分享:
分享到微信朋友圈
X
综述
原发性早泄中枢丘脑-额叶-躯体感觉皮层环路MRI研究进展
李倩 陆加明 朱正阳 李欣 张雯 张鑫 张冰

Cite this article as: LI Q, LU J M, ZHU Z Y, et al. Research progress of brain MRI on the central thalamo-frontal-somatosensory cortex circuit in lifelong premature ejaculation[J]. Chin J Magn Reson Imaging, 2024, 15(10): 176-181, 186.本文引用格式:李倩, 陆加明, 朱正阳, 等. 原发性早泄中枢丘脑-额叶-躯体感觉皮层环路MRI研究进展[J]. 磁共振成像, 2024, 15(10): 176-181, 186. DOI:10.12015/issn.1674-8034.2024.10.030.


[摘要] 原发性早泄(lifelong premature ejaculation, LPE)是男性最常见的性功能障碍疾病,但中枢发病机制尚不明确。近年来,研究人员借助多模态磁共振成像(magnetic resonance imaging, MRI)技术检测和分析了LPE患者大脑结构和功能的特定变化,尤其是与奖赏系统相关的丘脑-额叶环路,以及参与射精周期的躯体感觉皮层。本文将基于丘脑-额叶-躯体感觉皮层环路对LPE患者的大脑MRI研究发现进行综述,探寻丘脑-额叶-躯体感觉皮层环路在LPE中枢神经系统中的作用机制,为开辟新的早泄评估和疗效评价方法提供科学依据。
[Abstract] Lifelong premature ejaculation (LPE) is the most common sexual dysfunction disorder in men, yet its central pathogenesis remains unclear. In recent years, researchers have employed multimodal magnetic resonance imaging (MRI) techniques to detect and analyze specific changes in the brain structure and function of LPE patients. Their focus has particularly been on the thalamo-frontal circuit related to the reward system and the somatosensory cortex involved in the ejaculation cycle. This article reviews the findings from brain MRI studies of LPE patients based on the thalamus-frontal-somatosensory cortex circuit. It aims to explore the role and mechanisms of the thalamus-frontal-somatosensory cortex circuit in the central nervous system of LPE, providing a scientific basis for developing new methods for the assessment and evaluation of premature ejaculation.
[关键词] 原发性早泄;脑磁共振成像;静息态功能磁共振成像;任务态功能磁共振;丘脑;额叶;躯体感觉皮层
[Keywords] lifelong premature ejaculation;brain magnetic resonance imaging;resting-state functional magnetic resonance imaging;task-state functional magnetic resonance imaging;thalamus;frontal lobe;somatosensory cortex

李倩 1   陆加明 2   朱正阳 2   李欣 2   张雯 2   张鑫 2   张冰 1, 2*  

1 南京大学医学院,南京 210093

2 南京大学医学院附属鼓楼医院医学影像科,南京 210008

通信作者:张冰,E-mail: zhangbing_nanjing@nju.edu.cn

作者贡献声明:张冰设计本研究的方案,对稿件重要内容进行了修改;李倩起草和撰写稿件,获取、分析和解释本研究的数据;陆加明、朱正阳、李欣、张雯、张鑫获取、分析或解释本研究的数据,对稿件重要内容进行了修改;张冰获得了科技创新2030-“脑科学与类脑研究”重大项目资助。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 科技创新2030—“脑科学与类脑研究”重大项目 2022ZD0211800
收稿日期:2024-07-01
接受日期:2024-10-10
中图分类号:R445.2  R749.1 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.10.030
本文引用格式:李倩, 陆加明, 朱正阳, 等. 原发性早泄中枢丘脑-额叶-躯体感觉皮层环路MRI研究进展[J]. 磁共振成像, 2024, 15(10): 176-181, 186. DOI:10.12015/issn.1674-8034.2024.10.030.

0 引言

       原发性早泄(lifelong premature ejaculation, LPE)是一种常见的男性性功能障碍,特点是自性生活开始以来就存在的射精控制困难。根据国际性医学学会(the international society for sexual medicine, ISSM)在2014年的定义,LPE以射精不力为代表,在初次性接触阴道插入之前或大约1 min内持续发生,在几乎所有阴道插入期间都无法延迟射精[1]。男性中大约有30%患有LPE[2]

       LPE的发病机制复杂,目前的评估主要依赖于患者的主观报告,如中国早泄患者性功能评价表-5(Chinese Index of Sexual Function For Premature Ejaculation, CIPE-5)、阴道内射精潜伏时间(Patient- Reported Intravaginal Ejaculatory Latency Time, IELT)以及早泄诊断工具(Premature Ejaculation Diagnostic Tool, PEDT),其评价受到主观性的影响并存在潜在的偏倚。而磁共振成像(magnetic resonance imaging, MRI)作为一种非侵入性的检查方式,不仅在探索认知障碍、抑郁和焦虑障碍等疾病的中枢神经机制方面得到广泛应用[3, 4],也是研究LPE的神经基础的一种客观和有效的方法[5]

       大脑在多个空间和时间尺度上表达丰富的、动态的神经活动模式[6, 7],LPE的发生发展过程也涉及多脑区、多系统,其之间存在着复杂的高度协调关系[8, 9]。以前的动物研究已经提出了射精抑制的中枢控制机制[10, 11]。目前认为,LPE可能的神经机制是由躯体感觉中枢功能障碍及神经生理方面的失调所致[12]。人类躯体感觉皮层中的生殖器相关脑区是近年来讨论的热点[13],在刺激(触摸)生殖器之后,初级躯体感觉皮层(primary somatosensory cortex, S1)及次级躯体感觉皮层中的生殖器相关脑区被证实出现显著的激活,证实大脑躯体感觉皮层的各个脑区参与射精期性过程[14, 15]。此外,早期研究发现,与性兴奋相关的脑区主要围绕多巴胺(dopamine, DA)相关的脑区[16],尤其是丘脑在感官信息传递中起着关键作用[17],其与额叶以及躯体感觉皮层都有着复杂的信息联络[18]。因此,LPE患者可能存在着包括了从丘脑到额叶、躯体感觉皮层的中枢神经环路异常,介导着过早射精的整体控制过程,但尚未有具体研究或论述将其阐明。

       因此,本文将基于LPE中丘脑-额叶-躯体感觉皮层环路进行多模态神经影像学综述,并探寻该环路在LPE中枢神经系统中的作用机制,以期为开辟新的早泄评估和疗效评价方法提供科学依据。

1 丘脑、额叶、躯体感觉皮层在LPE患者中的脑磁共振影像学改变

1.1 丘脑在早泄患者中的脑磁共振影像学改变

       人类的丘脑是两个卵圆形灰质核团,参与了包括感觉处理、注意力、决策和记忆在内的多种脑功能,在信息更新和传递中起着关键作用[17, 18]。这些信息包括疼痛、温度、瘙痒和粗暴的触摸,这些是性过程中非常重要的输入。

       在LPE患者的灰质结构上,基于体素的形态测量学(voxel-based morphometry, VBM)研究显示左侧丘脑的整体灰质体积减小[19],这可能与射精控制能力下降的中枢病理机制有关。进一步地,一项基于表面形态学的顶点形状分析显示出LPE患者双侧丘脑局部向外扩张的形变[20],说明丘脑除了基于VBM发现的整体体积减小以外,还存在局部区域的代偿性扩张,这可能意味着基于表面的形态学分析方法比基于体素的分析方法更为敏感。此外,通过受试者工作特征(receiver operating characteristic, ROC)曲线分析发现,左丘脑的灰质体积(敏感度92%,特异度46%)可以区分LPE患者和健康对照组,这表明丘脑的结构在LPE的诊断中具有潜在价值。

       在白质结构上,通常采用基于弥散成像原理的序列来评估神经元纤维的完整性。一项基于白质纤维骨架的空间统计分析(tract-based spatial statistics, TBSS)研究发现[21],LPE患者在右侧丘脑后辐射的各向异性分数(fractional anisotropy, FA)增加,并与LPE患者的PEDT评分呈正相关,这印证了丘脑传出的纤维束结构完整性对于拮抗早泄病理状态的贡献。

       功能磁共振成像(functional magnetic resonance imaging, fMRI)可以通过监测氧合血红蛋白的变化来评估大脑不同部位的神经代谢活性,为我们提供了一种窥探LPE神经机制的窗口。静息态fMRI记录了大脑在非特定任务状态下的活动,基于不同的指标,可以在局部脑区、神经环路、全脑水平等尺度上反映大脑区域的基本活动和联系强度,各种方法都在LPE的研究中得到广泛应用。

       低频振幅算法(amplitude of low frequency fluctuation, ALFF)是常用的静息态fMRI局部脑区功能评价指标,反映单个体素水平的神经自发活动[22]。临床研究发现,LPE患者双侧丘脑的ALFF明显低于正常对照组,并且左侧丘脑ALFF值与PEDT评分呈正相关[23];而在达泊西汀治疗后双侧丘脑ALFF值得到回复[24],这说明丘脑的ALFF指标可为疾病诊断和进一步研究提供参考。

       而基于脑区环路水平,功能连接(functional connectivity, FC)被广泛接受于用来识别大脑区域之间的同步性,是不同神经元之间协调完成认知任务和感知过程的机制[25]。研究表明,LPE患者的丘脑与伏隔核之间的FC降低[26];丘脑-伏隔核的精确投射在线索奖励行为和驱动复发中具有重要意义[27],其连通性的下降可能意味着伏隔核对丘脑传出性刺激信息的过程的调制异常,从而介导了患者的早泄状态发生。

       功能连接密度(functional connectivity density, FCD)是一种用以衡量大脑每个体素与其他体素之间的联系程度的指标,通常分为短程FCD(short-range FCD, SFCD)和长程FCD(long-range FCD, LFCD)[28]。LPE患者丘脑的SFCD降低[29],这可能导致其在性唤起水平增加时更倾向于立即射精。尽管前文提到患者表现出丘脑的结构存在部分代偿性改变,但这意味着他们仍然无法维持以前的表现,其背后的机制可能为LPE患者丘脑由皮层获得的信息更新不足以及对脊髓射精中心的抑制控制减少。此外,体素镜像同伦连接(voxel-mirrored homotopic connectivity, VMHC)是一种基于静息态fMRI的测量方法,反映左右半球对侧脑区间的联系[30],在LPE患者的丘脑中观察到了更高的VMHC值。

       代谢上,射精的过程离不开中枢神经系统中负责神经信号传递的兴奋性神经递质——谷氨酸。磁共振波谱(magnetic resonance spectroscopy, MRS)是一种利用磁共振化学位移现象来测定组成物质的分子成分的技术,能够在活体内鉴定和量化大脑区域中的数十种代谢物。一项氢质子磁共振波谱(proton magnetic resonance spectroscopy, 1H-MRS)的研究[31]发现,LPE患者丘脑中谷氨酸浓度显著增加(P<0.01),并且此代谢变化与IELT和CIPE-5评分呈负相关,这表明LPE患者丘脑的兴奋性神经元活动异常增强,这可能导致性感觉的过度放大,进而导致LPE。

       神经系统的稳态依赖于兴奋/抑制的平衡状态,除了兴奋性神经递质以外,γ-氨基丁酸(gamma- aminobutyric acid, GABA)是中枢神经系统重要的抑制性神经递质,具有抑制神经元兴奋性活动、减少能量消耗的作用。基础研究发现,快速射精的大鼠模型下丘脑中GABA受体表达下降[32]。近年来新兴的Meshcher-Garwood点分辨光谱(Meshcher-Garwood point resolved spectroscopy, MEGA-PRESS)序列可以通过J差分谱编辑技术测量脑内GABA含量[33]。目前,应用于神经领域的MRS由于扫描时间较长、对磁场均匀性要求较高等原因而相较于结构和功能的数据收集更为困难,男科学领域MRS的文章报道较少,但MEGA-PRESS等磁共振序列的应用可能为LPE的神经机制研究带来更多进展。

       基于图论的复杂脑网络分析方法将感兴趣区域抽象为“节点”,而将各个脑区之间的连接视为“边”,从而将大脑网络构建为一个量化的框架。其中,节点效率表示该节点在处理全脑网络信息中的能力,被广泛应用于分析重要脑区处理全脑网络信息交换过程中的枢纽作用。一系列图论分析研究[5, 34]表明,丘脑的全局效率和局部效率都有所下降,并且,右侧丘脑的局部效率与PEDT评分呈正相关[35]。这印证丘脑在中继及处理性刺激的感觉输入时存在着异常,如感觉过度放大或传递速度过快,从而促进LPE的病理生理过程。

       综上所述,作为处理与整合性过程中感觉输入的枢纽,LPE患者丘脑的结构、功能、代谢及脑网络都有着显著的改变,其异常与临床表现有显著相关性。需要指出的是,现有大部分影像学研究都未区分各丘脑亚区,尤其是关于单个丘脑亚区不同细胞亚群如何在LPE的中枢病理中起作用,仍需要研究技术与手段的进一步发展。

1.2 额叶在LPE患者中的脑磁共振影像学改变

       额叶是大脑中最大的脑叶,位于中央沟的前面。在解剖学和功能上,它分为不同的重要区域。前额叶皮层是整合内部和外部感觉信息并联系运动的主要大脑区域[36, 37],通常与高级认知功能以及运动的控制和执行计划相关[38],值得注意的是,额上回和额中回参与躯体感觉的传递、解码和检测,而额下回向运动前皮质区域投射,参与对行动的终止[39]。与休息状态相反,在射精过程中,健康男性的脑前额叶皮层会停止活动[40]。眶额叶(orbitofrontal cortex, OFC)是额叶中另一个重要大脑区域,与情绪和动机调节密切相关,参与多种奖赏性活动[41]。前期研究使用了实时的色情视觉刺激来确定和量化正常人与性反应相关的大脑区域[42, 43],发现在正常男性被试中,OFC在处理视觉性刺激时被激活。

       皮层厚度反映了神经元和神经胶质细胞的排列和密度,是神经元功能的重要指标[44]。整体而言,LPE患者的额叶厚度增加。但具体来看,LPE患者在右背外侧额上回灰质体积减小[19],这可能与射精控制能力下降的中枢病理机制有关。通过ROC分析发现,右背外侧额上回的灰质体积(敏感度60%,特异度78%)可以区分LPE患者和健康对照组[19],这表明其结构变化在LPE的诊断中具有潜在价值。此外,LPE患者右侧额中回的节点特征路径长度较健康对照增加,是需要关注的LPE神经病理学基础之一[45, 46]

       静息态功能研究中,局部一致性(regional homogeneity, ReHo)反映体素与其最近邻体之间的同步活动[22]。在局部脑区水平有研究发现LPE患者左侧额下回的ReHo降低,右侧额中回的Reho增加[47]。同时,合并焦虑症的LPE患者右侧额下回和额中回的fALFF值增加,并与PEDT得分存在显著的正相关[48]。fALFF表示大脑在静息状态下自发神经活动的强度,在LPE患者中额叶fALFF增加意味着额叶是早泄发生中的关键异常脑区。

       在神经环路水平,LPE患者左侧OFC被发现SFCD下降[29],左侧额下回到右侧额极、同侧齿状核的FC降低[49],除此以外值得注意的是,额下回及OFC到奖赏环路结构之一的伏隔核的FC都表现出下降,并且其FC值与IELT评分呈正相关[26];这可能与LPE患者前额叶受损后的射精抑制控制减弱有关。而左侧额下回与右侧额中回及运动辅助区的FC被观察到增加,左侧额上回和杏仁核之间的FC值增加[50],这些区域之间加强的联系可能反映了对LPE患者丢失FC的补偿。基于支持向量机的分析,使用OFC的FC特征的分类模型可以显著区分LPE患者和健康人(AUC=0.804 7)[15]

       在全脑网络水平,分析发现LPE患者左侧OFC的度中心度(degree centrality, DC)值降低[51],表明了脑网络中左侧OFC与全脑间的相关性水平下降[52],这可能与无效的性抑制加工和射精敏感性有关。此外,研究表明,右侧额中回眶部在合并抑郁症的LPE患者脑网络模块内的作用重要性增加,度与中心性都表现出增加[46]。ROC分析也揭示了通过左侧额下回将LPE患者与健康对照分类出来的良好性能(敏感度61.70%~78.72%,特异度56.82%~77.27%)[34],这也进一步证实了前额叶在LPE病理中的关键作用。

       与静息态fMRI相比,LPE任务态fMRI研究采用不同性唤起对比的刺激任务范式[53, 54],通过量化血流响应强度来衡量大脑的活动变化,是一种研究LPE中枢机制的重要的新工具。在任务态的色情图片刺激期间,LPE患者的左侧额下回大脑活动有所下降,并且其任务活化与IELT和CIPE分数正相关,表明了LPE患者5-羟色胺缺乏与射精阈值的降低[55]

       以上结果表明,早泄患者的额叶局部和整体都发生一些结构性的改变,但脑网络的系统性变化更为显著,这些发现强调了额叶的功能与脑网络属性在性行为过程尤其是抑制控制中的关键作用。最近有理论认为,神经动力学的时空模式受到相对稳定的神经解剖学支架的约束[56],并有研究验证皮层的几何特征模态相较于大脑连接组特征模态可以更好地解释实验性fMRI数据[57],故而大脑几何学的本征模式可能为正常人与早泄患者中额叶多样的功能以及其时空特性改变做出波动力学上的解释。

1.3 躯体感觉皮层在LPE患者中的脑磁共振影像学改变

       躯体感觉皮层位于大脑顶叶的中央后回,既往研究表明,健康男性在观看色情场景时表现出躯体感觉皮层的激活增加[58]。事实上,躯体感觉参与性行为的整个过程,从觉醒、高潮到射精后的恢复[59],对于性行为过程中身体的感知具有重要意义。具体而言,躯体感觉皮层在性行为时提供有关身体不同部位相对于彼此的位置信息以及对抚摸进行表征和定位,这使人类了解到外部刺激的特性,进而有意识地进行刺激性知觉体验。在人类研究中发现,男性的大脑对乳头和阴蒂的想象或实际触觉刺激的反应主要集中在中央旁小叶(S1的生殖器相关脑区)和S2[60],海马、杏仁核、伏隔核和前额内侧皮层中也存在相应激活[61]

       有研究进行了早泄与不射精(anejaculation, AJ)患者的脑活动比较[62],结果发现,与AJ患者相比,LPE患者在右侧S1的ALFF降低,而AJ患者与健康对照相比左侧S1的ALFF较高,这说明S1的正常活动在射精行为中具有关键作用。FENG等[63]发现LPE患者S1的VMHC值均高于健康对照,并且S1的平均VMHC值与IELT呈负相关。这反映了LPE患者负责感觉运动加工的半球间功能的相互作用和整合存在异常。另外,网络模式分析发现[51],LPE患者S1的DC值增加,并与LPE患者的PEDT评分呈正相关,这可能反映LPE患者感觉信息处理效率的提高,这会促进LPE患者的快速射精。此外,与健康对照相比,伴抑郁的LPE患者在S1的节点参与减少[46]。故而,躯体感觉皮层是与LPE相关的具有特征性的脑区。

       S1在正常射精行为中的关键作用已被证实,但聚焦到不同的异常射精模式(快速射精、延迟射精、不射精)中,S1的激活以及S1与大脑的连通性改变可以进行更为细致的亚组分析以明确其具体的异常模式。此外,LPE常合并一些抑郁、焦虑状态[64],这种精神卫生问题对S1的影响目前难以厘清,所以未来对LPE的研究需要MRI技术结合药物干预、心理治疗、行为疗法等手段来观察LPE中S1与其他脑区的具体损伤与变化[65]

2 丘脑-额叶-躯体感觉皮层环路在LPE患者中的脑磁共振影像学改变

       在性过程中,丘脑由下而上地调制、传递到躯体感觉皮层的感觉信息,来自阴茎的感官信息被传输到脊髓射精中心、丘脑,最后到达位于顶叶中央后回的S1[66],这是丘脑-额叶-躯体感觉皮层环路的在LPE中尤为重要的神经生理学基础。神经解剖学研究揭示,丘脑通过调节兴奋性[67]和抑制性神经元在皮层的投射来影响整个大脑环路,从我们关注的环路来看,丘脑可以增强躯体感觉皮层神经元的兴奋性[68],使得大脑皮层能够更好地适应快速变化的行为、生理和环境需求[69]。同时,影像学研究表明,前额叶皮层位于触觉感知通路上的初级躯体感觉皮层的下游。而丘脑与额叶具有双向的关系,额叶整合来自丘脑的与奖励相关的信息,进而影响与奖励相关的行为(射精被认为是一种奖励行为)[19, 70, 71];同时,额叶到丘脑自上而下的回路支持行为的认知控制,额叶通过向丘脑等皮下核团提供抑制性输入来调节射精冲动[72, 73],与性行为过程中的控制密切相关。

       静息态fMRI研究发现,LPE患者的丘脑与额叶皮质的连接网络发生显著改变[74],包括前额叶皮质-左背内侧丘脑、运动皮质-双侧腹侧丘脑的FC显著降低。另外,在LPE患者左侧OFC、丘脑、S1区域发现SFCD减少[29],并且SFCD越少,射精潜伏时间越短;前文也提到丘脑、S1区域同时发生了VMHC的下降[63]。这可能表明DA通路的大脑区域活化减少,这会减少突触前神经元再摄取DA,从而导致持续的突触DA激活,并最终导致LPE。同时,LPE患者更倾向于处于加强的内部和外部网络动态功能连接状态(dynamic functional connectivity states, DFC)[75],说明LPE中整体的脑网络变得易损。值得注意的是,LPE患者的DA系统中,纹状体、丘脑、额叶以及初级运动皮质的形态协调模式发生了广泛的改变[76],并且,丘脑辐射增加的轴向扩散率与S1的结构连通性相关,从而为功能性脑网络的破坏取得了结构性的证据。

       这些结果意味着LPE患者丘脑、额叶以及躯体感觉皮层的大脑活动减少且连接不稳定,为LPE患者的临床表现提供了中枢神经机制改变的解释。但有一些特别适用于神经环路的新方法尚未被应用于研究LPE患者的丘脑-额叶-躯体感觉皮层环路,比如与机器学习相结合的“虚拟大脑”利用MRI数据绘制癫痫患者的大脑网络[77],或者同样也可用于估计与早泄行为相关的大脑区域和时空动态,从而揭示该环路在LPE中的网络属性和动态变化。

3 总结与展望

       性刺激的呈现能够激发大脑的神经活动,并诱发从情绪反应到自主反应的一系列行为反应。在LPE患者中,围绕丘脑、额叶以及躯体感觉等脑区发现了多种影像学异常,这些发现表明LPE的严重程度与MRI生物标志物之间存在关系,这可能会帮助研究人员与医务人员通过一些简单、易于获取的工具来更好地理解LPE。

       然而,目前的研究多为小样本和横断面研究,现有的结果尚不足以解释症状、心理因素、症状持续时间与脑影像学指标变化之间的因果关系。病情变化的动态过程难以观测。因此,需要更多参与者的纵向数据和改良的实验设计,以验证和完善目前的研究结果。

       虽然广泛应用于LPE神经机制研究的fMRI是高空间分辨率及高可重复性的研究手段[78],但其低时间分辨率的缺陷不容忽视[79],尤其对于研究性冲动等短暂的神经活动时,仅依赖fMRI难以实现高时间分辨率;此外,代谢层面的新技术尚未得到深入的应用,从而无法全面认识LPE的神经机制改变与早泄药物的治疗效应,难以更紧密地解释大脑丘脑-额叶-躯体感觉皮层环路之间改变的互相作用。因此,联合fMRI和其他功能神经影像技术,深入研究LPE患者的病理生理变化、治疗评估及预后预测仍是必要的探索方向。

[1]
ALTHOF S E, MCMAHON C G, WALDINGER M D, et al. An update of the international society of sexual medicine's guidelines for the diagnosis and treatment of premature ejaculation (PE)[J]. Sex Med, 2014, 2(2): 60-90. DOI: 10.1002/sm2.28.
[2]
SHAHER H, NOAH K, ABDELZAHER M, et al. Is bulbospongiosus muscle Botox injection safe and effective in treating lifelong premature ejaculation? Randomized controlled study[J/OL]. World J Urol, 2024, 42(1): 218 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/38581447/. DOI: 10.1007/s00345-024-04899-1.
[3]
LI H Y, WANG Y H, XI H Y, et al. Alterations of regional spontaneous brain activity in obsessive-compulsive disorders: a meta-analysis[J/OL]. J Psychiatr Res, 2023, 165: 325-335 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/37573797/. DOI: 10.1016/j.jpsychires.2023.07.036.
[4]
DUBOIS B, VON ARNIM C A F, BURNIE N, et al. Biomarkers in Alzheimer's disease: role in early and differential diagnosis and recognition of atypical variants[J/OL]. Alzheimers Res Ther, 2023, 15(1): 175 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/37833762/. DOI: 10.1186/s13195-023-01314-6.
[5]
GAO S Z, CHEN J H, XU Y, et al. Altered structural and functional connectivity contribute to rapid ejaculation: insights from a multimodal neuroimaging study[J/OL]. Neuroscience, 2021, 471: 93-101 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/34216696/. DOI: 10.1016/j.neuroscience.2021.06.034.
[6]
ARU J, LARKUM M E, SHINE J M. The feasibility of artificial consciousness through the lens of neuroscience[J]. Trends Neurosci, 2023, 46(12): 1008-1017. DOI: 10.1016/j.tins.2023.09.009.
[7]
MUNN B R, MÜLLER E J, MEDEL V, et al. Neuronal connected burst cascades bridge macroscale adaptive signatures across arousal states[J/OL]. Nat Commun, 2023, 14(1): 6846 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/37891167/. DOI: 10.1038/s41467-023-42465-2.
[8]
WU N, CHEN J H, WANG T, et al. Altered brain activity associated with premature ejaculation improved by electroacupuncture in rats[J/OL]. Sex Med, 2024, 12(4): qfae047 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/39220342/. DOI: 10.1093/sexmed/qfae047.
[9]
GUTIÉRREZ-OSPINA G, BIALY M. Editorial: sexual behavior research: towards an understanding of CNS and spinal cord modulation of male sexual behavior and sexual dysfunctions[J/OL]. Front Neurosci, 2024, 18: 1422477 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/38800573/. DOI: 10.3389/fnins.2024.1422477.
[10]
WOLTERS J P, HELLSTROM W J G. Current concepts in ejaculatory dysfunction[J/OL]. Rev Urol, 2006, 8(Suppl 4): S18-S25 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/17215997/.
[11]
OZDEMIR Ö. Is premature ejaculation an impulse control disorder?[J]. Med Hypotheses, 2012, 79(1): 59-62. DOI: 10.1016/j.mehy.2012.03.034.
[12]
MA G C, ZOU Z J, LAI Y F, et al. Regular penis-root masturbation, a novel behavioral therapy in the treatment of primary premature ejaculation[J]. Asian J Androl, 2019, 21(6): 631-634. DOI: 10.4103/aja.aja_34_19.
[13]
CALABRÒ R S, CACCIOLA A, BRUSCHETTA D, et al. Neuroanatomy and function of human sexual behavior: a neglected or unknown issue?[J/OL]. Brain Behav, 2019, 9(12): e01389 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/31568703/. DOI: 10.1002/brb3.1389.
[14]
ATALAY H A, SONKAYA A R, OZBIR S, et al. Are there differences in brain morphology in patients with lifelong premature ejaculation?[J]. J Sex Med, 2019, 16(7): 992-998. DOI: 10.1016/j.jsxm.2019.04.008.
[15]
XU Z L, YANG X J, GAO M, et al. Abnormal resting-state functional connectivity in the whole brain in lifelong premature ejaculation patients based on machine learning approach[J/OL]. Front Neurosci, 2019, 13: 448 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/31139043/. DOI: 10.3389/fnins.2019.00448.
[16]
GAO M, FENG N N, WU J Y, et al. Altered functional connectivity of hypothalamus in lifelong premature ejaculation patients[J]. J Magn Reson Imaging, 2020, 52(3): 778-784. DOI: 10.1002/jmri.27099.
[17]
ZHOU K K, ZHU L, HOU G Q, et al. The contribution of thalamic nuclei in salience processing[J/OL]. Front Behav Neurosci, 2021, 15: 634618 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/33664657/. DOI: 10.3389/fnbeh.2021.634618.
[18]
WOLFF M, VANN S D. The cognitive thalamus as a gateway to mental representations[J]. J Neurosci, 2019, 39(1): 3-14. DOI: 10.1523/JNEUROSCI.0479-18.2018.
[19]
GAO S Z, CHEN J H, LIU J, et al. Decreased grey matter volume in dorsolateral prefrontal cortex and thalamus accompanied by compensatory increases in middle cingulate gyrus of premature ejaculation patients[J]. Andrology, 2024, 12(4): 841-849. DOI: 10.1111/andr.13547.
[20]
LU J M, YUAN L H, JIN J X, et al. Brain cortical complexity and subcortical morphometrics in lifelong premature ejaculation[J/OL]. Front Hum Neurosci, 2020, 14: 283 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/32792928/. DOI: 10.3389/fnhum.2020.00283.
[21]
GAO M, YANG X J, LIU L, et al. Abnormal white matter microstructure in lifelong premature ejaculation patients identified by tract-based spatial statistical analysis[J]. J Sex Med, 2018, 15(9): 1272-1279. DOI: 10.1016/j.jsxm.2018.07.012.
[22]
LV H, WANG Z, TONG E, et al. Resting-state functional MRI: everything that nonexperts have always wanted to know[J]. AJNR Am J Neuroradiol, 2018, 39(8): 1390-1399. DOI: 10.3174/ajnr.A5527.
[23]
XU Y, LIU T, QIAO Y, et al. Correlations between resting-state brain functional characteristics and TCM syndrome in premature ejaculation patients with heart-kidney disharmony[J]. Natl J Androl, 2022, 28(6): 516-523.
[24]
MA Y B, HUANG L J, MAO C P, et al. Changes in the amplitude of low-frequency fluctuation in patients with lifelong premature ejaculation by resting-state functional MRI[J/OL]. Sex Med, 2021, 9(1): 100287 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/33485114/. DOI: 10.1016/j.esxm.2020.100287.
[25]
FINN E S, POLDRACK R A, SHINE J M. Functional neuroimaging as a catalyst for integrated neuroscience[J]. Nature, 2023, 623(7986): 263-273. DOI: 10.1038/s41586-023-06670-9.
[26]
GENG B W, GAO M, WU J Y, et al. Functional connectivity of nucleus accumbens is associated with lifelong premature ejaculation in male adults: a resting-state fMRI study[J]. Clin Neuroradiol, 2022, 32(3): 655-663. DOI: 10.1007/s00062-021-01105-2.
[27]
DE GROOTE A, DE KERCHOVE D'EXAERDE A. Thalamo-nucleus accumbens projections in motivated behaviors and addiction[J/OL]. Front Syst Neurosci, 2021, 15: 711350 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/34335197/. DOI: 10.3389/fnsys.2021.711350.
[28]
ZHANG Z, LIAO M, YAO Z J, et al. Frequency-specific functional connectivity density as an effective biomarker for adolescent generalized anxiety disorder[J/OL]. Front Hum Neurosci, 2017, 11: 549 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/29259549/. DOI: 10.3389/fnhum.2017.00549.
[29]
LU J M, ZHANG X, WANG H T, et al. Short- and long-range synergism disorders in lifelong premature ejaculation evaluated using the functional connectivity density and network property[J/OL]. Neuroimage Clin, 2018, 19: 607-615 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/29984168/. DOI: 10.1016/j.nicl.2018.05.025.
[30]
ZHANG C G, JING H, YAN H H, et al. Disrupted interhemispheric coordination of sensory-motor networks and insula in major depressive disorder[J/OL]. Front Neurosci, 2023, 17: 1135337 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/36960171/. DOI: 10.3389/fnins.2023.1135337.
[31]
XIA J D, CHEN F, ZHANG Q J, et al. Abnormal thalamic metabolism in patients with lifelong premature ejaculation[J]. J Sex Med, 2021, 18(2): 275-283. DOI: 10.1016/j.jsxm.2020.11.014.
[32]
ZHANG Q J, YANG B B, YANG J, et al. Inhibitory role of gamma-aminobutyric receptors in paraventricular nucleus on ejaculatory responses in rats[J]. J Sex Med, 2020, 17(4): 614-622. DOI: 10.1016/j.jsxm.2020.01.006.
[33]
符晓娜, 汪晶. 基于MEGA-PRESS的γ-氨基丁酸定量在神经系统疾病中的临床研究进展[J]. 磁共振成像, 2023, 14(6): 89-93. DOI: 10.12015/issn.1674-8034.2023.06.015.
FU X N, WANG J. The clinical research progress of gamma-aminobutynic acid quantification based on MEGA-PRESS in neurological diseases[J]. Chin J Magn Reson Imag, 2023, 14(6): 89-93. DOI: 10.12015/issn.1674-8034.2023.06.015.
[34]
CHEN J H, WANG Q, HUANG X F, et al. Potential biomarkers for distinguishing primary from acquired premature ejaculation: a diffusion tensor imaging based network study[J/OL]. Front Neurosci, 2022, 16: 929567 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/36340794/. DOI: 10.3389/fnins.2022.929567.
[35]
CHEN J, HUANG X, LU C, et al. Graph analysis of DTI-based connectome: decreased local efficiency of subcortical regions in PE patients with high sympathetic activity[J]. Andrology, 2020, 8(2): 400-406. DOI: 10.1111/andr.12701.
[36]
CATANI M. The anatomy of the human frontal lobe[J/OL]. Handb Clin Neurol, 2019, 163: 95-122 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/31590750/. DOI: 10.1016/B978-0-12-804281-6.00006-9.
[37]
HWANG E J, SATO T R, SATO T K. A canonical scheme of bottom-up and top-down information flows in the frontoparietal network[J/OL]. Front Neural Circuits, 2021, 15: 691314 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/34475815/. DOI: 10.3389/fncir.2021.691314.
[38]
DU J N, ROLLS E T, CHENG W, et al. Functional connectivity of the orbitofrontal cortex, anterior cingulate cortex, and inferior frontal gyrus in humans[J/OL]. Cortex, 2020, 123: 185-199 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/31869573/. DOI: 10.1016/j.cortex.2019.10.012.
[39]
DENG W L, ROLLS E T, JI X X, et al. Separate neural systems for behavioral change and for emotional responses to failure during behavioral inhibition[J]. Hum Brain Mapp, 2017, 38(7): 3527-3537. DOI: 10.1002/hbm.23607.
[40]
HOLSTEGE G, HUYNH H K. Brain circuits for mating behavior in cats and brain activations and de-activations during sexual stimulation and ejaculation and orgasm in humans[J]. Horm Behav, 2011, 59(5): 702-707. DOI: 10.1016/j.yhbeh.2011.02.008.
[41]
ROLLS E T. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala[J]. Brain Struct Funct, 2023, 228(5): 1201-1257. DOI: 10.1007/s00429-023-02644-9.
[42]
CHAN Y C, HSU W C, CHOU T L. Differential neural substrates for responding to monetary, sexual humor, and erotic rewards[J/OL]. Biol Psychol, 2022, 172: 108385 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/35777520/. DOI: 10.1016/j.biopsycho.2022.108385.
[43]
BITTONI C, KIESNER J. When the brain turns on with sexual desire: fMRI findings, issues, and future directions[J]. Sex Med Rev, 2023, 11(4): 296-311. DOI: 10.1093/sxmrev/qead029.
[44]
KERREBIJN I, WAINBERG M, ZHUKOVSKY P, et al. Case-control virtual histology elucidates cell types associated with cortical thickness differences in Alzheimer's disease[J/OL]. Neuroimage, 2023, 276: 120177 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/37211192/. DOI: 10.1016/j.neuroimage.2023.120177.
[45]
ZHANG T L, YUAN P, CUI Y H, et al. Convergent and divergent structural connectivity of brain white matter network between patients with erectile dysfunction and premature ejaculation: a graph theory analysis study[J/OL]. Front Neurol, 2022, 13: 804207 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/35273555/. DOI: 10.3389/fneur.2022.804207.
[46]
CHEN J H, YANG J, XIANG Z L, et al. Graph theory analysis reveals premature ejaculation is a brain disorder with altered structural connectivity and depressive symptom: a DTI-based connectome study[J]. Eur J Neurosci, 2021, 53(6): 1905-1921. DOI: 10.1111/ejn.15048.
[47]
XING S Y, LU J M, JIANG Y H, et al. Abnormal cortical surface-based spontaneous and functional connectivity in the whole brain in lifelong premature ejaculation patients[J]. Asian J Androl, 2023, 25(6): 699-703. DOI: 10.4103/aja202349.
[48]
CHEN J H, WU W K, XIANG Z L, et al. Aberrant default mode network and auditory network underlying the sympathetic skin response of the penis (PSSR) of patients with premature ejaculation: a resting-state fMRI study[J]. Andrology, 2021, 9(1): 277-287. DOI: 10.1111/andr.12914.
[49]
YANG X J, GAO M, ZHANG L, et al. Central neural correlates during inhibitory control in lifelong premature ejaculation patients[J/OL]. Front Hum Neurosci, 2018, 12: 206 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/29872385/. DOI: 10.3389/fnhum.2018.00206.
[50]
XU Y, ZHANG X, XIANG Z L, et al. Abnormal functional connectivity between the left medial superior frontal gyrus and amygdala underlying abnormal emotion and premature ejaculation: a resting state fMRI study[J/OL]. Front Neurosci, 2021, 15: 704920 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/34421524/. DOI: 10.3389/fnins.2021.704920.
[51]
GAO M, FENG N N, LIU X, et al. Abnormal degree centrality in lifelong premature ejaculation patients: an fMRI study[J]. Brain Imaging Behav, 2021, 15(3): 1412-1419. DOI: 10.1007/s11682-020-00340-4.
[52]
RIVERA-ROMANO L S, JUÁREZ-CANO G, HERNÁNDEZ-LEMUS E, et al. Structure of communities in semantic networks of biomedical research on disparities in health and sexism[J]. Biomedica, 2020, 40(4): 702-721. DOI: 10.7705/biomedica.5182.
[53]
ZHANG B, LU J M, XIA J D, et al. Functional insights into aberrant brain responses and integration in patients with lifelong premature ejaculation[J/OL]. Sci Rep, 2017, 7(1): 460 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/28352072/. DOI: 10.1038/s41598-017-00421-3.
[54]
HARJUNEN V J, SPAPÉ M, RAVAJA N. Anticipation of sexually arousing visual event leads to overestimation of elapsed time[J/OL]. PLoS One, 2024, 19(7): e0295216 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/38995957/. DOI: 10.1371/journal.pone.0295216.
[55]
PASTORE A L, PALLESCHI G, LETO A, et al. A prospective randomized study to compare pelvic floor rehabilitation and dapoxetine for treatment of lifelong premature ejaculation[J]. Int J Androl, 2012, 35(4): 528-533. DOI: 10.1111/j.1365-2605.2011.01243.x.
[56]
GABAY N C, BABAIE-JANVIER T, ROBINSON P A. Dynamics of cortical activity eigenmodes including standing, traveling, and rotating waves[J/OL]. Phys Rev E, 2018, 98(4): 042413 [2024-06-30]. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.042413. DOI: 10.1103/physreve.98.042413.
[57]
PANG J C, AQUINO K M, OLDEHINKEL M, et al. Geometric constraints on human brain function[J]. Nature, 2023, 618(7965): 566-574. DOI: 10.1038/s41586-023-06098-1.
[58]
FERRETTI A, CAULO M, DEL GRATTA C, et al. Dynamics of male sexual arousal: distinct components of brain activation revealed by fMRI[J]. Neuroimage, 2005, 26(4): 1086-1096. DOI: 10.1016/j.neuroimage.2005.03.025.
[59]
PEREIRA-LOURENÇO M, BRITO D V E, PEREIRA B J. Premature ejaculation: from physiology to treatment[J]. J Family Reprod Health, 2019, 13(3): 120-131.
[60]
ALLEN K, WISE N, FRANGOS E, et al. Male urogenital system mapped onto the sensory cortex: functional magnetic resonance imaging evidence[J]. J Sex Med, 2020, 17(4): 603-613. DOI: 10.1016/j.jsxm.2019.12.007.
[61]
WISE N J, FRANGOS E, KOMISARUK B R. Activation of sensory cortex by imagined genital stimulation: an fMRI analysis[J/OL]. Socioaffect Neurosci Psychol, 2016, 6: 31481 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/27791966/. DOI: 10.3402/snp.v6.31481.
[62]
CHEN J H, YANG J, HUANG X F, et al. Brain functional biomarkers distinguishing premature ejaculation from anejaculation by ALFF: a resting-state fMRI study[J]. J Sex Med, 2020, 17(12): 2331-2340. DOI: 10.1016/j.jsxm.2020.09.002.
[63]
FENG N N, GAO M, WU J Y, et al. Higher inter-hemispheric homotopic connectivity in lifelong premature ejaculation patients: a pilot resting-state fMRI study[J]. Quant Imaging Med Surg, 2021, 11(7): 3234-3243. DOI: 10.21037/qims-20-1103.
[64]
BOCKAJ A, MUISE M D, BELU C F, et al. Under pressure: men's and women's sexual performance anxiety in the sexual interactions of adult couples[J/OL]. J Sex Res, 2024: 1-13 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/38848469/. DOI: 10.1080/00224499.2024.2357587.
[65]
JAMIL A, GUTLAPALLI S D, ALI M, et al. Meditation and its mental and physical health benefits in 2023[J/OL]. Cureus, 2023, 15(6): e40650 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/37476142/. DOI: 10.7759/cureus.40650.
[66]
VEENING J G, COOLEN L M. Neural mechanisms of sexual behavior in the male rat: emphasis on ejaculation-related circuits[J/OL]. Pharmacol Biochem Behav, 2014, 121: 170-183 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/24368305/. DOI: 10.1016/j.pbb.2013.12.017.
[67]
SHINE J M. Adaptively navigating affordance landscapes: how interactions between the superior colliculus and thalamus coordinate complex, adaptive behaviour[J/OL]. Neurosci Biobehav Rev, 2022, 143: 104921 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/36280183/. DOI: 10.1016/j.neubiorev.2022.104921.
[68]
BECH P, CROCHET S, DARD R, et al. Striatal dopamine signals and reward learning[J/OL]. Function, 2023, 4(6): zqad056 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/37841525/. DOI: 10.1093/function/zqad056.
[69]
SHINE J M, LEWIS L D, GARRETT D D, et al. The impact of the human thalamus on brain-wide information processing[J]. Nat Rev Neurosci, 2023, 24(7): 416-430. DOI: 10.1038/s41583-023-00701-0.
[70]
SOLOMONOV N, VICTORIA L W, LYONS K, et al. Social reward processing in depressed and healthy individuals across the lifespan: a systematic review and a preliminary coordinate-based meta-analysis of fMRI studies[J]. Behav Brain Res, 2023, 454: 114632. DOI: 10.1016/j.bbr.2023.114632.
[71]
WEINSTEIN A M. Reward, motivation and brain imaging in human healthy participants - A narrative review[J/OL]. Front Behav Neurosci, 2023, 17: 1123733 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/37035621/. DOI: 10.3389/fnbeh.2023.1123733.
[72]
RADTKE-SCHULLER S, TOWN S M, YIN P B, et al. Dorsal prefrontal and premotor cortex of the ferret as defined by distinctive patterns of thalamo-cortical projections[J]. Brain Struct Funct, 2020, 225(5): 1643-1667. DOI: 10.1007/s00429-020-02086-7.
[73]
LE T M, ZHANG S, ZHORNITSKY S, et al. Neural correlates of reward-directed action and inhibition of action[J/OL]. Cortex, 2020, 123: 42-56 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/31747630/. DOI: 10.1016/j.cortex.2019.10.007.
[74]
GAO M, GENG B W, JANNINI T B, et al. Thalamocortical dysconnectivity in lifelong premature ejaculation: a functional MRI study[J/OL]. Urology, 2022, 159: 133-138 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/34688769/. DOI: 10.1016/j.urology.2021.10.010.
[75]
LU J M, CHEN Q, LI D Y, et al. Reconfiguration of dynamic functional connectivity states in patients with lifelong premature ejaculation[J/OL]. Front Neurosci, 2021, 15: 721236 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/34588948/. DOI: 10.3389/fnins.2021.721236.
[76]
WU J Y, GAO M, PIAO R Q, et al. Magnetic resonance imaging-based structural covariance changes of the Striatum in lifelong premature ejaculation patients[J]. J Magn Reson Imaging, 2022, 55(2): 443-450. DOI: 10.1002/jmri.27851.
[77]
JIRSA V, WANG H F, TRIEBKORN P, et al. Personalised virtual brain models in epilepsy[J]. Lancet Neurol, 2023, 22(5): 443-454. DOI: 10.1016/S1474-4422(23)00008-X.
[78]
FUKUDA M, POPLAWSKY A J, KIM S G. Time-dependent spatial specificity of high-resolution fMRI: insights into mesoscopic neurovascular coupling[J/OL]. Philos Trans R Soc Lond B Biol Sci, 2021, 376(1815): 20190623 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/33190606/. DOI: 10.1098/rstb.2019.0623.
[79]
JIA K, GOEBEL R, KOURTZI Z. Ultra-high field imaging of human visual cognition[J/OL]. Annu Rev Vis Sci, 2023, 9: 479-500 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/37137282/. DOI: 10.1146/annurev-vision-111022-123830.

上一篇 卵圆孔未闭继发偏头痛的脑磁共振成像研究进展
下一篇 MRI技术评估颅内动脉粥样硬化疾病的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2