, et al. Magnetic resonance imaging radiomics-based prediction of clinically significant prostate cancer in equivocal PI-RADS 3 lesions in the transitional zone[J/OL]. Front Oncol, 2023, 13: 1247682 [2024-01-24]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10701731/. DOI: 10.3389/fonc.2023.1247682.
[33]
KRAUSS W, FREY J, LAGERLÖF J H, et al. Radiomics from multisite MRI and clinical data to predict clinically significant prostate cancer[J]. Acta Radiol, 2024, 65(3): 307-317. DOI: 10.1177/02841851231216555.
[34]
BRANCATO V, DI COSTANZO G, BASSO L, et al. Assessment of DCE utility for PCa diagnosis using PI-RADS v2.1: effects on diagnostic accuracy and reproducibility[J/OL]. Diagnostics, 2020, 10(3): 164 [2023-12-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151226/. DOI: 10.3390/diagnostics10030164.
[35]
李鹏, 李艳, 徐洁, 等. 磁共振表观扩散系数鉴别诊断移行带高危前列腺癌及与病理分级分组的相关性[J]. 磁共振成像, 2024, 15(2): 77-82, 89. DOI: 10.12015/issn.1674-8034.2024.02.011.
LI P, LI Y, XU J, et al. Differential diagnosis of MRI apparent diffusion coefficient for high-risk prostate cancer in the transition zone and its correlation with pathological grading group[J]. Chin J Magn Reson Imag, 2024, 15(2): 77-82, 89. DOI: 10.12015/issn.1674-8034.2024.02.011.

上一篇 基于CE-T1WI图像影像组学和病理参数模型预测胶质瘤术后复发的研究
下一篇 IDEAL-IQ序列在冈上肌腱损伤后肩袖肌群脂肪浸润定量评估中的应用
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2