分享:
分享到微信朋友圈
X
综述
MRI评估肝细胞癌消融治疗疗效的研究进展
庞雅萱 殷亮 张静 翟亚楠 王寅中 郭顺林

Cite this article as: PANG Y X, YIN L, ZHANG J, et al. Research progress in MRI evaluation of the therapeutic effect of ablation in hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2024, 15(10): 200-204.本文引用格式:庞雅萱, 殷亮, 张静, 等. MRI评估肝细胞癌消融治疗疗效的研究进展[J]. 磁共振成像, 2024, 15(10): 200-204. DOI:10.12015/issn.1674-8034.2024.10.034.


[摘要] 肝细胞癌(hepatocellular carcinoma, HCC)是全世界第六大癌症,在中国发病率位居恶性肿瘤第四位。消融治疗具有对肝功能影响小、创伤小和并发症少等优点,已广泛应用于HCC。精准评估消融治疗后肿瘤的存活状态、局部复发及转移情况对于后续治疗至关重要。MRI是评价HCC消融疗效的重要影像手段。近年来,人工智能(artificial intelligence, AI)在肝癌MRI领域的研究日渐增多,并在消融治疗的预后预测方面展现出巨大潜力。利用AI技术整合多模态数据,如将基因数据与影像数据相结合,是未来研究的关键突破之一。本文全面综述多模态MRI及基于MRI的AI技术在评估HCC消融治疗方面的研究进展,旨在精准评估肿瘤残余及预测早期复发,为HCC个体化治疗提供参考依据。
[Abstract] Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide, ranks fourth among malignant tumors in China. Ablation therapy has been widely used for HCC, with advantages such as minimal impact on liver function, low trauma, and few complications. Accurately assessing post-ablation tumor survival, local recurrence, and metastasis is crucial for subsequent treatment. MRI is an important imaging modality for evaluating the efficacy of ablation in HCC. In recent years, research on Artificial intelligence (AI) in the field of liver cancer MRI has been increasing, demonstrating significant potential in predicting outcomes of ablation therapy. The integration of multimodal data using AI, such as combining genetic data with imaging data, is one of the key breakthroughs for future research. This paper comprehensively reviews the research progress of multimodal MRI and MRI-based AI in evaluating HCC ablation therapy, aiming to accurately assess residual tumors and predict early recurrence, providing a reference basis for individualized HCC treatment.
[关键词] 肝细胞癌;射频消融;磁共振成像;人工智能;疗效评估
[Keywords] hepatocellular carcinoma;radiofrequency ablation;magnetic resonance imaging;artificial intelligence;efficacy evaluation

庞雅萱    殷亮 *   张静    翟亚楠    王寅中    郭顺林   

兰州大学第一临床医学院 兰州大学第一医院放射科,兰州 730000

通信作者:殷亮,E-mail: yinliang_ldyy@163.com

作者贡献声明:殷亮设计本研究的方案,对稿件重要内容进行了修改;庞雅萱起草和撰写稿件,获取、分析和解释本研究的文献;张静、郭顺林、翟亚楠、王寅中获取、分析本研究的文献,对稿件重要内容进行了修改;翟亚楠、王寅中分别获得了兰州大学第一医院院内基金和甘肃省卫生健康行业科研计划项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 兰州大学第一医院院内基金项目 ldyyyn2021-104 甘肃省卫生健康行业科研计划项目 GSWSKY2023-10
收稿日期:2024-06-27
接受日期:2024-10-10
中图分类号:R445.2  R735.7 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.10.034
本文引用格式:庞雅萱, 殷亮, 张静, 等. MRI评估肝细胞癌消融治疗疗效的研究进展[J]. 磁共振成像, 2024, 15(10): 200-204. DOI:10.12015/issn.1674-8034.2024.10.034.

0 引言

       肝细胞癌(hepatocellular carcinoma, HCC)是全球第六大常见癌症,2018年新发肝癌病例达841,080例,是全球癌症相关死亡的第四大原因[1]。在中国HCC的发病率和致死率分别位居恶性肿瘤第四位和第二位[2]。根据2022年更新的巴塞罗那临床肝癌(Barcelona clinic liver cancer, BCLC)指南,消融治疗是BCLC-0期患者的首选治疗方法[3]。射频消融(radiofrequency ablation, RFA)是治疗早期HCC最常用的消融技术,其疗效与手术相当,微波消融(microwave ablation, MWA)适用于治疗较大的HCC[4, 5, 6]。MRI在检测HCC消融术后肿瘤残余、局部进展和预测早期复发、转移方面展现出较高的敏感性和特异性,是评估消融疗效的重要影像学手段[7, 8]。然而,传统的影像学对病变的评估缺乏精确的量化指标,依赖医生的主观视觉评价[9]。近年来,包括MRI影像组学在内的人工智能(Artificial intelligence, AI)在肝癌疗效预测方面展现出良好的应用前景,成为当前研究的热点[10]。但其提取的定量特征与预测结果之间的关系难以直观解释,如何可视化特征分析以提升模型的透明度是亟待解决的关键难题[11]。此外,影像组学分析缺乏统一的标准流程,导致可靠性和可重复性不足,尚无法广泛应用于临床[12]。目前缺乏系统性的综述讨论MRI在HCC消融疗效评估方面的应用价值。本文全面综述MRI常规序列、功能成像以及基于MRI的AI技术在HCC消融疗效评估方面的研究进展,旨在分析对比不同评价方法的优势及局限,提出改进方案,并深入探讨未来的研究方向,以实现精准评估和个体化评价,为后续治疗决策制定提供依据。

1 MRI评估肝癌消融治疗疗效

1.1 平扫技术

1.1.1 T1和T2加权成像

       HCC消融治疗后早期病灶发生凝固性坏死、出血和脱水等病理改变,在T1WI上表现为内部不均匀或外周环形高信号,T2WI上表现为混杂信号或低信号[13]。随时间推移病灶缩小,消融区边缘可见完整环形T1WI高信号改变,液化坏死后,T2WI呈均匀高信号,消融区界限清晰光整,提示无肿瘤残留[14]。若消融区边缘T1WI高信号环不连续,消融区内部出现T1WI低信号、T2WI高信号不规则突起或结节状影,则提示肿瘤残留或局部进展[14, 15]。MAHMOUD等[16]研究发现,在RFA和MWA后早期影像学随访中,77%的HCC复发病灶表现为T2WI高信号,仅31%的病变表现为T1WI低信号。综上,T1WI和T2WI能够反映HCC消融治疗后的病理学变化,且T2WI较T1WI检测肿瘤局部复发具有更高的敏感性。然而T1WI和T2WI仅限于对病变的形态特征进行定性分析,无法实现精确的定量评估。T1和T2 mapping技术有望克服这一局限,是未来研究的主要方向[17]

1.1.2 扩散加权成像

       HCC消融治疗后肿瘤细胞死亡,细胞膜通透性增加,水分子扩散加快,导致扩散加权成像(diffusion weighted imaging, DWI)信号降低,表观扩散系数(apparent diffusion coefficient, ADC)值升高[18]。MA等[19]将RFA治疗后HCC分为进展组和稳定组,并对比两组治疗前ADC值,发现进展组的ADC值明显大于稳定组,且ADC值对患者的无进展生存期(progression-free survival, PFS)有显著影响,这表明RFA治疗前HCC的ADC值可有效预测局部肿瘤进展(local tumor progression, LTP)。ZHANG等[20]结合MWA治疗前HCC的ADC值与肿瘤形态学特征共同构建了治疗后HCC早期LTP的预测模型,其敏感度和特异度分别为71.9%和84.1%。BARAT等[18]比较了RFA治疗后LTP与无LTP HCC的ADC值,发现前者的ADC值低于后者(0.957±0.229 vs.1.414±0.322)。以上研究均表明,ADC值可作为预测和评估HCC消融治疗后早期LTP的生物标志物。然而,由于不同中心扫描条件的差异和微循环灌注的影响,ADC值测量的稳定性不佳[21]。因此,建议将DWI与其他MRI序列相结合,以综合评估HCC的消融治疗疗效。

1.1.3 体素内不相干运动扩散加权成像

       体素内不相干运动成像(intravoxel incoherent motion diffusion-weighted imaging, IVIM-DWI)的定量参数包括单纯扩散系数(D)、灌注系数(D*)和灌注分数(f),可定量反映肿瘤的微结构和微循环变化,应用于肿瘤局部治疗反应评估的研究[22]。GUO等[23]利用IVIM-DWI评估兔VX2肝癌模型对RFA的治疗反应,结果显示,在反应组中,灌注相关参数(D*和f)降低,而扩散相关系数(D)增高,这表明D、D*和f可用作预测RFA治疗反应。LIAN等[24]利用IVIM-DWI评估兔VX2 肝癌RFA治疗疗效,研究发现RFA治疗后肿瘤存活区的D和f值显著低于炎症反应区,证明利用D 和 f 检测RFA 后肿瘤是否残留具有可行性。综上,IVIM-DWI定量参数可作为评估HCC消融治疗反应及疗效的潜在生物标志物,但研究相对有限,其应用价值尚有待进一步验证。

1.1.4 扩散峰度成像

       与DWI相比,扩散峰度成像(diffusional kurtosis imaging, DKI)能够更好地反映水的扩散特性,其中平均峰度(mean kurtosis, MK)和平均扩散率(mean diffusivity, MD)是最常用的DKI参数[25]。YUAN等[26]研究发现,在预测RFA后HCC复发方面,MK和ADC受试者工作特征(receiver operating characteristic, ROC)曲线下面积(area under the curve, AUC)分别为0.956和0.842。此外,MK在预测HCC早期单发结节转移方面的表现优于MD(特异度:96.7% vs. 83.3%,AUC:0.956 vs. 0.839)。由此可见DKI在预测RFA后HCC复发和转移方面具有一定潜力。但是,DKI参数值是基于超高b值计算的,因而受灌注影响较大。此外,腹部成像扫描时间较长,可能导致运动伪影,对成像质量造成影响,因此DKI在腹部疾病应用中尚不成熟,成像技术尚待进一步完善[27]

1.1.5 磁共振弹性成像

       磁共振弹性成像(magnetic resonance elastography, MRE)能够无侵入性地量化组织的力学特性,用于定量评估肝脏硬度(liver stiffness, LS)[28]。CHO等[29]通过多因素方差分析发现,高LS与RFA治疗后HCC患者的无复发生存期(relapse free survival, RFS)显著相关,这说明LS可能是RFA治疗后HCC早期复发的潜在预测因子。VOGL等[30]利用MRE评估HCC对MWA的反应,发现随着一次MWA治疗时间延长,肝组织的总LS增加,且完全灭活肿瘤的消融边缘硬度比非完全灭活肿瘤更高(5.3 kPa vs. 4.6 kPa)。上述研究表明,MRE能够通过可视化肝脏硬度评估HCC消融治疗后的反应。LS在评估消融的完全性、肿瘤的灭活程度以及预测肿瘤早期复发方面展现出良好的潜力。但MRE需要较昂贵的额外设备,包括机械波发生器、特殊的后处理软件等,在临床的普及度仍待提高,在评估HCC消融治疗方面的研究还处于探索阶段[31]

1.2 增强技术

1.2.1 肝胆特异性对比剂增强扫描

       IMAI等[32]研究认为,钆塞酸二钠增强MRI(Gd-EOB-DTPA-enhanced MRI, EOB-MRI)评估HCC经RFA治疗后LTP的准确度、敏感度均高于CT,特别是高血管性复发HCC的病例,被认为是HCC患者RFA治疗后的理想随访工具。BAE等[33]分析HCC患者RFA治疗前EOB-MRI的肝胆特异期(hepatobiliary phase, HBP)图像,发现瘤周结节和/或瘤周低信号是PFS和总生存期(overall survival, OS)的独立影响因素。ÖCAL等[34]研究发现术前肝胆期瘤周低信号是HCC局部消融术后复发的独立危险因素(P=0.003)。WANG等[35]对204例接受RFA治疗的HCC患者的术前EOB-MRI图像进行影像特征分析并构建了复发预测模型,发现肿瘤边缘动脉期过度增强(arterial phase hyperenhancement, APHE)是RFA治疗后患者复发的独立危险因素,并且该模型在训练和验证组中均显示出良好性能。KIM等[36]Meta分析发现RFA治疗前在动脉期未出现高强化的HBP低信号结节是RFA治疗后肝内远处复发(intra-hepatic distant recurrence, IDR)的独立危险因素。综上,EOB-MRI有助于评估RFA治疗后肿瘤的局部进展、转移和预测早期复发,提示临床对高危患者进行早期干预和密切随访。尽管EOB-MRI在发现早期肝内新发小转移灶方面优势明显,但其价格相对昂贵,限制了其在临床中作为常规筛查和随访手段的推广。

1.2.2 细胞外间隙对比剂增强扫描

       RIMOLA等[37]比较了细胞外钆对比剂增强MRI(Gd-DTPA-enhanced MRI, Gd-MRI)和EOB-MRI评估HCC对RFA的治疗反应的效果,发现Gd-MRI在检测RFA后肿瘤残留和预测复发方面的准确度和敏感度均高于EOB-MRI,并且在确定残留灶的大小时,Gd-MRI显示出更高的评分者间组间一致性(0.96 vs.0.85)。这表明Gd-MRI在评估RFA治疗反应及疗效方面可能比EOB-MRI更加准确。这可能由于大多数HCC患者有肝病或肝硬化,影响Gd-EOB-DTPA对比剂在肝脏的排泄,造成其在血管内滞留时间较长,HBP时肝实质强化弱且不均匀,导致图像评估的准确性下降[38]。目前Gd-MRI和EOB-MRI评估消融疗效哪个更准确仍存在争议。LIU等[39]利用Gd-MRI评估MWA后HCC的消融边缘(ablative margin, AM)。根据肿瘤区与消融区之间的最小距离,将AM划分为AM>5 mm和AM<5 mm。通过多因素方差分析发现,AM是HCC消融术后LTP的独立预后因素(P=0.003)。因此,在HCC消融术后的MRI随访中,对AM进行精确评估具有预测LTP风险的潜力,这为高风险患者提供了重要的预后信息,进而有助于指导后续临床治疗方案的选择和个体化治疗。

1.3 AI技术

1.3.1 机器学习

       近年来,MRI影像组学在评估HCC治疗反应及预后方面的研究日益广泛[40]。WEN等[41]使用机器学习(machine learning, ML)技术从接受RFA治疗的HCC患者的MRI图像中提取影像组学特征并构建早期复发预测模型,展现出良好的预测性能,AUC为0.981。PENG等[42]从HCC患者的增强MRI图像中提取影像组学特征并与基于ML的算法相结合,用于预测根治性消融后的早期复发,其中随机生存森林模型的预测价值更高,其C指数为0.801,综合Brier评分为0.165。ISEKE等[43]基于治疗前实验室数据、临床信息和MRI图像数据构建ML模型并预测HCC患者治疗后复发风险,在18例消融术后复发的患者中,临床和影像学模型分别正确预测了14例(77.8%)和16例(88.9%)。结果显示基于影像学特征的模型平均AUC显著高于基于临床特征的模型(0.85 vs. 0.78)。综上所述,利用MRI影像组学构建的HCC消融疗效预测模型,为后续临床治疗方案的制订提供了更为可靠的参考信息。然而目前影像组学仍面临可解释性差、模型泛化能力不足等诸多挑战,需要多中心、前瞻性的大样本研究来验证其可靠性和稳定性[44]。AN等[45]采用基于深度学习(deep learning, DL)的可变形图像配准(deformable image registration, DIR)技术配准HCC消融前后的MRI图像,并评估了AM与LTP之间的关系。发现AM≤5 mm的患者组与AM>5 mm的患者组的LTP率存在显著性差异(P=0.011),且AM≤5 mm是MWA后LTP的独立危险因素(CI:1.324~7.752)。CHEN等[46]开发了一种基于多参数MRI(T1WI、T2WI和DWI)的深度学习影像组学模型来预测HCC消融后的LTP,并建立了将影像组学特征与临床病理变量相结合的综合模型进行LTP风险分层,其AUC为0.870。WANG等[47]开发了一种基于MRI数据集的DL模型,并对消融术后HCC患者进行预后分层,研究表明,微血管浸润(microvascular invasion, MVI)是预测HCC消融术后肝内复发的最有利因素(CI:2.40~5.88),并可用于预测术后RFS和OS。因此,MVI可作为消融术后早期随访患者预后分层的生物标志物。综上所述,深度学习作为机器学习的重要分支,为HCC患者的预后分层提供了重要参考信息。然而,深度学习模型的“黑箱”特性限制了其广泛应用。因此,未来亟需提高其可解释性,以增强临床医生的信任。

1.3.2 融合成像

       融合成像(fusion imaging, FI)通过配准软件将MRI图像与其他成像方式相融合,是一种新兴的HCC消融治疗反应评估方法,与传统的成像方式相比,其可以更准确地识别和评估靶病灶[48, 49]。WANG等[50]研究表明EOB-MRI/US融合成像在改善RFA后HCC患者预后方面的效果显著,融合成像引导下的RFA术后HCC总体复发率较低(53.8% vs. 84.0%)。KOBE等[51]将RFA治疗前MRI与治疗后CT灌注图像进行配准,研究发现肿瘤和消融区域之间的灌注参数(归一化峰值增强、动脉肝灌注、血流量和血容量)差异能够准确预测RFA后24小时内的肿瘤存活情况。YOON等[52]使用RFA前MRI和RFA后CT配准图像评估消融区域,以预测HCC患者RFA后的LTP,研究发现,配准图像中消融区域与肿瘤的LTP 之间存在显著相关性,未完全消融的患者5年内LTP发生率明显高于完全消融的患者(66.7% vs. 27.0%)。TAKEYAMA等[53]用消融前后HBP的融合图像预测HCC患者RFA后疗效,通过多因素分析发现AM是RFA后LTP的独立预测因子。综上所述,利用FI将MRI图像与多种影像图像相融合,能够更直观地观察肿瘤治疗前后的变化,从而准确评估HCC消融疗效。需要注意,由于各种成像设备的图像采集状态不同,FI可能会存在配准错误[48]。因此,最好使用在同一呼吸周期中获得的图像数据进行融合[54]

2 局限性与展望

       MRI具备多序列、多种功能成像方式的优势,广泛应用于评估HCC消融术后疗效。但目前临床上评估的常用方法仍以T1WI、T2WI、DWI及增强扫描为主,难以对消融术后病灶内部及周边组织的具体病理和微结构变化做出精准的判断和预测。IVIM、DKI及MRE等序列能够提升对病灶内部组织成分的影像评估能力,但技术尚未完全成熟并在临床的应用相对较少。因此,未来针对这些序列需要进行更多研究并提高临床普及度。尽管影像组学在医学领域具有广阔的应用前景,但目前绝大多数研究存在单中心、回顾性分析,样本量不足以及预测模型在不同研究中心之间重复性差等问题。此外,如何统一标准化扫描流程及数据采集,提高组学特征的可解释性都是亟待解决的问题和挑战。因此未来需要开展更多大型多中心前瞻性研究以推动影像组学技术的进一步成熟。AI技术在肿瘤的预后预测方面展现出显著优势。然而,目前的模型主要依赖单一模态数据,这在一定程度上限制了对肿瘤异质性的全面分析。因此,未来研究应致力于整合多模态数据来构建模型[55],例如结合基因数据与影像数据,从多个维度挖掘肿瘤异质性信息,深入阐释模型的生物学机制,进一步提升模型的预测效能,为临床提供更精确、全面的预测信息。

3 小结

       本文综述了MRI在评估HCC消融疗效及预后方面的研究进展。研究表明,基于多模态MRI和AI技术的定量、定性特征能够提供HCC形态、血流动力学、功能和代谢等方面的信息,有助于准确评估HCC患者的治疗效果,预测治疗反应和预后,为制订最佳临床决策提供了有力支持。因此,深入了解MRI在评估HCC消融治疗方面的研究进展,有望优化临床治疗方案,提高患者生存质量。

[1]
LLOVET J M, KELLEY R K, VILLANUEVA A, et al. Hepatocellular carcinoma[J/OL]. Nat Rev Dis Primers, 2021, 7: 6 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/33479224/. DOI: 10.1038/s41572-020-00240-3.
[2]
国家卫生健康委员会医政医管局. 原发性肝癌诊疗指南(2022年版)[J]. 中国实用外科杂志, 2022, 42(3): 241-273. DOI: 10.19538/j.cjps.issn1005-2208.2022.03.01.
Medical Administration Bureau of the National Health Commission. Standardization for diagnosis and treatment of hepatocellular carcinoma(2022 edition)[J]. Chin J Pract Surg, 2022, 42(3): 241-273. DOI: 10.19538/j.cjps.issn1005-2208.2022.03.01.
[3]
REIG M, FORNER A, RIMOLA J, et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update[J]. J Hepatol, 2022, 76(3): 681-693. DOI: 10.1016/j.jhep.2021.11.018.
[4]
CROCETTI L, SCALISE P, BOZZI E, et al. Thermal ablation of hepatocellular carcinoma[J]. J Med Imaging Radiat Oncol, 2023, 67(8): 817-831. DOI: 10.1111/1754-9485.13613.
[5]
王东东, 李晓光. 肝癌射频消融后肿瘤残余的研究现状与进展[J]. 介入放射学杂志, 2019, 28(08): 800-804. DOI: 10.3969/j.issn.1008-794X.2019.08.021.
WANG D D, LI X G. Research status and progress on tumor residue after hepatocellular carcinoma radiofrequency ablation[J]. Interv Radiol, 2019, 28(08): 800-804. DOI: 10.3969/j.issn.1008-794X.2019.08.021.
[6]
ZHANG L K, DU F, ZHANG Y X, et al. Microwave ablation is superior to radiofrequency ablation in the treatment of hepatocellular carcinoma below 5 cm - A systematic review and meta-analysis[J]. J Minim Access Surg, 2023, 19(4): 453-458. DOI: 10.4103/jmas.jmas_344_22.
[7]
SHIMIZU R, IDA Y, KITANO M. Predicting outcome after percutaneous ablation for early-stage hepatocellular carcinoma using various imaging modalities[J/OL]. Diagnostics, 2023, 13(19): 3058 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/37835800/. DOI: 10.3390/diagnostics13193058.
[8]
ZHANG Y, WEI H, SONG B. Magnetic resonance imaging for treatment response evaluation and prognostication of hepatocellular carcinoma after thermal ablation[J/OL]. Insights Imaging, 2023, 14(1): 87 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/37188987/. DOI: 10.1186/s13244-023-01440-7.
[9]
BRANCATO V, CERRONE M, GARBINO N, et al. Current status of magnetic resonance imaging radiomics in hepatocellular carcinoma: a quantitative review with Radiomics Quality Score[J]. World J Gastroenterol, 2024, 30(4): 381-417. DOI: 10.3748/wjg.v30.i4.381.
[10]
YANG X Z, YUAN C W, ZHANG Y H, et al. Predicting hepatocellular carcinoma early recurrence after ablation based on magnetic resonance imaging radiomics nomogram[J/OL]. Medicine, 2022, 101(52): e32584 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/36596081/. DOI: 10.1097/MD.0000000000032584.
[11]
BO Z Y, SONG J T, HE Q K, et al. Application of artificial intelligence radiomics in the diagnosis, treatment, and prognosis of hepatocellular carcinoma[J/OL]. Comput Biol Med, 2024, 173: 108337 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/38547656/. DOI: 10.1016/j.compbiomed.2024.108337.
[12]
ZWANENBURG A, VALLIÈRES M, ABDALAH M A, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping[J]. Radiology, 2020, 295(2): 328-338. DOI: 10.1148/radiol.2020191145.
[13]
VOIZARD N, CERNY M, ASSAD A, et al. Assessment of hepatocellular carcinoma treatment response with LI-RADS: A pictorial review[J/OL]. Insights Imaging, 2019, 10(1): 121 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/31853668/. DOI: 10.1186/s13244-019-0801-z.
[14]
GRANATA V, GRASSI R, FUSCO R, et al. Diagnostic evaluation and ablation treatments assessment in hepatocellular carcinoma[J/OL]. Infect Agent Cancer, 2021, 16(1): 53 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/34281580/. DOI: 10.1186/s13027-021-00393-0.
[15]
HU C G, SONG Y D, ZHANG J, et al. Preoperative gadoxetic acid-enhanced MRI based nomogram improves prediction of early HCC recurrence after ablation therapy[J/OL]. Front Oncol, 2021, 11: 649682 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/34094938/. DOI: 10.3389/fonc.2021.649682.
[16]
MAHMOUD B E M H, ELKHOLY S F, NABEEL M M, et al. Role of MRI in the assessment of treatment response after radiofrequency and microwave ablation therapy for hepatocellular carcinoma[J]. Egypt J Radiol Nucl Med, 2016, 47(2): 377-385. DOI: 10.1016/j.ejrnm.2016.01.007.
[17]
MAINO C, VERNUCCIO F, CANNELLA R, et al. Non-invasive imaging biomarkers in chronic liver disease[J/OL]. Eur J Radiol, 2024, 181: 111749 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/39317002/. DOI: 10.1016/j.ejrad.2024.111749.
[18]
BARAT M, FOHLEN A, CASSINOTTO C, et al. One-month apparent diffusion coefficient correlates with response to radiofrequency ablation of hepatocellular carcinoma[J]. J Magn Reson Imaging, 2017, 45(6): 1648-1658. DOI: 10.1002/jmri.25521.
[19]
MA X H, OUYANG H, WANG S, et al. Histogram analysis of apparent diffusion coefficient predicts response to radiofrequency ablation in hepatocellular carcinoma[J]. Chin J Cancer Res, 2019, 31(2): 366-374. DOI: 10.21147/j.issn.1000-9604.2019.02.11.
[20]
ZHANG Z H, YU J, LIU S S, et al. Multiparametric liver MRI for predicting early recurrence of hepatocellular carcinoma after microwave ablation[J/OL]. Cancer Imaging, 2022, 22(1): 42 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/36042507/. DOI: 10.1186/s40644-022-00471-5.
[21]
TAO Y Y, ZHOU Y, WANG R, et al. Progress of intravoxel incoherent motion diffusion-weighted imaging in liver diseases[J]. World J Clin Cases, 2020, 8(15): 3164-3176. DOI: 10.12998/wjcc.v8.i15.3164.
[22]
HUSSEIN R S, TANTAWY W, ABBAS Y A. MRI assessment of hepatocellular carcinoma after locoregional therapy[J/OL]. Insights Imaging, 2019, 10(1): 8 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/30694398/. DOI: 10.1186/s13244-019-0690-1.
[23]
GUO Z Y, ZHANG Q, LI X G, et al. Intravoxel incoherent motion diffusion weighted MR imaging for monitoring the instantly therapeutic efficacy of radiofrequency ablation in rabbit VX2 tumors without evident links between conventional perfusion weighted images[J/OL]. PLoS One, 2015, 10(5): e0127964 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/26020785/. DOI: 10.1371/journal.pone.0127964.
[24]
LIAN S S, SHI F, WEI K K, et al. Intravoxel incoherent motion diffusion-weighted MR imaging for early evaluation of the effect of radiofrequency ablation in rabbit liver VX2 tumors[J]. Acad Radiol, 2018, 25(9): 1128-1135. DOI: 10.1016/j.acra.2018.01.010.
[25]
CAO X, SHI H, DOU W Q, et al. Can DKI-MRI predict recurrence and invasion of peritumoral zone of hepatocellular carcinoma after transcatheter arterial chemoembolization?[J]. World J Gastrointest Surg, 2022, 14(10): 1150-1160. DOI: 10.4240/wjgs.v14.i10.1150.
[26]
YUAN Z G, WANG Z Y, XIA M Y, et al. Comparison of diffusion kurtosis imaging versus diffusion weighted imaging in predicting the recurrence of early stage single nodules of hepatocellular carcinoma treated by radiofrequency ablation[J/OL]. Cancer Imaging, 2019, 19(1): 30 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/31142356/. DOI: 10.1186/s40644-019-0213-9.
[27]
YUAN Z G, WANG Z Y, XIA M Y, et al. Diffusion kurtosis imaging for assessing the therapeutic response of transcatheter arterial chemoembolization in hepatocellular carcinoma[J]. J Cancer, 2020, 11(8): 2339-2347. DOI: 10.7150/jca.32491.
[28]
钟林辉, 刘文广, 李文政. 磁共振弹性成像在肝细胞癌诊疗评估中的研究进展[J]. 磁共振成像, 2022, 13(12): 150-153, 158. DOI: 10.12015/issn.1674-8034.2022.12.028.
ZHONG L H, LIU W G, LI W Z. Advances in the application of magnetic resonance elastography in the diagnosis and treatment of hepatocellular carcinoma[J]. Chin J Magn Reson Imag, 2022, 13(12): 150-153, 158. DOI: 10.12015/issn.1674-8034.2022.12.028.
[29]
CHO H J, KIM B, KIM H J, et al. Liver stiffness measured by MR elastography is a predictor of early HCC recurrence after treatment[J]. Eur Radiol, 2020, 30(8): 4182-4192. DOI: 10.1007/s00330-020-06792-y.
[30]
VOGL T J, DOSCH M P, HAAS Y. MR elastography is a good response parameter for microwave ablation liver tumors[J/OL]. Eur J Radiol, 2022, 152: 110360 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/35597071/. DOI: 10.1016/j.ejrad.2022.110360.
[31]
CASTERA L, FRIEDRICH-RUST M, LOOMBA R. Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease[J]. Gastroenterology, 2019, 156(5): 1264-1281. DOI: 10.1053/j.gastro.2018.12.036.
[32]
IMAI Y, KATAYAMA K, HORI M, et al. Prospective comparison of Gd-EOB-DTPA-enhanced MRI with dynamic CT for detecting recurrence of HCC after radiofrequency ablation[J]. Liver Cancer, 2017, 6(4): 349-359. DOI: 10.1159/000481416.
[33]
BAE J S, KIM J H, LEE D H, et al. Hepatobiliary phase of gadoxetic acid-enhanced MRI in patients with HCC: prognostic features before resection, ablation, or TACE[J]. Eur Radiol, 2021, 31(6): 3627-3637. DOI: 10.1007/s00330-020-07499-w.
[34]
ÖCAL O, SCHÜTTE K, MALFERTHEINER P, et al. Prognostic value of baseline MRI features in patients treated with thermal ablation for hepatocellular carcinoma[J/OL]. Eur J Radiol, 2023, 168: 111120 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/37806190/. DOI: 10.1016/j.ejrad.2023.111120.
[35]
WANG R Z, XU H T, CHEN W F, et al. Gadoxetic acid-enhanced MRI with a focus on LI-RADS v2018 imaging features predicts the prognosis after radiofrequency ablation in small hepatocellular carcinoma[J/OL]. Front Oncol, 2023, 13: 975216 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/36816925/. DOI: 10.3389/fonc.2023.975216.
[36]
KIM T H, WOO S, HAN S, et al. Hepatobiliary phase hypointense nodule without arterial phase hyperenhancement: are they at risk of HCC recurrence after ablation or surgery? A systematic review and meta-analysis[J]. Eur Radiol, 2020, 30(3): 1624-1633. DOI: 10.1007/s00330-019-06499-9.
[37]
RIMOLA J, DAVENPORT M S, LIU P S, et al. Diagnostic accuracy of MRI with extracellular vs. hepatobiliary contrast material for detection of residual hepatocellular carcinoma after locoregional treatment[J]. Abdom Radiol, 2019, 44(2): 549-558. DOI: 10.1007/s00261-018-1775-x.
[38]
CHERNYAK V, FOWLER K J, HEIKEN J P, et al. Use of gadoxetate disodium in patients with chronic liver disease and its implications for liver imaging reporting and data system (LI-RADS)[J]. J Magn Reson Imaging, 2019, 49(5): 1236-1252. DOI: 10.1002/jmri.26540.
[39]
LIU S S, WU J P, DING W Z, et al. The tumor ghost on MRI after microwave ablation for hepatocellular carcinoma: A new modality to assess the ablative margin[J/OL]. Eur J Radiol, 2023, 158: 110617 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/36463706/. DOI: 10.1016/j.ejrad.2022.110617.
[40]
JIANG C, CAI Y Q, YANG J J, et al. Radiomics in the diagnosis and treatment of hepatocellular carcinoma[J]. Hepatobiliary Pancreat Dis Int, 2023, 22(4): 346-351. DOI: 10.1016/j.hbpd.2023.03.010.
[41]
WEN L T, WENG S P, YAN C, et al. A radiomics nomogram for preoperative prediction of early recurrence of small hepatocellular carcinoma after surgical resection or radiofrequency ablation[J/OL]. Front Oncol, 2021, 11: 657039 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/34026632/. DOI: 10.3389/fonc.2021.657039.
[42]
PENG W, JIANG X H, ZHANG W D, et al. A radiomics-based model can predict recurrence-free survival of hepatocellular carcinoma after curative ablation[J]. Asian J Surg, 2023, 46(7): 2689-2696. DOI: 10.1016/j.asjsur.2022.09.130.
[43]
ISEKE S, ZEEVI T, KUCUKKAYA A S, et al. Machine learning models for prediction of posttreatment recurrence in early-stage hepatocellular carcinoma using pretreatment clinical and MRI features: a proof-of-concept study[J]. AJR Am J Roentgenol, 2023, 220(2): 245-255. DOI: 10.2214/AJR.22.28077.
[44]
HU H T, SHAN Q Y, CHEN S L, et al. CT-based radiomics for preoperative prediction of early recurrent hepatocellular carcinoma: technical reproducibility of acquisition and scanners[J]. Radiol Med, 2020, 125(8): 697-705. DOI: 10.1007/s11547-020-01174-2.
[45]
AN C, JIANG Y Q, HUANG Z M, et al. Assessment of ablative margin after microwave ablation for hepatocellular carcinoma using deep learning-based deformable image registration[J/OL]. Front Oncol, 2020, 10: 573316 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/33102233/. DOI: 10.3389/fonc.2020.573316.
[46]
CHEN C, HAN Q Y, REN H, et al. Multiparametric MRI-based model for prediction of local progression of hepatocellular carcinoma after thermal ablation[J]. Cancer Med, 2023, 12(17): 17529-17540. DOI: 10.1002/cam4.6277.
[47]
WANG W T, WANG Y Y, SONG D J, et al. A Transformer-Based microvascular invasion classifier enhances prognostic stratification in HCC following radiofrequency ablation[J]. Liver Int, 2024, 44(4): 894-906. DOI: 10.1111/liv.15846.
[48]
BIONDETTI P, ASCENTI V, SHEHAB A, et al. Percutaneous microwave ablation of hepatocellular carcinoma with "double fusion" technique: technical note and single-center preliminary experience[J/OL]. Diagnostics, 2023, 13(14): 2349 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/37510092/. DOI: 10.3390/diagnostics13142349.
[49]
TAO J, FENG G Y, TANG G, et al. Efficacy and safety of fusion imaging in radiofrequency ablation of hepatocellular carcinoma compared to ultrasound: A meta-analysis[J/OL]. Front Surg, 2021, 8: 728098 [2024-06-26]. https://pubmed.ncbi.nlm.nih.gov/34938766/. DOI: 10.3389/fsurg.2021.728098.
[50]
WANG F Q, NUMATA K, NIHONMATSU H, et al. Intraprocedurally EOB-MRI/US fusion imaging focusing on hepatobiliary phase findings can help to reduce the recurrence of hepatocellular carcinoma after radiofrequency ablation[J]. Int J Hyperthermia, 2020, 37(1): 1149-1158. DOI: 10.1080/02656736.2020.1825837.
[51]
KOBE A, KINDLER Y, KLOTZ E, et al. Fusion of preinterventional MR imaging with liver perfusion CT after RFA of hepatocellular carcinoma: early quantitative prediction of local recurrence[J]. Invest Radiol, 2021, 56(3): 188-196. DOI: 10.1097/RLI.0000000000000726.
[52]
YOON J H, LEE J M, KLOTZ E, et al. Prediction of local tumor progression after radiofrequency ablation (RFA) of hepatocellular carcinoma by assessment of ablative margin using pre-RFA MRI and post-RFA CT registration[J]. Korean J Radiol, 2018, 19(6): 1053-1065. DOI: 10.3348/kjr.2018.19.6.1053.
[53]
TAKEYAMA N, MIZOBUCHI N, SAKAKI M, et al. Evaluation of hepatocellular carcinoma ablative margins using fused pre- and post-ablation hepatobiliary phase images[J]. Abdom Radiol, 2019, 44(3): 923-935. DOI: 10.1007/s00261-018-1800-0.
[54]
SHENG Y G, SUN X K, SUN H M, et al. Fusion imaging versus ultrasound-guided percutaneous thermal ablation of liver cancer: a meta-analysis[J]. Acta Radiol, 2023, 64(9): 2506-2517. DOI: 10.1177/02841851231187638.
[55]
刘再毅, 陆铖. 影像人工智能在肿瘤诊疗中的应用[J]. 国际医学放射学杂志, 2024, 47(3): 257-259. DOI: 10.19300/j.2024.S21528.
LIU Z Y, LU C. Application of artificial intelligence in imaging for tumor diagnosis and treatment[J]. Int J Med Radiol, 2024, 47(3): 257-259. DOI: 10.19300/j.2024.S21528.

上一篇 4D Flow CMR定量分析心内血流动力学研究进展
下一篇 直肠癌淋巴结转移MRI人工智能研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2