分享:
分享到微信朋友圈
X
综述
MRI技术评估颅内动脉粥样硬化疾病的研究进展
王进进 计一丁 戴慧 沈黎媛 何源

Cite this article as: WANG J J, JI Y D, DAI H, et al. Recent advances on magnetic resonance imaging technology in the evaluation of intracranial atherosclerotic disease[J]. Chin J Magn Reson Imaging, 2024, 15(10): 182-186.本文引用格式:王进进, 计一丁, 戴慧, 等. MRI技术评估颅内动脉粥样硬化疾病的研究进展[J]. 磁共振成像, 2024, 15(10): 182-186. DOI:10.12015/issn.1674-8034.2024.10.031.


[摘要] 颅内动脉粥样硬化性疾病(intracranial atherosclerotic disease, ICAD)具有高发病率及高复发率。近年来随着磁共振成像技术的快速发展,新兴扫描方案及技术手段层出不穷,从管腔、管壁、脑组织灌注及血流动力学等多角度对ICAD的多模态方式也成为国内外脑卒中研究的热点。本文综合了目前临床常用的MRI技术,从形态到功能对ICAD研究进展进行综述,主要探讨各种技术在诊断管腔狭窄、易损斑块特征以及脑组织灌注等方面的能力及差异,为临床医师提供ICAD形态和功能方面的信息,可作为诊断、鉴别诊断、风险预测和治疗评估的参考。
[Abstract] Intracranial atherosclerotic disease (ICAD) has a high morbidity and recurrence rate. With the rapid development of MRI technologies and applications, multimodal MRI provides multiple valuable information on vessel lumen, vessel wall, cerebral perfusion and cerebral hemodynamics. This review integrates commonly used MRI techniques in clinical practice to discuss the recent advances in ICAD research from morphology to function, mainly focusing on the capabilities and differences of various techniques in diagnosing luminal stenosis, vulnerable high-risk plaques and cerebral perfusion, etc., aiming to provide clinicians with information on ICAD morphology and function, as a reference for diagnosis, differential diagnosis, risk prediction, and treatment assessment.
[关键词] 颅内动脉粥样硬化;磁共振成像;易损斑块;脑灌注;侧支循环
[Keywords] intracranial atherosclerotic disease;magnetic resonance imaging;vulnerable high-risk plaque;cerebral perfusion;collateral circulation

王进进 1   计一丁 1   戴慧 2   沈黎媛 1   何源 1*  

1 苏州大学附属苏州九院影像科,苏州 215200

2 苏州大学附属第一医院放射科,苏州215006

通信作者:何源,E-mail: heyuan1127@126.com

作者贡献声明:何源设计本研究的方案,对稿件重要内容进行了修改;王进进起草和撰写稿件,获取、分析和解释本研究的数据;计一丁、戴慧、沈黎媛获取、分析和解释本研究的数据,对稿件重要内容进行了修改;计一丁获得了苏州市临床重点病种诊疗技术专项项目的资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 苏州市临床重点病种诊疗技术专项项目 LCZX202025
收稿日期:2024-04-18
接受日期:2024-10-10
中图分类号:R445.2  R743.1 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.10.031
本文引用格式:王进进, 计一丁, 戴慧, 等. MRI技术评估颅内动脉粥样硬化疾病的研究进展[J]. 磁共振成像, 2024, 15(10): 182-186. DOI:10.12015/issn.1674-8034.2024.10.031.

0 引言

       颅内动脉粥样硬化疾病(intracranial atherosclerotic disease, ICAD)是全球缺血性脑卒中和短暂性脑缺血发作(transient ischemic attack, TIA)最常见的病因之一[1],我国约70%左右的缺血性脑卒中源于ICAD[2]。这些患者按照美国心脏病/脑卒中协会指南中推荐方案进行治疗,仍有较高的复发风险;在我国,ICAD所致缺血性脑卒中患者一年内再发卒中风险高达20%,且复发患者神经功能损害程度较首次卒中患者更为严重[3]。有研究表明ICAD所致缺血性脑卒中更加年轻化[2, 4],并且该类卒中患者的痴呆转归风险较高,影响生存时间[5, 6]。因此,及时发现ICAD并积极干预血管粥样硬化危险因素,有助于降低ICAD患者卒中的发生率及复发率[7, 8],从而改善远期预后[9, 10]

       ICAD引起缺血性脑卒中机制复杂,卒中机制不同,所选择的干预方式及获益亦不同。管腔狭窄程度、易损斑块的形态和成分以及血流动力学改变等与脑组织缺血机制相关,评估ICAD包括管腔狭窄、管壁结构和斑块分析、侧支循环、灌注状态以及血流动力学等方面,有利于提高诊断疾病、评估风险和指导治疗的能力。近20年来随着MRI技术的迅速发展,先进的高性能MRI设备进入临床投用和图像后处理软件不断开发,国内外关于ICAD的研究如火如荼,从血管结构和易损斑块的形态、功能及血流动力学异常等多方面均有研究,使得MRI技术在ICAD的规范诊治及随访应用中不可或缺。本文通过MRI技术对ICAD所致急性缺血性脑卒中(acute ischaemic stroke, AIS)影像学特征进行综述,重点探讨其在诊断ICAD所致管腔狭窄、易损斑块特征以及脑组织灌注等方面的能力及差异,为临床治疗决策提供依据并对获益情况提供评判依据。

1 动脉管腔狭窄的评估

       三维时间飞跃磁共振血管成像(3D time-of-flight magnetic resonance angiography, 3D TOF-MRA)是目前临床一线常用于ICAD筛查及其治疗后随访评估的MRI技术方案,多数以1.5 T及3.0 T为依托,但其空间分辨率较低,易受血管弯曲和动脉血流速度影响而高估管腔狭窄程度,同时对颅内远端分支血管显示较差[10, 11],而超高场MRI因空间分辨率的提升或能解决该问题。2022年SHI等[12]研究表明5.0 T TOF-MRA对脑大动脉远端分支和穿支小动脉的显示在评分上均高于3.0 T,而7.0 T TOF-MRA超具有高分辨率和出色的图像质量,可以显示更细小的穿支豆纹动脉[13],但7.0 T在广泛应用于临床前仍需要解决一些包括高磁场不均匀性、高吸收比率、较多禁忌证和安全性低等问题,来促进其安全、广泛地应用于ICAD等颅内血管疾病中[14, 15]

       增强磁共振血管造影(contrast-enhanced MR angiography, CE-MRA)因血管内注入对比剂而提升管腔信噪比,对慢血流敏感性高,对明确颅内动脉闭塞位置及远端侧支血管显影均优于TOF-MRA[16],但外源性对比剂有过敏风险,对部分肾功能欠佳人群亦有影响[17, 18],故临床应用中有一定的局限性。

       高分辨率磁共振管壁成像(high-resolution vessel wall MRI, HR-VW-MRI)以黑血成像方案对管壁评估有明显优势,且对管腔狭窄评估更准确[19],能将ICAD引起的血管狭窄与夹层、血管炎、烟雾病等进行分类和鉴别,逐渐成为评估颅内血管病变的重要手段[19, 20],但3D HR-VW-MRI图像管腔中心线准确提取、管壁分割及自动化后处理均可影响动脉狭窄的测量,是目前HR-VW-MRI的挑战,有待进一步研究和提升。

2 动脉管壁结构和斑块易损性的评估

       HR-VW-MRI是目前能显示颅内动脉管壁形态特征的唯一无创成像方案,对粥样硬化斑块诊断的敏感度高达92%,特异度达到74%[21]。ICAD的体内及体外研究表明[22],该技术对管壁厚度、斑块形态、成分特征及强化程度等有较全面的评估,是颅内斑块造成缺血性脑卒中高危因素研究的主要手段。同时,HR-VW-MRI对卒中复发性斑块特征识别和预测具有良好的评估能力,有研究发现斑块总数量、正性重构及斑块负荷与复发性缺血性脑卒中独立相关[23, 24]。此外,HR-VW-MRI还为类肝素药物治疗急性缺血性脑卒中试验(Trial of ORG10172 in Acute Stroke Treatment, TOAST)分型提供了极佳的评估优势,特别是在以ICAD为主要卒中原因的中国人群中[25]。近来,头颈一体化HR-VW-MRI 扫描成为热点,对头颈动脉多发粥样硬化的串联病变评估有明显优势,为动脉粥样硬化治疗提供重要技术支撑。但HR-VW-MRI检查时间久、受运动伪影影响大等问题使得其应用受限,期望未来缩短检查时间,降低运动对图像质量影响等让该技术更加安全、有效地应用于临床。

       正电子发射断层扫描(positron emission tomography, PET)MRI在动脉粥样硬化病变方面的应用潜力越来越大,可测量动脉粥样硬化疾病的活动度和局部斑块功能表型的信息,能更全面描述斑块易损性,还可以动态监测ICAD治疗后管壁及斑块的变化,测试治疗的生物学合理性,为个性化治疗提供MRI技术支撑[26]。目前PET-MRI主要应用在动物实验以及颈部血管斑块方面[27, 28],在ICAD应用鲜少,还需要在更多的临床试验验证其临床价值。

3 缺血区侧支循环的评估

       侧支循环是指当大脑的供血动脉严重狭窄或闭塞时,血流通过其他血管(侧支或新形成的血管吻合)到达缺血区,从而使缺血组织得到不同程度的灌注代偿。通常,脑的侧支循环可分为三级,其中一级是通过Willis环的血流代偿,二级是通过眼动脉、软脑膜吻合支、其他相对较小的侧支吻合支代偿,三级主要为新生血管,即毛细血管网,当一、二级侧支代偿仍不能足以供血时,新生血管就成为最终的侧支代偿。

       一、二级侧支评估通常采用MRA技术,其中3D-TOF MRA是常用的评估一级侧支循环Willis环完整性的技术方案,但对二级侧支显示能力较差,评估侧支循环方面的敏感性和阳性预测价值较CE-MRA低,既往研究[29, 30, 31]表明CE-MRA显示侧支循环和血管造影(digital subtraction angiography, DSA)具有一致性,但是对比剂峰值通过时间不同步以及时间分辨率较低等[32]是它的局限性。

       三级侧支评估目前是缺血性脑卒中研究的热点,通常采用灌注成像技术。有学者利用动态磁敏感对比增强灌注加权成像(dynamic susceptibility contrasts-enhanced perfusion weighted imaging, DSC-PWI)原始图可生成动态MR血管图来评估侧支循环[33],这种方法可以显示不同时期侧支循环的充盈情况,获得动态血流信息,与DSA具有良好的相关性[34, 35, 36, 37]。西门子系统的时间分辨交叉随机轨迹显像(time-resolved angiography with interleaved stochastic trajectories, TWIST)技术是时间分辨4D MRA技术,利用多相MRA侧支图显示侧支图像[37, 38],目前临床应用尚不广泛。另外,通过观察动脉自旋标记(arterial spin labeling, ASL)灌注图中形成血管内的高信号影,即动脉转运伪影(arterial transit artifact, ATA)是评估侧支循环手段之一[39],应用ATA联合脑血流评估ICAD的大动脉狭窄患侧的侧支循环研究具有一定临床意义[40],但在远端分支血管评估能力尚无明确结果。而基于灌注成像的低灌注强度比值(hypoperfusion intensity ratio, HIR)是反映缺血区侧支循环状态的定量指标,研究显示HIR<0.4是预测急性缺血性卒中患者良好侧支循环的最佳临界值[41, 42],可作为评估侧支循环以及判断患者是否可行静脉溶栓或机械取栓治疗的可行性指标等[37, 43, 44],但HIR对ICAD引起远端动脉闭塞的评估尚有局限性。

       此外,磁敏感加权成像(susceptibility weighted imaging, SWI)通过患者病变侧大脑皮质静脉信号多于健侧静脉信号,结合灌注参数对软脑膜侧支循环的评估有一定作用[45],目前应用并不广泛。

4 缺血区脑组织灌注状态的评估

       DSC-PWI是评估ICAD所致脑卒中患者脑血流灌注的常用技术。平均通过时间(mean transient time, MTT)和达峰时间(time to peak, TTP)可助于预测治疗后早期再发梗死灶的发生[39],TTP参数在治疗后迅速恢复与神经功能早期改善、良好的预后相关。而SEILER等[46]基于DSC-MRI提取代表软脑膜侧支血管的体素来计算侧支血管指数(collateral vessel index, CVI),结果发现CVI是衡量可挽救组织的指标,与灌注核心不匹配率显著相关,是功能预后良好的独立预测因子。近年来基于7.0 T的PWI因磁化率效应增加、所需外源性对比剂量减少,更加具有临床价值,这些研究越来越多地进入临床实践。

       无对比剂灌注的ASL技术是目前MRI灌注成像的热点,其结合扩散加权成像可显示缺血半暗带,在早期发现血流灌注减低状态,提高对TIA的早期检出率[47, 48]。多延迟伪连续动脉自旋标记技术(pseudo-continuous arterial spin labeling, pCASL)提高脑血流量(cerebral blood flow, CBF)定量的准确性,特别是对于低灌注脑区,是临床最常用和推荐的ASL方案[49, 50],该技术与基于O15水的PET灌注成像测量CBF具有一致性[51],适合临床多次重复观察脑灌注状态。ICAD致颅内动脉狭窄或闭塞时,颅内血流减慢,利用ASL容易高估前循环小范围梗死低灌注面积和缺血半暗带,由于后循环血管壁对脑血流压力调节机制不足,利用ASL可能过度评估后循环低灌注状态[52, 53],因此未来仍需要优化时间编码等,通过更多试验,建立临床应用中的使用指南。

       近年来有一些研究尝试使用功能成像血氧水平依赖功能磁共振成像(blood oxygen level dependent MRI, BOLD-MRI)等检查方式评估脑血流储备情况,间接反映脑组织血流灌注状态[54, 55]。CHEN等[56]在一个小样本的再灌注治疗后24 h使用静息态功能磁共振成像(resting-state functional MRI, rs-fMRI)研究中发现,AIS患者再灌注区域的平均局部一致性值与mRS(modified Rankin Scale, mRS)评分呈负相关。

5 血流动力学的评估

       ICAD发展依赖作用于血管壁的血流动力学力因素,继而导致在容易发生血流紊乱的部位形成局灶性病变如斑块或者狭窄等。研究认为ICAD患者狭窄程度不是判断颅内缺血的唯一指标[20]。基于MRA模态,计算流体力学(computational fluid dynamics, CFD)被应用在ICAD的研究中,结果发现最大壁面剪切应力(wall shear stress, WSS)升高明显和跨病灶压力比(translesional WSS ratio, WSSR)较大的ICAD患者复发性缺血性脑卒中的风险更高,基于MRA建立的CFD模型会高估ICAD狭窄的中重度程度,且MRA检查时间长、血流速度影响大及受运动伪影影响较大,导致其评估准确性不佳[54, 55, 56, 57]。近来利用HR-VW-MRI进行CFD建模在ICAD应用中逐渐增多[58],其对血管壁和斑块的几何形状和性质显示较基于CTA更加明显,重塑程度和斑块面积与WSSR呈正相关,反映了血流动力学变化可引起颅内血管重塑与斑块特征改变, 进一步提高了模型的精细程度。

       NGO等[59]发现四维血流MRI(4D Flow MRI)速度及WSS都具有较高的一致性,而且4D Flow MRI提供精确的三维信息更为真实地反映人体血流情况,具有回顾性地测量血流独特优势,具有良好的重复性[60], 最近国内一篇首次基于4D Flow MRI评估颈动脉狭窄及探讨缺血性卒中相关危险因素中发现[37],急性期脑梗死组狭窄下游平均血流、平均速度、最大速度及最大压力梯度均小于非急性期脑梗死组。

       未来的研究应进一步完善CFD模型,结合多模态医学影像数据和大样本临床研究,实现对病变机制的全面解析,优化个体化治疗策略,为患者提供更精准的医疗服务。

6 总结与展望

       综上所述,基于MR的无创血管成像技术可动态观察ICAD引起的动脉狭窄程度、易损斑块、侧支循环、脑组织灌注以及血流动力学等情况,准确地识别ICAD导致脑缺血性事件的危险因素,并应用于ICAD治疗后随访复查。已有一些基于MRA建立的CFD模型在预测ICAD所致卒中复发等方面的应用,但未来有待基于HR-VW-MRI更多的试验及结果,从而获得更精确的脑血流模型。联合应用多种成像方式能为临床医师提供ICAD形态和功能方面的信息,可作为诊断、鉴别诊断、风险预测和治疗评估的参考。

[1]
GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Neurol, 2021, 20(10): 795-820. DOI: 10.1016/S1474-4422(21)00252-0.
[2]
GUNDA S T, YIP J H, NG V T, et al. The diagnostic accuracy of transcranial color-coded doppler ultrasound technique in stratifying intracranial cerebral artery stenoses in cerebrovascular disease patients: A systematic review and meta-analysis[J/OL]. J Clin Med, 2024, 13(5): 1507 [2024-04-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934108. DOI: 10.3390/jcm13051507.
[3]
WU X B, LIU Y A, HUANG L X, et al. Hemodynamics combined with inflammatory indicators exploring relationships between ischemic stroke and symptomatic middle cerebral artery atherosclerotic stenosis[J/OL]. Eur J Med Res, 2023, 28(1): 378 [2024-04-18] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10523698. DOI: 10.1186/s40001-023-01344-8.
[4]
CHEN L H, SPAGNOLO-ALLENDE A, YANG D, et al. Epidemiology, pathophysiology, and imaging of atherosclerotic intracranial disease[J]. Stroke, 2024, 55(2): 311-323. DOI: 10.1161/STROKEAHA.123.043630.
[5]
GUTIERREZ J, TURAN T N, HOH B L, et al. Intracranial atherosclerotic stenosis: risk factors, diagnosis, and treatment[J]. Lancet Neurol, 2022, 21: 355‐368. DOI: 10.1016/S1474-4422(21)00376-8.
[6]
GOTTESMAN R F, MOSLEY T H, KNOPMAN D S, et al. Association of intracranial atherosclerotic disease with brain β-amyloid deposition: secondary analysis of the ARIC Study[J]. JAMA Neurol, 2020, 77: 350-357. DOI: 10.1001/jamaneurol.2019.4339.
[7]
SABAYAN B, GOUDARZI R, JI Y, et al. Intracranial atherosclerosis disease associated with cognitive impairment and dementia: Systematic review and meta-analysis[J/OL]. J Am Heart Assoc, 2023, 12(22): e032506 [2024-04-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10727275. DOI: 10.1161/JAHA.123.032506.
[8]
WANG Y, LIU T, LI Y, et al. Triglyceride-glucose index, symptomatic intracranial artery stenosis and recurrence risk in minor stroke patients with hypertension[J/OL]. Cardiovasc Diabetol, 2023, 22(1): 90 [2024-04-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10114394. DOI: 10.1186/s12933-023-01823-6.
[9]
SONG J W, PAVLOU A, XIAO J, et al. Vessel wall magnetic resonance imaging biomarkers of symptomatic intracranial atherosclerosis: a meta-analysis[J]. Stroke, 2021, 52(1): 193-202. DOI: 10.1161/STROKEAHA.120.031480.
[10]
KANG D W, KIM D Y, KIM J, et al. Emerging concept of intracranial arterial diseases: The role of high resolution vessel wall MRI[J]. J Stroke, 2024, 26(1): 26-40. DOI: 10.5853/jos.2023.02481.
[11]
YANG Y, HE Y, XU Y, et al. The impact of asymptomatic intracranial atherosclerotic stenosis on the clinical outcomes of patients with single subcortical infarction[J/OL]. Front Med (Lausanne), 2023, 10: 1249347 [2024-04-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502720. DOI: 10.3389/fmed.2023.1249347.
[12]
SHI Z, ZHAO X, ZENG M, et al. Time-of-flight intracranial MRA at 3 T versus 5 T versus 7 T: Visualization of distal small cerebral arteries[J]. Radiology, 2023, 306(1): 207-217. DOI: 10.1148/radiol.220114.
[13]
FAKIH R, VARON MILLER A, RAGHURAM A, et al. High resolution 7T MR imaging in characterizing culprit intracranial atherosclerotic plaques[J/OL]. Interv Neuroradiol, 2022, 26: 15910199221145760 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/36573263. DOI: 10.1177/15910199221145760.
[14]
SAMANIEGO E A, BOLTZE J, LYDEN P D, et al. Priorities for advancements in neuroimaging in the diagnostic workup of acute stroke[J]. Stroke, 2023, 54(12): 3190-3201. DOI: 10.1161/STROKEAHA.123.044985.
[15]
SUI B, SANNANANJA B, ZHU C, et al. Report from the society of magnetic resonance angiography: clinical applications of 7T neurovascular MR in the assessment of intracranial vascular disease[J/OL]. J Neurointerv Surg, 2023, 31: jnis-2023-020668 [2024-04-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902184. DOI: 10.1136/jnis-2023-020668.
[16]
ABOUSRAFA S E, MAIR G. MRI for collateral assessment pre-thrombectomy and association with outcome: a systematic review and meta-analysis[J]. Neuroradiology, 2023, 65(6): 1001-1014. DOI: 10.1007/s00234-023-03127-8.
[17]
NAGPAL P, GRIST T M. MR angiography: Contrast-enhanced acquisition techniques[J]. Magn Reson Imaging Clin N Am, 2023, 31(3): 493-501. DOI: 10.1016/jmric.2023.04.007.
[18]
ZHANG J, DING S, ZHAO H, et al. Evaluation of chronic carotid artery occlusion by non-contrast 3D-MERGE MR vessel wall imaging: comparison with 3D-TOF-MRA, contrast-enhanced MRA, and DSA[J]. Eur Radiol, 2020, 30(11): 5805-5814. DOI: 10.1007/s00330-020-06989-1.
[19]
吴静静, 张亚婷, 张林, 等. 症状性颈动脉粥样硬化斑块与缺血性卒中后短期mRS评分的相关性[J]. 磁共振成像, 2024, 15(3): 26-30. DOI: 10.12015/issn.1674-8034.2024.03.005.
WU J J, ZHANG Y T, ZHANG L, et al. The correlation between symptomatic carotid atherosclerotic plaques and short-term mRS score after ischemic stroke[J]. Chin J Magn Reson Imaging, 2024, 15(3): 26-30. DOI: 10.12015/issn.1674-8034.2024.03.005.
[20]
SUN J, FENG X R, FENG P Y, et al. HR-MRI findings of intracranial artery stenosis and distribution of atherosclerotic plaques caused by different etiologies[J]. Neurol Sci, 2022, 43(9): 5421-5430. DOI: 10.1007/s10072-022-06132-6.
[21]
KIM S J, SCHNEIDER D J, FELDMANN E, et al. Intracranial atherosclerosis: Review of imaging features and advances in diagnostics[J]. Int J Stroke, 2022, 17(6): 599-607. DOI: 10.1177/17474930211066427.
[22]
CHEN L H, SPAGNOLO-ALLENDE A, YANG D, et al. Epidemiology, pathophysiology, and imaging of atherosclerotic intracranial disease[J]. Stroke, 2024, 55(2): 311-323. DOI: 10.1161/STROKEAHA.123.043630.
[23]
SUN B, WANG L, LI X, et al. Intracranial atherosclerotic plaque characteristics and burden associated with recurrent acute stroke: A 3D quantitative vessel wall MRI study[J/OL]. Front Aging Neurosc, 2021, 13: 706544 [2024-04-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355600. DOI: 10.3389/fnagi.2021.706544.
[24]
SHI Z, LI J, ZHAO M, et al. Progression of plaque burden of intracranial atherosclerotic plaque predicts recurrent stroke/transient ischemic attack: A pilot follow-up study using higher-resolution MRI[J]. J Magn Reson Imaging, 2021, 54(2): 560-570. DOI: 10.1002/jmri.27561.
[25]
FENG X, FANG H, IP B Y M, et al. Cerebral hemodynamics underlying artery-to-artery embolism in symptomatic intracranial atherosclerotic disease[J]. Transl Stroke Res, 2024, 15(3): 572-579. DOI: 10.1007/s12975-023-01146-4.
[26]
AIZAZ M, VAN DER POL J A J, WIERTS R, et al. Evaluation of a dedicated radiofrequency carotid PET/MRI coil[J/OL]. J Clin Med, 2022, 11(9): 2569 [2024-04-18]. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc9101928. DOI: 10.3390/jcm11092569.
[27]
SILVESTRI E, VOLPI T, BETTINELLI A, et al. Image-derived input function in brain [18F]FDG PET data: which alternatives to the carotid siphons?[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2022, 2022: 243-246. DOI: 10.1109/EMBC48229.2022.9871200.
[28]
盛洁, 张龙江. PET分子成像在动脉粥样硬化易损斑块中的临床研究进展[J]. 国际医学放射学杂志, 2023, 46(6): 685-690. DOI: 10.19300/j.2023.Z20868.
SHENG J, ZHANG L J. Advances in clinical research on PET molecular imaging in atherosclerotic vulnerable plaques[J]. Int J Med Radiol, 2023, 46(6): 685-690. DOI: 10.19300/j.2023.Z20868.
[29]
UNIKEN VENEMA S M, DANKBAAR J W, VAN DER LUGT A, et al. Cerebral collateral circulation in the era of reperfusion therapies for acute ischemic stroke[J]. Stroke, 2022, 53(10): 3222-3234. DOI: 10.1161/STROKEAHA.121.037869.
[30]
LU S S. Multiphase MR angiography collateral map in brain stroke: may we shift the time from an absolute to the relative for therapy decisions?[J]. Eur Radiol, 2024, 34(3): 1409-1410. DOI: 10.1007/s00330-023-10275-1.
[31]
SUN Z, JIANG D, LIU P, et al. Age-related tortuosity of carotid and vertebral arteries: quantitative evaluation with MR angiography[J/OL]. Front Neurol, 2022, 13: 858805 [2024-04-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099009. DOI: 10.3389/fneur.2022.858805.
[32]
ZHAO D L, LI R Y, LI C, et al. Assessment of the degree of arterial stenosis in intracranial atherosclerosis using 3D high-resolution MRI: comparison with time-of-flight MRA, contrast-enhanced MRA, and DSA[J/OL]. Clin Radiol, 2023, 78(2): e63-e70 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/36307233. DOI: 10.1016/j.crad.2022.08.132.
[33]
卢菲, 孙梦瑶, 马越, 等. 基于4D Flow MRI评估颈动脉狭窄及卒中相关血流动力学危险因素的研究[J]. 磁共振成像, 2024, 15(2): 14-22, 47. DOI: 10.12015/issn.1674-8034.2024.02.003.
LU F, SUN M Y, MA Y, et al. Assessment of carotid artery stenosis and hemodynamic risk factors related to stroke based on 4D Flow MRI[J]. Chin J Magn Reson Imaging, 2024, 15(2): 14-22, 47. DOI: 10.12015/issn.1674-8034.2024.02.003.
[34]
ROH H G, KIM E Y, KIM I S, et al. A novel collateral imaging method derived from time-resolved dynamic contrast-enhanced MR angiography in acute ischemic stroke: a pilot study[J]. AJNR Am J Neuroradiol, 2019, 40(6): 946-953. DOI: 10.3174/ajnr.A6068.
[35]
WU D, ZHOU Y, ZHU W, et al. Collateral circulation predicts 3-month functional outcomes of subacute ischemic stroke patients: A study combining arterial spin labeling and MR angiography[J/OL]. Eur J Radiol, 2023, 160: 110710 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/36701823. DOI: 10.1016/j.ejrad.2023.110710.
[36]
ZHANG X, ZHOU C, CAO Y Z, et al. High-resolution magnetic resonance imaging for predicting successful recanalization in patients with chronic internal carotid artery occlusion[J/OL]. Front Neurol, 2022, 13: 1003800 [2024-04-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9475072. DOI: 10.3389/fneur.2022.1003800.
[37]
王思雨, 艾中萍, 吴倩倩, 等. TWIST技术在评估急性缺血性卒中侧支循环中的应用价值[J]. 磁共振成像, 2022, 13(5): 11-16. DOI: 10.12015/issn.1674-8034.2022.05.003.
WANG S Y, AI Z P, WU Q Q, et al. Application value of TWIST technique in evaluating collateral circulation in acute ischemic stroke[J]. Chin J Magn Reson Imaging, 2022, 13(5): 11-16. DOI: 10.12015/issn.1674-8034.2022.05.003.
[38]
TAKEHARA Y, SEKINE T, OBATA T. Why 4D flow MRI? real advantages[J]. Magn Reson Med Sci, 2022, 21(2): 253-256. DOI: 10.2463/mrms.e.2022-1000.
[39]
林小翼, 张宗利. 4D-ASL在脑血管疾病中的应用研究进展[J]. 磁共振成像, 2023, 14(6): 113-118. DOI: 10.12015/issn.1674-8034.2023.06.020.
LIN X Y, ZHANG Z L. Research progress on the application of 4D-ASL in cerebrovascular disease[J]. Chin J Magn Reson Imaging, 2023, 14(6): 113-118. DOI: 10.12015/issn.1674-8034.2023.06.020.
[40]
周慧, 王效春. 颅内动脉粥样硬化影像评估新进展[J]. 磁共振成像, 2022, 13(2): 123-126. DOI: 10.12015/issn.1674-8034.2022.02.030.
ZHOU H, WANG X C. New progress in imaging evaluation of intracranial atherosclerosis[J]. Chin J Magn Reson Imaging, 2022, 13(2): 123-126. DOI: 10.12015/issn.1674-8034.2022.02.030.
[41]
徐佳, 彭明洋, 周文珍, 等. 急性脑卒中机械取栓治疗前低灌注强度比值与血管造影侧支循环相关性研究[J]. 磁共振成像, 2020, 11(11): 971-974, 1055. DOI: 10.12015/issn.1674-8034.2020.11.003.
XU J, PENG M Y, ZHOU W Z, et al. The study on the correlation between hypoperfusion intensity ratio and angiography collateral circulation in acute ischemic stroke before endovascular thrombectomy therapy[J]. Chin J Magn Reson Imaging, 2020, 11(11): 971-974, 1055. DOI: 10.12015/issn.1674-8034.2020.11.003.
[42]
GUENEGO A, FAHED R, ALBERS G W, et al. Hypoperfusion intensity ratio correlates with angiographic collaterals in acute ischaemic stroke with M1 occlusion[J]. Eur J Neurol, 2020, 27(5): 864-870. DOI: 10.1111/ene.14181.
[43]
HUO X, MA G, TONG X, et al. ANGEL-ASPECT investigators. trial of endovascular therapy for acute ischemic stroke with large infarct[J]. N Engl J Med, 2023, 388(14): 12 72-1283. DOI: 10.1056/NEJMoa2213379.
[44]
LIN C H, OVBIAGELE B, LIEBESKIND D S, et al. Brain imaging prior to thrombectomy in the late window of large vessel occlusion ischemic stroke: a systematic review and meta-analysis[J]. Neuroradiology, 2024, 66(5): 809-816. DOI: 10.1007/s00234-024-03324-z.
[45]
LIAO M, WANG M, LI H, et al. Discontinuity of deep medullary veins in SWI is associated with deep white matter hyperintensity volume and cognitive impairment in cerebral small vessel disease[J]. J Affect Disord, 2024, 350: 600-607. DOI: 10.1016/j.jad.2024.01.124.
[46]
SEILER A, LAUER A, DEICHMANN R, et al. Signal variance-based collateral index in DSC perfusion: A novel method to assess leptomeningeal collateralization in acute ischaemic stroke[J]. J Cereb Blood Flow Metab, 2020, 40(3): 574-587. DOI: 10.1177/0271678X19831024.
[47]
KONG J, ZHANG D. Current status and quality of radiomics studies for predicting outcome in acute ischemic stroke patients: a systematic review and meta-analysis[J/OL]. Front Neurol, 2024, 14: 133585 [2024-04-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10789857. DOI: 10.3389/fneur.2023.1335851.
[48]
中国卒中学会, 中国卒中学会神经介入分会, 中华预防医学会卒中预防与控制专业委员会介入学组. 急性缺血性卒中血管内治疗中国指南2023[J]. 中国卒中杂志, 2023, 18: 684-711. DOI: 10.3969/j.issn.16735765.2023.06.010.
Chinese Stroke Society, Neurological Intervention Branch of Chinese Stroke Society, Interventional Group of Stroke Prevention and Control Professional Committee of Chinese Preventive Medical Association. Chinese Guidelines for Endovascular Treatment of Acute Ichaemic Stroke 2023[J]. Chin J Stroke, 2023, 18: 684-711. DOI: 10.3969/j.issn.16735765.2023.06.010.
[49]
YU H, LI Y, FENG Y, et al. Enhanced arterial spin labeling magnetic resonance imaging of cerebral blood flow of the anterior and posterior circulations in patients with intracranial atherosclerotic stenosis[J/OL]. Front Neurosci, 2022, 15: 823876 [2024-04-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891638. DOI: 10.3389/fnins.2021.823876.
[50]
梁雨昕, 崔碧霄, 张苗, 等. MR动脉自旋标记在缺血性脑血管病外科治疗中的应用进展[J]. 中国脑血管病杂志, 2023, 20(11): 761-768. DOI: 10.3969/j.issn.1672-5921.2023.11.006.
LIANG Y X, CUI B X, ZHANG M, et al. Advances in MR arterial spin labeling sequence in the surgical management of ischemic cerebrovascular disease[J]. Chin J Cerebrovasc Dis, 2023, 20(11): 761-768. DOI: 10.3969/j.issn.1672-5921.2023.11.006.
[51]
WOLMAN D N, MORAFF A M, HEIT J J. Anatomy of the intracranial arteries: The anterior intracranial and vertebrobasilar circulations[J]. Neuroimaging Clin N Am, 2022, 32(3): 617-636. DOI: 10.1016/j.nic.2022.04.007.
[52]
FAN A P, GUO J, KHALIGHI M M, et al. Long-delay arterial spin labeling provides more accurate cerebral blood flow measurements in moyamoya patients: A simultaneous positron emission tomography/ MRI study[J]. Stroke, 2017, 48(9): 2441-2449. DOI: 10.1161/STROKEAHA.117.017773.
[53]
LIU J, LIN C, MINUTIA, et al. Arterial spin labeling compared to dynamic susceptibility contrast MR perfusion imaging for assessment of ischemic penumbra: A systematic review[J]. J Neuroimaging, 2021, 31(6): 1067-1076. DOI: 10.1111/jon.12913.
[54]
LEGRAND L, LE BERRE A, SENERS P, et al. FLAIR vascular hyperintensities as a surrogate of collaterals in acute stroke: DWI matters[J]. AJNR Am J Neuroradiol, 2023, 44(1): 26-32. DOI: 10.3174/ajnr.A7733.
[55]
欧阳烽, 王博, 陈晔, 等. 磁共振成像在预测急性缺血性脑卒中预后中的研究进展[J]. 磁共振成像, 2022, 13(7): 147-151. DOI: 10.12015/issn.1674-8034.2022.07.029.
OUYANG F, WANG B, CHEN Y, et al. Research progress of magnetic resonance imaging in predicting the prognosis of acute ischemic stroke[J]. Chin J Magn Reson Imaging, 2022, 13(7): 147-151. DOI: 10.12015/issn.1674-8034.2022.07.029.
[56]
CHEN Q, ZHOU J, ZHANG H, et al. One-step analysis of brain perfusion and function for acute stroke patients after reperfusion: A resting-state fMRI study[J]. J Magn Reson Imaging, 2019, 50(1): 221-229. DOI: 10.1002/jmri.26571.
[57]
RAYNALD, ZHAO X, MENG L, et al. A novel computational fluid dynamic method and validation for assessing distal cerebrovascular microcirculatory resistance[J/OL]. Comput Methods Programs Biomed, 2023, 230: 107338 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/36640605. DOI: 10.1016/j.cmpb.2023.107338.
[58]
ZHANG D, WU X, TANG J, et al. Hemodynamics is associated with vessel wall remodeling in patients with middle cerebral artery stenosis[J]. Eur Radiol, 2021, 31(7): 5234-5242. DOI: 10.1007/s00330-020-07607-w.
[59]
NGO M T, LEE U Y, HA H, et al. Comparison of hemodynamic visualization in cerebral arteries: Can magnetic resonance imaging replace computational fluid dynamics?[J/OL]. J Pers Med, 2021, 11(4): 253 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/33808514. DOI: 10.3390/jpm11040253.
[60]
WANG M, YANG Y, ZHANG W, et al. Risk factors for cerebrovascular events in Moyamoya angiopathy using 4D flow MRI: A pilot study[J]. J Magn Reson Imaging, 2023, 58(1): 61-68. DOI: 10.1002/jmri.28522.

上一篇 原发性早泄中枢丘脑-额叶-躯体感觉皮层环路MRI研究进展
下一篇 多参数CMR对多发性骨髓瘤患者亚临床心肌损伤的评估价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2