分享:
分享到微信朋友圈
X
临床研究
慢性踝关节不稳患者小腿肌肉面积和脂肪含量的定量MRI研究
解开鹏 黄益龙 陈佳鑫 马寄耀 何波

Cite this article as: XIE K P, HUANG Y L, CHEN J X, et al. Quantitative MRI study of calf muscle area and fat content in patients with chronic ankle instability[J]. Chin J Magn Reson Imaging, 2024, 15(10): 129-135.本文引用格式:解开鹏, 黄益龙, 陈佳鑫, 等. 慢性踝关节不稳患者小腿肌肉面积和脂肪含量的定量MRI研究[J]. 磁共振成像, 2024, 15(10): 129-135. DOI:10.12015/issn.1674-8034.2024.10.022.


[摘要] 目的 探究采用MRI定量分析慢性踝关节不稳(chronic ankle instability, CAI)患者小腿肌肉横截面积(cross-sectional area, CSA)和质子密度脂肪分数(proton density fat fraction, PDFF)的改变及其相关影响因素。材料与方法 前瞻性招募50名CAI患者和32名健康志愿者,收集他们的临床资料并行小腿肌肉MRI扫描。在轴位T1加权快速扰相梯度回波序列上勾画小腿各肌肉CSA,通过最小二乘法估计和不对称回波迭代分解水和脂肪成像获取相应肌肉PDFF。分析CAI患者小腿肌肉CSA和PDFF与健康对照组的差异并分析其与扭伤次数、中断活动时间、扭伤时间、足踝能力测量-日常生活评分(Foot and Ankle Ability Measure-Activities of Daily Living, FAAM-ADL)和足踝能力测量-运动评分(FAAM-SPORTS)的相关性。结果 CAI患者患侧小腿腓肠肌内外侧头、比目鱼肌、胫骨前肌、胫骨后肌和腓骨长肌CSA较健康对照组减小,且PDFF增加,差异均有统计学意义(P均<0.05)。趾长伸肌和踇长屈肌CSA较健康对照组减小,差异无统计学意义(P=0.307、0.320);但两者PDFF较健康对照组增加,且差异有统计学意义(P=0.047、0.029)。相关性分析显示CSA减少与扭伤次数呈强正相关(r=0.785,P<0.001),与FAAM-ADL(r=-0.754,P<0.001)、FAAM-SPORTS(r=-0.766,P<0.001)呈强负相关,与中断活动时间呈中度正相关(r=0.642,P<0.001)。PDFF增加与扭伤次数呈强正相关(r=0.757,P<0.001)与FAAM-SPORTS呈强负相关(r=-0.740,P<0.001),与中断活动时间呈中度正相关(r=0.600,P<0.001),与FAAM-ADL呈中度负相关(r=-0.681,P<0.001)。结论 MRI能定量评估CAI患者小腿肌肉CSA和PDFF改变,且与扭伤次数、FAAM -ADL、FAAM-SPORTS和中断活动时间有关。
[Abstract] Objective To investigate the changes in cross-sectional area (CSA) and proton density fat fraction (PDFF) of calf muscles in patients with chronic ankle instability (CAI) using magnetic resonance imaging (MRI) quantitative analysis, and to explore the related influencing factors.Materials and Methods A prospective study was conducted in 50 patients with CAI and 32 healthy volunteers. Clinical data were collected, and MRI scans of the calf muscles were performed. The CSA of each calf muscle was delineated on axial T1-weighted fast spoild gradient echo sequences, while the PDFF of corresponding muscles was obtained through least squares estimation and iterative decomposition of water and fat with echo asymmetry. Differences in calf muscle CSA and PDFF between CAI patients and healthy controls were analyzed, and their correlations with the number of sprains, duration of interruption in activities, time since last sprain, Foot and Ankle Ability Measure-Activities of Daily Living (FAAM-ADL) score, and FAAM-SPORTS score were examined.Results Compared to the healthy control group, CAI patients had significantly reduced CSA in the medial and lateral heads of the gastrocnemius, soleus, tibialis anterior, tibialis posterior, and peroneus longus muscles on the affected side, with a concurrent increase in PDFF (P<0.05, all). The CSA of the extensor digitorum longus and flexor hallucis longus muscles was also reduced, but the differences were not statistically significant (P=0.307, 0.320, respectively); however, their PDFF was significantly increased (P=0.047, 0.029, respectively). Correlation analysis showed that reduced CSA was strongly positively correlated with the number of sprains (r=0.785, P<0.001) and moderately positively correlated with the duration of interruption in activities (r=0.642, P<0.001), while it was strongly negatively correlated with FAAM-ADL (r=-0.754, P<0.001) and FAAM-SPORTS (r=-0.766, P<0.001). Increased PDFF was strongly positively correlated with the number of sprains (r=0.757, P<0.001) and moderately positively correlated with the duration of interruption in activities (r=0.600, P<0.001), while it was strongly negatively correlated with FAAM-SPORTS (r=-0.740, P<0.001) and moderately negatively correlated with FAAM-ADL (r=-0.681, P<0.001).Conclusions MRI can quantitatively assess changes in calf muscle CSA and PDFF in patients with CAI, and these changes are related to the number of sprains, FAAM-ADL, FAAM-SPORTS, and duration of interruption in activities.
[关键词] 慢性踝关节不稳;骨骼肌;肌肉萎缩;脂肪浸润;磁共振成像
[Keywords] chronic ankle instability;skeletal muscle;muscle atrophy;fatty infiltration;magnetic resonance imaging

解开鹏 1   黄益龙 1   陈佳鑫 1   马寄耀 2   何波 1*  

1 昆明医科大学第一附属医院医学影像科,昆明 650032

2 昆明医科大学第二附属医院放射科,昆明 650101

通信作者:何波,E-mail: kmmu_hb@163.com

作者贡献声明:何波参与本研究构思和设计,对稿件的重要内容进行修改,获得了云南省科技计划项目资助;解开鹏参与研究构思和设计,获取、分析并解释本研究的数据,起草稿件;黄益龙、马寄耀、陈佳鑫获取、分析并解释本研究的数据,对稿件重要内容进行了修改;全体作者均同意发表最后的修改稿;同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 云南省科技计划项目 202105AC160076
收稿日期:2024-06-13
接受日期:2024-10-10
中图分类号:R445.2  R684 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.10.022
本文引用格式:解开鹏, 黄益龙, 陈佳鑫, 等. 慢性踝关节不稳患者小腿肌肉面积和脂肪含量的定量MRI研究[J]. 磁共振成像, 2024, 15(10): 129-135. DOI:10.12015/issn.1674-8034.2024.10.022.

0 引言

       外侧踝关节扭伤是运动人群最常见的肌肉骨骼损伤[1, 2, 3]。40%的外侧踝关节扭伤患者常因反复扭伤发展为慢性踝关节不稳(chronic ankle instability, CAI)[4, 5]。CAI是一种常见的高度致残疾病[6],临床特征表现为踝关节反复扭伤、持续疼痛和关节不稳定,不仅影响患者工作、运动及生活质量,还是并发踝关节骨性关节炎的诱因之一,给社会带来了巨大的经济负担[6, 7, 8, 9, 10, 11]

       在临床实践中,CAI的治疗主要分为保守治疗和手术治疗。对于CAI患者,保守治疗是首选,经积极保守治疗后,如症状仍无改善,可尝试手术治疗。保守治疗包括止痛、消肿、限制踝关节活动、运动康复和物理治疗[12, 13]。运动康复训练是保守治疗的重要手段,在手术后康复中也起到非常重要的作用,通过科学的运动康复训练,可以增强踝关节的肌肉力量,进而提升踝关节的稳定性,减少踝关节再次扭伤的风险[11, 14, 15]。在康复训练时了解CAI患者与年龄、身高和BMI相匹配的健康人群小腿肌肉横截面积和脂肪含量方面有无差异是很有必要的,评估小腿肌肉横截面积(cross sectional area, CSA)和脂肪含量可以帮助了解肌肉的健康状况和发力潜力,特别对于在功能测试中难以分离的肌肉特别有用[16]。目前仍不清楚小腿肌肉CSA和脂肪含量改变与CAI发生发展的关系。之前FEGER等[4]曾对CAI患者与健康人群的小腿肌肉进行过比较,但样本量较小,并且没有分析肌肉的脂肪含量。由于MRI具有较高软组织分辨率,不但能清楚显示肌肉解剖形态,且采用最小二乘法估计和不对称回波迭代分解水和脂肪成像序列(iterative decomposition of water and fat with asymmetry and least squares estimation quantitative fat imaging, IDEAL-IQ)得到的质子密度脂肪分数(proton density fat fraction, PDFF)还能定量分析肌肉脂肪含量。因此,本研究采用MRI定量分析小腿各肌肉CSA和PDFF,并分析多种与CAI患者肌肉CSA和PDFF变化相关的临床因素和自我报告问卷,以期为运动医学临床医生进行康复训练时提供见解。

1 材料与方法

1.1 研究对象

       前瞻性招募2022年11月到2023年10月到昆明医科大学第一附属医院就诊的CAI患者50例,其中男26例,女24例,年龄19~33(24.7±3.0)岁。收集患者的年龄、身高、身体质量指数(body mass index, BMI)、扭伤时间、扭伤次数、扭伤侧别、中断活动时间。对所有拟入组患者均采用目前国际踝关节协会推荐的坎伯兰特踝关节不稳定评分进行CAI判定,并对符合入组条件的CAI患者进行了足踝能力测量(Foot and Ankle Ability Measure, FAAM)评分[该评分包括两个部分:足踝能力测量-日常生活活动评分(FAAM-ADL)和足踝能力测量-运动评分(FAAM-SPORTS)]。

1.2 纳入标准

       CAI组纳入标准具体如下[17]:(1)至少有一次严重踝关节扭伤史,初次扭伤距离研究登记至少12个月;(2)至少有一天因扭伤而中断身体活动史;(3)最近的损伤必须发生在研究登记前3个月以前;(4)既往扭伤的踝关节反复出现“让路”感或扭伤,在登记入组前6个月至少报告2次“让路”或扭伤史;(5)坎伯兰特踝关节不稳定评分≤23分;除了国际踝关节协会推荐的标准外,本研究纳入标准还包括(6)年龄16-40岁;(7)单侧踝关节扭伤。排除标准:(1)患有痛风性、类风湿性关节炎、进行性肌营养不良等其他可能影响下肢运动的疾病;(2)既往有除踝关节外下肢及其他关节手术史、外伤史;(3)双侧踝关节扭伤史;(4)有MRI禁忌证及不能配合者。健康对照组来自体检中心、本院职工等,共计32例,男16例,女16例,年龄16-32(24.0±3.1)岁,排除标准同CAI组,收集对照组的人口学资料,包括性别、年龄、身高、BMI。本研究遵守《赫尔辛基宣言》,经昆明医科大学第一附属医院伦理委员会批准(2018-L-86),所有受试者理解并自愿参与本研究并签署了知情同意书。

1.3 图像采集

       采用美国GE Discovery MR 750W 3.0 T MR扫描仪,使用16通道腹部线圈采集双侧小腿肌肉数据。受试者采用仰卧位足先进体位。采集时双腿自然伸直脚尖并拢,为防止检查时受试者下肢不自主运动,在踝关节位置使用沙袋固定,扫描范围从股骨髁上比目鱼肌附着点到踝关节胫距关节间隙。扫描序列及具体参数见表1

表1  各扫描序列参数表
Tab. 1  Parameters of each scan sequence

1.4 图像分析

       将T1-Cor-LAVA、T1-Oax-FSPGR、IDEAL-IQ序列图像传输至ADW 4.6图像工作站(GE,美国)。首先在T1-Cor-LAVA序列上测量胫骨长度,取胫骨髁间脊和胫距关节面中点的连线(图1A)。计算并选取距胫骨平台胫骨全长36%处的位置作为勾画小腿肌肉CSA的层面,因为这个位置接近小腿最大周长和最大CSA[18, 19]。为了更准确找到小腿最大CSA层面,以文献报道的位置为中心,上下各两个层面(层厚3 mm)分别测量小腿周长,选取周长最大的层面作为最终测量层面。在T1-Oax-FSPGR序列上分别测量该层面各肌肉的CSA,对T1-Oax-FSPGR和IDEAL-IQ进行匹配,以便在勾画肌肉CSA后得到相应肌肉的PDFF值(图1B、1C)。测量由同一从事MRI工作10年以上的主治医师进行,同一肌肉CSA分别进行三次测量,通过计算取其平均值进行记录。因课题其他部分需要,我们在采集了CAI患者患侧踝关节图像,同时采用抽签随机化法,随机采集了与CAI组踝关节侧别相匹配对照组踝关节数据。由于本研究纳入的患者均为单侧踝关节不稳,在进行数据分析前,我们以对照组随机采集的踝关节侧的小腿数据作为健康对照组对照侧,然后比较了CAI患者患侧小腿和健康对照组对照侧小腿CSA和PDFF的差别。在进行相关性分析前,对CAI患者患、健侧小腿和对照组左、右侧小腿的CSA和PDFF进行了配对比较。采用CAI患者健侧小腿与患侧小腿CSA差和患侧小腿与健侧小腿PDFF差来反映CAI患者患侧小腿肌肉萎缩和脂肪浸润情况。间隔30天后,从CAI组随机抽取25人,对照组随机抽取16人,由同一专业人员对比目鱼肌的CSA和PDFF以相同的方法进行第二次测量,做组内一致性分析。

图1  肌肉的CSA及PDFF勾画位置及勾画方法。1A:在T1-Cor-LAVA序列上取胫骨髁间脊和胫距关节面中点连线,计算并选取距胫骨平台胫骨全长36%处位置作为勾画小腿肌肉CSA的层面;1B:在T1-Oax-FSPGR序列上勾画小腿各肌肉的CSA;1C:CSA勾画的范围同步到IDEAL-IQ序列上确定PDFF范围。CSA:横截面积;PDFF:质子密度脂肪分数;Cor:冠状位;LAVA:容积内插梯度回波;Oax:轴位;FSPGR:快速扰相梯度回波;IDEAL-IQ:最小二乘法估计和不对称回波迭代分解水和脂肪成像。
Fig. 1  Delineation positions and methods for muscle CSA and PDFF. 1A: On the T1-Cor-LAVA sequence, the midpoint line between the tibial intercondylar eminence and the tibiotalar articular surface is taken, and the position at 36% of the total tibial length from the tibial plateau is calculated and selected as the level for delineating the calf muscle CSA; 1B: The CSA of each calf muscle is delineated on the T1-Oax-FSPGR sequence; 1C: The delineated CSA range is synchronized to the IDEAL-IQ sequence to determine the PDFF range. CSA: cross-sectional area; PDFF: proton density fat fraction; Cor: coronal; LAVA: volume interpolation gradient echo; Oax: the axial position; FSPGR: fast disturbed phase gradient echo; IDEAL-IQ: iterative decomposition of water and fat with asymmetry and least squares estimation quantitative fat imaging.

1.5 统计学方法

       采用SPSS 27.0统计软件进行分析。以Shapiro-Wilk法对计量资料行正态性检验;采用Levene's法行方差齐性检验;符合正态分布的计量资料用(x¯±s)表示。符合正态分布的计量资料两独立样本间比较采用独立样本t检验,配对样本比较采用配对t检验,不符合正态分布的计量资料采用U检验,比较计数资料采用χ2检验。正态分布的连续性变量采用Pearson相关,否则采用Spearman相关来评价。|r|<0.4为低度相关,0.4≤|r|<0.7为中度相关,|r|≥0.7为高度相关。采用组内相关系数(intra-class correlation coefficient, ICC)比较同一工作者不同时间测量结果的一致性。ICC<0.4提示一致性差,0.4≤ICC≤0.75提示一致性较好,ICC>0.75提示一致性非常好。P<0.05为差异有统计学意义。

2 结果

2.1 基线资料

       入组CAI患者平均扭伤次数为4(3,6)次,初次扭伤到入组的平均时间为3(1,5)年,CAI组与健康对照组的年龄、性别、身高、BMI及小腿侧别差异均无统计学意义(P>0.05)。具体数据见表2

表2  CAI组与健康对照组基线资料比较
Tab. 2  Comparison of baseline information between CAI group and healthy control group

2.2 观察者内一致性

       间隔30天后复测观察者内一致性分析结果提示观察者间组间一致性非常好:CAI组CSA-ICC=0.992(95% CI:0.983~0.997);PDFF-ICC=0.964(95% CI:0.919~0.984);对照组CSA-ICC=0.987(95% CI:0.962~0.995);PDFF-ICC=0.979(95% CI:0.942~0.993)。

2.3 CAI患者患侧和对照组对照侧小腿各肌肉CSA和PDFF比较

       比较CAI患者患侧和对照组小腿肌肉CSA,结果显示腓肠肌内外侧头、比目鱼肌、胫骨前肌、胫骨后肌和腓骨长肌CSA均比对照组减小,差异有统计学意义(P=0.020、0.017、0.015、0.020、0.036、0.022)。趾长伸肌、踇长屈肌CSA均数较对照组减小,差异无统计学意义(P=0.307、0.320)。PDFF结果显示腓肠肌内侧头、比目鱼肌、胫骨前肌和腓骨长肌PDFF显著高于对照组,差异有统计学意义(P=0.004、0.007、0.002、0.003);腓肠肌外侧头、胫骨后肌、趾长伸肌和踇长屈肌PDFF均高于对照组,差异有统计学意义(P=0.014、0.012、0.047、0.029)(表34)。

表3  CAI患侧和对照组小腿各肌肉CSA比较
Tab. 3  Comparison of CSA of calf muscles between CAI-affected and control groups
表4  CAI患侧和对照组小腿各肌肉PDFF比较
Tab. 4  Comparison of PDFF of calf muscles between CAI-affected and control groups

2.4 CAI患者患、健侧和对照组的左、右侧小腿CSA和PDFF比较

       CAI患者患、健侧和对照组左、右侧小腿CSA和PDFF配对t检验结果显示:对照组左右侧小腿间CSA和PDFF差异无统计学意义(P=0.076、0.057),CAI患者患、健侧比较发现,患侧CSA较健侧减小,PDFF较健侧增高,差异有统计学意义(P<0.001)(图3)。

图2  CAI组患、健侧和对照组左、右侧小腿CSA和PDFF配对t检验结果。2A:CAI组患侧和健侧CSA比较差异有统计学意义(P<0.001);2B:对照组左、右侧CSA比较差异无统计学意义(P=0.076);2C:CAI组患侧和健侧PDFF比较差异有统计学意义(P<0.001);2D:对照组左、右侧PDFF比较差异无统计学意义(P=0.057)。CAI:慢性踝关节不稳;CSA:横截面积;PDFF:质子密度脂肪分数;R为右侧;L为左侧。
Fig. 2  The paired t-test results of CSA and PDFF on left and right leg of control group and healthy side and affected side of CAI group. 2A: The comparison of CSA in healthy side and affected side of CAI group, the difference is statistical significance (P<0.001); 2B: The comparison of left and right CSA in the control group, the difference is no statistical significance (P=0.076); 2C: The comparison of CSA in healthy side and affected side of CAI group, the difference is statistically significant (P<0.001); 2D: The comparison of PDFF of left and right side in the control group, there is no statistically significant difference (P=0.057). CAI: chronic ankle instability; CSA: cross-sectional area; PDFF: proton density fat fraction; R: right side; L: left side.
图3  CAI患者CSA减少量和PDFF增加量与相关临床资料的相关性分析。CAI:慢性踝关节不稳;CSA:横截面积;PDFF:质子密度脂肪分数;FAAM-ADL:足踝能力测量-日常生活评分;FAAM-SPORTS:足踝能力测量-运动评分。
Fig. 3  Correlation analysis of CSA reduction and PDFF increase in CAI patients with relevant clinical data. CAI: chronic ankle instability; CSA: cross-sectional area; PDFF: proton density fat fraction; FAAM-ADL: foot and ankle ability measure-activities of daily living; FAAM-SPORTS: foot and ankle ability measurement-sports

2.5 相关性分析

       CAI患者CSA减少量和PDFF增加量与扭伤时间(初次扭伤到入组的时间)、扭伤次数、中断活动时间(连续中断活动最长时间)和FAAM评分的相关性结果显示:CSA减少量和扭伤次数呈强正相关,和FAAM-ADL和FAAM-SPORTS呈强负相关,和中断活动时间呈中度正相关,和扭伤时间呈弱负相关性。(图3A~3E);PDFF增加量和扭伤次数呈强正相关,和FAAM-SPORTS呈强负相关,和中断活动时间呈中度正相关,和FAAM-ADL呈中度负相关,和扭伤时间呈弱负相关(图3F~3J)。

3 讨论

       本研究采用MRI定量分析CAI患者小腿肌肉CSA和PDFF与年龄、性别、身高、BMI和肢体匹配的健康对照组的差异并分析其与扭伤次数、中断活动时间、扭伤时间、FAAM-ADL和FAAM-SPORTS的相关性,发现CAI患者肌肉CSA减小同时伴有PDFF增加,这些肌肉改变与患者的扭伤次数和中断活动时间呈明显正相关,与患者自我报告的FFAM评分呈显著负相关。据我们所知这是第一个同时比较CAI患者与相匹配的健康对照组小腿肌肉面积和脂肪含量的研究,这项对CAI肌肉形态学的研究能为运动医学临床医生在进行运动康复时提供见解。

3.1 CAI患者与健康对照小腿肌肉CSA和PDFF差异性分析

       本研究发现CAI患者小腿肌肉CSA较健康对照减小,同时PDFF增加可能与以下因素有关:首先,已有研究证实CAI患者普遍存在下肢肌力降低[7, 20],由于扭伤反复发生,CAI患者在日常工作、运动中往往会出现患肢不敢用力并有活动减少的情况。有研究表明多数CAI患者无法维持他们扭伤前的身体活动水平,并观察到患有CAI的年轻人每天比健康同龄人少走2000多步[21]。活动减少及扭伤后疼痛导致的肢体制动,会引起肌力下降[22],肌力下降又可能导致扭伤发生,两者相互促进。已有研究证实肌肉力量与肌肉CSA呈正相关,且肌肉CSA减小是肌力下降和肌肉萎缩表现之一[23, 24]。其次,从具体肌肉变化来看,腓肠肌、比目鱼肌、胫骨前后肌、腓骨长肌变化较明显,而趾长伸肌和踇长屈肌变化相对较小。可以发现肌肉改变涉及到了小腿的前、外侧及后群,但每块肌肉的萎缩程度有所不同,这一结果与FEGER等[4]的研究结果一致,但其样本量较小。肌肉萎缩的原因首先可能与CAI长期、反复活动中断及日常活动中用力减少导致的废用性萎缩有关,HARDY等[22]的研究也表明,废用性肌萎缩的发生发展在各个肌肉间存在差异。其次出现各个肌肉萎缩程度不同和可能与其功能有关,腓肠肌、比目鱼肌为小腿肌后群浅层主要肌肉,作用是屈踝;胫骨前肌为小腿前群主要肌肉,其主要作用除伸踝外还参与使足内翻;腓骨长肌为小腿肌外侧群主要肌肉,其作用为屈踝和使足外翻;胫骨后肌为小腿肌后群深层主要肌肉,其作用为参与屈踝和使足内翻;趾长伸肌和踇长屈肌虽然也参与踝关节的稳定,但其主要作用为屈踇和伸趾[25]。脂肪含量也是影响肌力的一个重要原因,对于肌肉脂肪含量与肌肉力量的关系,先前研究已经证实肌肉脂肪含量与肌力呈负相关[26, 27, 28, 29, 30]。本研究采用IDEAL-IQ序列对肌肉脂肪含量进行定量分析。IDEAL-IQ技术作为改良后的六回波水脂分离技术,可通过其定量参数PDFF全面评估肌肉脂肪含量,且与磁共振波谱成像(magnetic resonance spectroscopy, MRS)及组织学测量数据一致性较好,是反映肌肉脂肪浸润的可靠生物标志物[31, 32, 33]。从统计结果发现CAI患者患侧小腿部分肌肉PDFF值较对照组显著增高,并且这种差异较CSA改变更为明显。在趾长伸肌和踇长屈肌我们发现CSA改变差异尚无统计学意义时,其PDFF差异已经有统计学意义(表34),这一发现说明脂肪浸润发生可能要早于肌肉CSA的改变。现有研究也显示,活动能力减退及骨骼肌创伤等不良事件与骨骼肌间脂肪含量增加密切相关[34]。一方面,骨骼肌间脂肪浸润会导致脂肪组织渗透入骨骼肌中,改变肌纤维的固有排列,从而降低肌肉的力量。另一方面,骨骼肌间脂肪和内脏脂肪一样,能产生炎症因子,引发炎症反应,从而引起肌肉萎缩并削弱肌肉力量[35]。本研究的这一结论提示临床医师在对CAI患者进行早期干预时,应更加关注骨骼肌脂肪含量变化,如果在肌肉出现萎缩前针对肌肉脂肪含量异常的肌肉进行相应康复锻炼,可能会起到更好效果。

3.2 CAI患者患、健侧和对照组左、右侧小腿CSA和PDFF配对t检验结果分析

       对照组左、右侧小腿间CSA和PDFF差异无统计学意义,而CAI患侧CSA较健侧减小且PDFF增高,这一结果提示健康人群在日常活动时两下肢肌肉肌力基本一致并且在行走时着力程度也基本一致,因此两侧小腿的CSA和PDFF差异均没有统计学意义;而CAI患者在日常活动时存在两侧下肢着力不均,分析原因可能和经历多次扭伤后患侧踝关节疼痛并有因担心再次扭伤而主观减少用力有关,近期也有研究发现CAI患者存在与疾病相关的潜在运动恐惧症并且与关节位置感觉、姿势控制、自我报告的踝关节功能和不稳定性感知有关[36]。这可能导致患者患侧肌力下降并进而出现肌肉萎缩和脂肪浸润,两者可能相互促进,互为因果。

3.3 CAI患者小腿肌肉CSA和脂肪含量改变与相关临床因素和自我报告测量结果的相关性分析

       本研究结果显示,肌肉CSA及PDFF的改变与扭伤次数、中断活动时间呈正相关,随着扭伤次数增加,患者踝关节疼痛越明显,对活动中再次发生扭伤的恐惧感也增加,活动时间和强度就会减少,随着中断活动时间延长出现肌力下降,进而出现肌肉CSA的下降和脂肪含量的增加。扭伤时间与肌肉CSA减少相关性较低,从散点图分析发现随着扭伤时间的延长,肌肉萎缩程度在减轻,提示如果没有新的扭伤的发生,随着时间延长及活动量的增加,肌力可以得到恢复,萎缩的肌肉CSA会增加并且PDFF会减少,这一肌肉萎缩和恢复的变化过程和HARDY等[22]的研究结论一致;FAAM评分是一种用于评估CAI患者自我报告的足部和踝关节功能受限程度的评估工具,可用于评估CAI患者足部和踝关节功能残疾程度,分日常生活和运动两个分量表,总分均为100分,得分越高提示踝关节功能状况越好[37, 38]。本研究结果显示FAAM评分和患者CSA减少和PDFF增加呈显著负相关,评分越低者其肌肉萎缩和脂肪浸润越明显,提示临床医生在对患者进行康复训练时需要考虑患者的扭伤次数、中断活动时间,并可以对其进行足踝功能评分,根据评分结果对患者制订个性化康复计划。

3.4 局限性与展望

       本研究有以下几个局限性:首先,本研究分析的是肌肉CSA,并未分析肌肉体积;其次,研究纳入的CAI患者样本量较小,并且年龄跨度不大,未来研究中将增加样本量并扩大年龄范围;最后,为了纳入和评价CAI患者足踝功能,所有受试者均进行了坎伯兰特踝关节不稳定评分和FAAM评分,但该表由受试者主观评估所得。

4 结论

       综上所述,CAI患者与年龄、性别、身高、BMI和肢体匹配的健康对照组相比存在患侧小腿肌肉CSA减小同时伴有PDFF增加的情况,这些改变与扭伤次数、中断活动时间、FAAM-ADL、FAAM-SPORTS密切相关,MRI能定量评估这些改变,这项对CAI肌肉形态学的研究能为运动医学临床医生在进行运动康复时提供见解。

[1]
DELAHUNT E, BLEAKLEY C M, BOSSARD D S, et al. Clinical assessment of acute lateral ankle sprain injuries (ROAST): 2019 consensus statement and recommendations of the International Ankle Consortium[J]. Br J Sports Med, 2018, 52(20): 1304-1310. DOI: 10.1136/bjsports-2017-098885.
[2]
MICHELS F, WASTYN H, POTTEL H, et al. The presence of persistent symptoms 12 months following a first lateral ankle sprain: A systematic review and meta-analysis[J]. Foot Ankle Surg, 2022, 28(7): 817-826. DOI: 10.1016/j.fas.2021.12.002.
[3]
MICHELS F, DEWYN T, BOGAERTS K, et al. The evolution of patient-reported outcome measures after a first lateral ankle sprain: A prospective study[J]. Foot Ankle Surg, 2024, 30(7): 568-575. DOI: 10.1016/j.fas.2024.04.012.
[4]
FEGER M A, SNELL S, HANDSFIELD G G, et al. Diminished foot and ankle muscle volumes in young adults with chronic ankle instability[J/OL]. Orthop J Sports Med, 2016, 4(6): 2325967116653719 [2023-01-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4999538. DOI: 10.1177/2325967116653719.
[5]
ZHANG J Y, YANG K, WANG C, et al. Risk factors for chronic ankle instability after first episode of lateral ankle sprain: A retrospective analysis of 362 cases[J]. J Sport Health Sci, 2023, 12(5): 606-612. DOI: 10.1016/j.jshs.2023.03.005.
[6]
LALEVÉE M, ANDERSON D D, WILKEN J M. Current challenges in chronic ankle instability: review and perspective[J]. Foot Ankle Clin, 2023, 28(1): 129-143. DOI: 10.1016/j.fcl.2022.11.003.
[7]
ALSHAHRANI M S, REDDY R S, ALSHAHRANI A, et al. Exploring the interplay between ankle muscle strength, postural control, and pain intensity in chronic ankle instability: A comprehensive analysis[J/OL]. Heliyon, 2024, 10(5): e27374 [2024-05-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10937675/. DOI: 10.1016/j.heliyon.2024.e27374.
[8]
NWANKWO E C, LABARAN L A, ATHAS V, et al. Pathogenesis of posttraumatic osteoarthritis of the ankle[J]. Orthop Clin North Am, 2019, 50(4): 529-537. DOI: 10.1016/j.ocl.2019.05.008.
[9]
INTERNATIONAL FOOT AND ANKLE OSTEOARTHRITIS CONSORTIUM, ARNOLD J B, BOWEN C J, et al. International Foot and Ankle Osteoarthritis Consortium review and research agenda for diagnosis, epidemiology, burden, outcome assessment and treatment[J]. Osteoarthritis Cartilage, 2022, 30(7): 945-955. DOI: 10.1016/j.joca.2022.02.603.
[10]
NAKASA T, IKUTA Y, SUMII J, et al. High-stress distribution in the lateral region of the subtalar joint in the patient with chronic lateral ankle instability[J]. Arch Orthop Trauma Surg, 2022, 142(7): 1579-1587. DOI: 10.1007/s00402-021-04078-6.
[11]
HU D H, SUN H Y, WANG S L, et al. Treatment and prevention of chronic ankle instability: An umbrella review of meta-analyses[J/OL]. Foot Ankle Surg, 2024: S1268-S7731(24)00159-0 [2024-10-02]. https://pubmed.ncbi.nlm.nih.gov/39107216/. DOI: 10.1016/j.fas.2024.07.010.
[12]
PICOT B, HARDY A, TERRIER R, et al. Which functional tests and self-reported questionnaires can help clinicians make valid return to sport decisions in patients with chronic ankle instability? A narrative review and expert opinion[J/OL]. Front Sports Act Living, 2022, 4: 902886 [2023-04-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9204606/. DOI: 10.3389/fspor.2022.902886.
[13]
GUO Y W, CHENG T Y, YANG Z H, et al. A systematic review and meta-analysis of balance training in patients with chronic ankle instability[J/OL]. Syst Rev, 2024, 13(1): 64 [2024-05-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10860262. DOI: 10.1186/s13643-024-02455-x.
[14]
XUE X A, TAO W C, XU X Y, et al. Do exercise therapies restore the deficits of joint position sense in patients with chronic ankle instability? A systematic review and meta-analysis[J]. Sports Med Health Sci, 2023, 5(1): 67-73. DOI: 10.1016/j.smhs.2023.01.001.
[15]
FAKONTIS C, IAKOVIDIS P, KASIMIS K, et al. Efficacy of resistance training with elastic bands compared to proprioceptive training on balance and self-report measures in patients with chronic ankle instability: a systematic review and meta-analysis[J]. Phys Ther Sport, 2023, 64: 74-84. DOI: 10.1016/j.ptsp.2023.09.009.
[16]
SPONBECK J K, FRANDSEN C R, RIDGE S T, et al. Leg muscle cross-sectional area measured by ultrasound is highly correlated with MRI[J/OL]. J Foot Ankle Res, 2021, 14(1): 5 [2023-07-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10860262. DOI: 10.1186/s13047-021-00446-y.
[17]
GRIBBLE P A, DELAHUNT E, BLEAKLEY C, et al. Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the International Ankle Consortium[J]. Br J Sports Med, 2014, 48(13): 1014-1018. DOI: 10.1136/bjsports-2013-093175.
[18]
NICHOLS J A, FOREMAN K B, BARG A, et al. Ankle strength, muscle size, and adipose content following unilateral tibiotalar arthrodesis[J]. J Orthop Res, 2019, 37(5): 1143-1152. DOI: 10.1002/jor.24282.
[19]
RITTWEGER J, BELLER G, EHRIG J, et al. Bone-muscle strength indices for the human lower leg[J]. Bone, 2000, 27(2): 319-326. DOI: 10.1016/s8756-3282(00)00327-6.
[20]
KHALAJ N, VICENZINO B, HEALES L J, et al. Is chronic ankle instability associated with impaired muscle strength? Ankle, knee and hip muscle strength in individuals with chronic ankle instability: a systematic review with meta-analysis[J]. Br J Sports Med, 2020, 54(14): 839-847. DOI: 10.1136/bjsports-2018-100070.
[21]
HUBBARD-TURNER T, TURNER M J. Physical activity levels in college students with chronic ankle instability[J]. J Athl Train, 2015, 50(7): 742-747. DOI: 10.4085/1062-6050-50.3.05.
[22]
HARDY E J O, INNS T B, HATT J, et al. The time course of disuse muscle atrophy of the lower limb in health and disease[J]. J Cachexia Sarcopenia Muscle, 2022, 13(6): 2616-2629. DOI: 10.1002/jcsm.13067.
[23]
JONES E J, BISHOP P A, WOODS A K, et al. Cross-sectional area and muscular strength: a brief review[J]. Sports Med, 2008, 38(12): 987-994. DOI: 10.2165/00007256-200838120-00003.
[24]
KUSCHEL L B, SONNENBURG D, ENGEL T. Factors of muscle quality and determinants of muscle strength: a systematic literature review[J/OL]. Healthcare, 2022, 10(10): 1937 [2023-04-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601777. DOI: 10.3390/healthcare10101937.
[25]
丁文龙. 系统解剖学(3版)[M]. 北京: 人民卫生出版社, 2018.
DING W L. Systematic anatomy (3rd ed)[M]. Beijing: People's Medical Publishing House, 2018.
[26]
VISSER M, KRITCHEVSKY S B, GOODPASTER B H, et al. Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the health, aging and body composition study[J]. J Am Geriatr Soc, 2002, 50(5): 897-904. DOI: 10.1046/j.1532-5415.2002.50217.x.
[27]
DELMONICO M J, HARRIS T B, VISSER M, et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration[J]. Am J Clin Nutr, 2009, 90(6): 1579-1585. DOI: 10.3945/ajcn.2009.28047.
[28]
张旭霞, 张皓, 南江, 等. 磁共振脂肪测量技术在肌肉病变中的应用进展[J]. 磁共振成像, 2019, 10(6): 474-478. DOI: 10.12015/issn.1674-8034.2019.06.017.
ZHANG X X, ZHANG H, NAN J, et al. Muscle fat measurement by magnetic resonance technology: The progresses in muscle disease[J]. Chin J Magn Reson Imaging, 2019, 10(6): 474-478. DOI: 10.12015/issn.1674-8034.2019.06.017.
[29]
BILTZ N K, COLLINS K H, SHEN K C, et al. Infiltration of intramuscular adipose tissue impairs skeletal muscle contraction[J]. J Physiol, 2020, 598(13): 2669-2683. DOI: 10.1113/JP279595.
[30]
严俊, 王玲, 黄益龙, 等. 基于轴位T1WI图像大腿肌肉脂肪浸润量化方法的可行性研究[J]. 磁共振成像, 2021, 12(12): 49-54. DOI: 10.12015/issn.1674-8034.2021.12.010.
YAN J, WANG L, HUANG Y L, et al. Feasibility study on quantification method of thigh muscle fat infiltration based on axial T1WI image[J]. Chin J Magn Reson Imaging, 2021, 12(12): 49-54. DOI: 10.12015/issn.1674-8034.2021.12.010.
[31]
殷亮, 谢志颖, 卜姗姗, 等. 利用最小二乘法估计和不对称回波迭代分解水和脂肪成像序列定量评估Duchenne型肌营养不良患者下肢肌肉脂肪浸润[J]. 中华放射学杂志, 2019, 53(5): 389-394. DOI: 10.3760/cma.j.issn.1005-1201.2019.05.012.
YIN L, XIE Z Y, BU S S, et al. Quantification of fat content of lower limbs using iterative decomposition of water and fat with asymmetry and least squares estimation-quantitative fat imaging in Duchenne muscular dystrophy[J]. Chin J Radiol, 2019, 53(5): 389-394. DOI: 10.3760/cma.j.issn.1005-1201.2019.05.012.
[32]
DIECKMEYER M, INHUBER S, SCHLÄGER S, et al. Association of thigh muscle strength with texture features based on proton density fat fraction maps derived from chemical shift encoding-based water-fat MRI[J/OL]. Diagnostics, 2021, 11(2): 302 [2023-03-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918768. DOI: 10.3390/diagnostics11020302.
[33]
朱红丽, 黄益龙, 严俊, 等. IDEAL-IQ技术定量评估中老年志愿者大腿肌肉脂肪含量及其与肌力相关性的初步研究[J]. 中华放射学杂志, 2022, 56(10): 1129-1134. DOI: 10.3760/cma.j.cn112149-20211023-00947.
ZHU H L, HUANG Y L, YAN J, et al. A preliminary study on quantitative evaluation of thigh muscle fat content with IDEAL-IQ technique and correlation with muscle strength in the middle-aged and elderly volunteers[J]. Chin J Radiol, 2022, 56(10): 1129-1134. DOI: 10.3760/cma.j.cn112149-20211023-00947.
[34]
KITAGAWA F, OGAWA M, YOSHIKO A, et al. Factors related to trunk intramuscular adipose tissue content - A comparison of younger and older men[J/OL]. Exp Gerontol, 2022, 168: 111922 [2023-07-12]. https://pubmed.ncbi.nlm.nih.gov/35964898/. DOI: 10.1016/j.exger.2022.111922.
[35]
FARSIJANI S, SANTANASTO A J, MILJKOVIC I, et al. The relationship between intermuscular fat and physical performance is moderated by muscle area in older adults[J]. J Gerontol A Biol Sci Med Sci, 2021, 76(1): 115-122. DOI: 10.1093/gerona/glaa161.
[36]
ZHANG Y W, XUE X A, GUO G X, et al. Association between neural plasticity and pain-related fear in chronic ankle instability: A structural neuroimaging study[J/OL]. J Athl Train, 2024 [2024-10-01]. https://pubmed.ncbi.nlm.nih.gov/39287087/. DOI: 10.4085/1062-6050-0214.24.
[37]
MATHENY L M, CLANTON T O. Rasch analysis of reliability and validity of scores from the foot and ankle ability measure (FAAM)[J]. Foot Ankle Int, 2020, 41(2): 229-236. DOI: 10.1177/1071100719884554.
[38]
LI Y N, TSANG R C C, LIU D S, et al. Applicability of cutoff scores of Chinese Cumberland Ankle Instability Tool and Foot and Ankle Ability Measure as inclusion criteria for study of chronic ankle instability in Chinese individuals[J]. Phys Ther Sport, 2021, 48: 116-120. DOI: 10.1016/j.ptsp.2020.12.021.

上一篇 磁共振mDIXON-Quant技术在评估膝骨关节炎中髌下脂肪垫质子密度脂肪分数改变的价值研究
下一篇 DWI、IVIM及DCE-MRI参数与软组织肿瘤Ki-67表达相关性的研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2