分享:
分享到微信朋友圈
X
综述
7.0 T及以上的超高场MRI在骨骼肌肉系统的研究进展
冉云龙 金凤 白小龙 田晓燕 郭欢萱 李振鑫

Cite this article as: RAN Y L, JIN F, BAI X L, et al. Advances in ultrahigh-field MRI with 7.0 T and above in the musculoskeletal system[J]. Chin J Magn Reson Imaging, 2024, 15(10): 217-221.本文引用格式:冉云龙, 金凤, 白小龙, 等. 7.0 T及以上的超高场MRI在骨骼肌肉系统的研究进展[J]. 磁共振成像, 2024, 15(10): 217-221. DOI:10.12015/issn.1674-8034.2024.10.037.


[摘要] 随着磁共振磁场强度的不断提升、扫描技术的智能化、扫描序列的创新及优化、新技术的脱颖而出,骨骼肌肉系统在磁共振成像的应用也是日新月异。7.0 T及以上的超高场MRI在骨骼肌肉系统成像中信噪比的提升尤为显著,超高分辨率图像有利于软骨、骨、韧带、肌腱、半月板等解剖结构细节的观察、病变信息的显示和呈现,从而提高诊断的特异性及敏感度。超高场MRI有利于高级功能成像的实现,提供了组织生化和代谢信息。本综述通过进一步总结超高场MRI在临床诊断、疾病监测及科学研究中的不足,提出未来可向优化成像序列、降低伪影和提高磁场均匀性等方向发展,为临床医生和研究人员提供超高场MRI应用的最新进展和前景,以促进超高场MRI在医学中的广泛应用和发展。
[Abstract] With the continuous improvement of magnetic field strength of MRI, intelligent scanning technology, innovation and optimization of scanning sequences, and new technologies, the application of MRI in skeletal and muscular system is also rapidly changing. The improvement of signal-to-noise ratio of ultra-high-field MRI of 7.0 T and above is particularly significant in the imaging of the skeletal muscular system, and the ultra-high-resolution image is conducive to the anatomical structure of cartilage, bone, ligaments, tendons, menisci, and so on. Ultra-high resolution images facilitate the observation of details of cartilage, bone, ligament, tendon, meniscus and other anatomical structures, the display and presentation of lesion information and advanced functional imaging, thus improving the specificity and sensitivity of diagnosis. This paper also discusses the shortcomings of ultra-high-field MRI in clinical diagnosis, disease monitoring and scientific research, which can be developed in the direction of optimizing imaging sequences, reducing artifacts and improving magnetic field uniformity in the future. The aim of this paper is to provide clinicians and researchers with the latest progress and prospects of ultrahigh-field MRI applications, in order to promote the wide application and development of ultrahigh-field MRI in medical imaging.
[关键词] 骨肌系统;软骨;肌肉;磁共振成像;超高场磁共振成像
[Keywords] musculoskeletal system;cartilage;muscle;magnetic resonance imaging;ultra-high field magnetic resonance imaging

冉云龙    金凤 *   白小龙    田晓燕    郭欢萱    李振鑫   

内蒙古医科大学附属医院影像诊断科,呼和浩特 010050

通信作者:金凤,E-mail: doctorjinfeng@163.com

作者贡献声明:金凤指导本文的构思和设计,并对稿件重要内容进行了修改,获得了内蒙古自治区卫生健康科技计划项目的资助;冉云龙起草和撰写稿件,获取、分析并解释本研究的文献;白小龙、田晓燕、郭欢萱、李振鑫获取、分析或解释本研究的文献,对稿件的重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 内蒙古自治区卫生健康科技计划项目 202201266
收稿日期:2024-06-10
接受日期:2024-10-10
中图分类号:R445.2  R68 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.10.037
本文引用格式:冉云龙, 金凤, 白小龙, 等. 7.0 T及以上的超高场MRI在骨骼肌肉系统的研究进展[J]. 磁共振成像, 2024, 15(10): 217-221. DOI:10.12015/issn.1674-8034.2024.10.037.

0 引言

       2017年,美国食品药品监督管理局和欧洲监管机构批准超高场7.0 T磁共振扫描仪用于临床,为更广泛的临床应用打开了大门。超高场(≥7 T)MRI结合先进的射频线圈、脉冲序列等技术,极大地改善了形态学变化的显示,并为我们提供了观察精细病理结构的机会,使得呈现亚毫米级的功能结构成为可能,目前超高场MRI已从科研用途逐步转向临床使用。7.0 T及以上的超高场MRI在骨骼肌肉系统成像中信噪比和对比噪声比的提升最为显著,超高分辨率图像有利于更多解剖结构细节和病变信息的显示和呈现,从而提高诊断的特异性及敏感度。在获得高质量图像的同时,也实现了更快的扫描速度和更高的空间分辨率[1]。7.0 T超高场MRI有利于高级功能成像的实现,改善了频率特异性脂肪抑制功能,这对于多核成像优势更为显著。同时,在7.0 T MRI中有许多潜在的诊断应用,这些应用在较低磁场下无法运行或在超高磁场下表现更好,例如糖胺聚糖化学交换饱和转移(glycosaminoglycan chemical exchange saturation transfer, gagCEST)[2]、钠离子MRI[3]、磷光谱成像等[4],超高场MRI在肌肉骨骼领域引起大量关注。本文介绍了MRI技术在肌肉骨骼系统应用方面的优势,概述了超高场MRI在评估软骨、骨、韧带、肌腱、半月板、肌肉等方面的临床应用,以推动超高场MRI在骨骼肌肉系统中的研究,促进超高场MRI在医学中的广泛应用和发展。

1 形态学成像

1.1 软骨和半月板

       超高场MRI对软骨进行超高分辨率成像,可以提供更多的解剖结构细节。减小体素大小可减少部分容积效应,从而改善对软骨结构中厚度和体积的测量。传统形态学成像序列包括自旋回波、梯度回波、三维自旋回波和三维梯度回波等序列,具有脂肪抑制功能。基于梯度回波序列的三维扰相梯度回波或三维快速小角度激发序列产生的高强化软骨信号可与周围结构产生良好对比,这可用于分割软骨的结构[5]。超高场强脂肪抑制液体衰减反转恢复序列是一种潜在的平扫成像方法,能直观、清晰地显示滑膜炎性病变,有望在临床和科研工作中得到进一步应用[6]。软骨膜移植和自体软骨细胞移植术后可有骨赘形成,7.0 T MRI可监测到这种改变,研究发现这种改变可能与胫骨软骨的生化损伤有关[7]。Kashin Beck病是一种涉及生长和关节软骨的致残性骨关节疾病[8]。已有文献报道,7.0 T MRI对大鼠的骨骺、骨骺板和干骺端的早期病理变化高度敏感,可提高Kashin Beck病的影像学阳性率,降低漏诊率[8]。超高场MRI可用于早期关节病变[9]的研究和Kashin Beck病的早期诊断,有效评估疾病的进展。

       MRI检查是评估半月板损伤最灵敏的影像学检查方法,诊断准确率远高于麦氏征等临床体征,不但可以明确损伤的位置和形态,还可以了解膝关节其他组织损伤的情况。7.0 T MRI具有更高的信噪比、更高的分辨率和更好的对比度,能更准确地发现半月板细微的形态学改变。有研究证明胶原蛋白微观结构紊乱是半月板退化的重要原因,半月板退化与膝关节骨关节炎之间存在很强的关联[10]。KAJABI等[11]使用7.0 T MRI评估了经关节镜验证的内侧半月板后根撕裂患者的半月板变性,研究发现内侧半月板退行性改变超出了后根撕裂的范围,这表明半月板变性更广泛,且无法通过关节镜检查发现。SEVERYNS等[12]对膝关节标本进行加压扫描,详细评估了受损半月板的位移量,结果表明即使前交叉韧带完整,内侧半月板损伤也会增加半月板的外移,这有助于早期发现半月板位置改变。在显示钙化方面,相比于3.0 T场强,7.0 T场强下的双回波稳态序列可更好地显示焦磷酸钙沉积症患者的半月板钙化,甚至比CT更准确[13]。超高场MRI可以及时发现半月板微小病变,为疾病的早期诊断提供支持。虽然超高场MRI在大关节软骨、半月板研究中表现优异,但其临床应用仍有限,普通MRI可以满足大多数诊断需求,未来可以对颞下颌关节等小关节进行进一步研究。

1.2 肌腱、韧带和肌肉

       传统的MRI序列对肌腱和韧带的显示仍然存在一些不足,因为部分微小结构无法清晰显示。有研究将手腕的7.0 T MRI与3.0 T MRI进行了比较,发现肌腱、神经和韧带在7.0 T下的信噪比、空间分辨率和软组织对比度均明显更好[14]。使用7.0 T超高场MRI可以提高对手指屈肌腱损伤的诊断准确性,特别是在合并滑轮破裂或滑轮残端夹层的情况下,这有助于指导治疗策略,改善临床决策和患者的预后[15]。LAZIK-PALM等[16]对7.0 T MRI和肩关节镜检查进行比较,证实了在7.0 T MRI诊断疑似肩袖肌腱病的可行性。但与关节镜评估相比,7.0 T MRI会导致肌腱病出现假阳性率,尤其是在评估棘上肌腱和肩胛下肌腱的时候。

       通过超高场MRI可以测量足部肌肉的形态和组成。超高场7.0 T MRI能够建立定量方法,以提供比以前技术更详细的足部肌肉体积和肌肉脂肪浸润率的测量[17]。HEISS等[18]发现当进行可引起迟发性肌肉酸痛的运动后,7.0 T MRI即可发现微观肌肉损伤。超高场MRI也可显示肌肉周围神经血管的结构。7.0 T MRI可以显示环层小体网络复杂的结构,一项研究[19]揭示了环层小体网络的“链状”结构排列以及浅表皮下组织和深层软组织(如肌腱和关节囊)中环层小体的位置。在7.0 T MRI中可以使用时间飞越技术对腓骨穿支动脉进行术前评估,且时间飞越技术在腓骨穿支动脉的分类和识别优于CT血管造影,这有助于重建手术的术前规划[20]。未来可以对其他部位的肌腱、韧带进行研究,对受外伤患者的局部血管、神经、肌肉等结构的损伤程度进行评价。

1.3 脊椎和骨

       超高场MRI在脊柱和脊髓成像方面也取得了一定成果。SADEGHI-TARAKAMEH等[21]使用多通道相控阵射频线圈对人脊柱进行初步扫描,证实了超高场下脊柱MRI的可行性。新型线圈技术的发展可以提高信噪比,降低g因子,从而改善7.0 T时的脊柱MRI图像质量[22]。有研究也证明了7.0 T时高分辨率颈椎脊髓MRI的可行性,包括多参数定量MRI、磁敏感成像[23]和动态药敏性造影剂成像等[24],7.0 T MRI可以精确评估脊柱颈神经根和坐骨神经中单个神经束的微观解剖结构[25, 26]。新型成像方法可以大幅减少耗时[27],显著提高脊髓的成像效率和质量[28]。TAVANA等[29]研究发现,在退化的椎间盘中拉伸和剪切应力显著增加,尤其是在纤维环的外侧和后方。

       骨质疏松症是以骨量减少、骨的微观结构退化为特征,伴有骨的脆性增加的一种全身性骨骼疾病[30]。临床上,评估骨状态的方法主要为基于双能X射线吸收测定法,该测定法提供有关骨矿物质密度的信息[31]。7.0 T超高场MRI可用于评估体内深层骨组织的骨微观结构,如骨小梁数目、骨体积分数、骨小梁间隔、网状连接水平等多个反映骨小梁微结构的指标,其评估结果与X射线显微断层扫描的值相比非常接近。在评价骨矿物质密度时与几乎与双能X射线吸收测定法的结果一致,这有利于量化评估骨质疏松的严重程度[32, 33]。银屑病关节炎是一种炎症性风湿性疾病,与骨质流失有关,7.0 T超高场MRI可以量化银屑病关节炎患者的体内骨矿物质密度的改变,评估治疗效果[34]。但也有研究[35]发现,从3.0 T和7.0 T MRI获得的骨质地分析高度依赖于成像序列和参数,不同场强的MRI区别不大,未来需要进行更多的研究。

2 功能成像

2.1 化学交换饱和转移

       化学交换饱和转移(chemical exchange saturation transfer, CEST)是一种基于羟基和酰胺基团与组织中含有的自由水之间产生的质子的化学交换技术,可以检测低浓度代谢物,敏感度高于磁共振波谱,已被用于临床研究如诊断骨性关节炎和软骨修复术后的评价[2]。糖胺聚糖(glycosaminoglycan, GAG)在膝关节软骨和椎间盘中起重要作用,GAG的丧失是膝关节炎和脊柱骨关节炎的早期指标[36]。BRINKHOF等[2]在7.0 T MRI下采用gagCEST技术对5例接受全膝关节置换术患者的膝关节软骨GAG进行测量,术中对关节表面切口进行机电压痕测量,发现gagCEST MRI与机电测量结果呈强负相关,证明骨关节炎患者退变软骨中GAG含量发生改变,支持了gagCEST技术可以作为无创评估关节软骨中GAG含量的有用工具。EMIN等[37]证明了7.0 T下使用CEST对骨髓脂肪组织脂肪酸定量评估的可行性。

       肌酸是肌肉能量代谢的关键组成部分,肌酸内胺基和水之间表现出的CEST效应,已应用于绘制骨骼肌肌酸在运动前后空间和时间上的变化[38]。有研究表明在7.0 T MRI下通过测量健康志愿者小腿运动和屈足运动后肌肉中肌酸的浓度,可观察到肌酸浓度在运动后增加并引起CEST效应增加,随后以指数级恢复到基线水平,证实了CEST技术在测量活体肌肉中游离肌酸的变化的可行性[38],超高场MRI可以更好地监测外源性肌酸和磷酸肌酸的摄取和清除[39]。CEST受脂肪信号的影响,可导致CEST对比度降低以及假性CEST效应,TKOTZ等[40]开发一种基于多回波脂肪-水分离的脂肪伪影校正方法,该方法可稳定地处理7.0 T膝关节CEST数据。超高场MRI下CEST信号的信号灵敏度与化学位移分辨率提高,能够更清晰地分辨不同分子或代谢物的化学位移,但同时也面临着B0和B1场不均匀、射频特殊吸收率(specific absorption rate, SAR)过高和T1加权效应等问题[41, 42, 43]

2.2 磷光谱学和磷离子、钠离子MRI

       钠存在于软骨基质内,具有特殊共振频率,软骨内蛋白多糖的硫酸盐和羧基带负电荷,使得软骨内钠离子的浓度高于周围滑液和骨骼内钠离子的浓度[44]。正常透明软骨富含蛋白多糖,钠离子浓度较高;软骨损伤时,蛋白多糖减少,钠离子浓度则降低。钠离子MRI可以定量评估软骨中蛋白多糖的变化,早期评估软骨退变。ZBÝŇ等[3]利用10.3 T MRI对12名受试者进行膝关节钠离子成像,发现钠离子成像可显示软骨成熟过程中GAG含量和胶原基质变化。WEBER等[45]发现在钠离子MRI和氯离子MRI中,内生软骨瘤要比正常骨髓有更高的对比噪声比,这有助于在细微病变中检测和鉴别软骨肿瘤。钠离子MRI在评估软骨组成、功能和健康状况中具有良好的应用前景。

       大量研究结果证实了超高场MRI在磁共振波谱方面的优势,其主要优势在于光谱分辨率的提高和X核成像能力的提升[46]。7.0 T磷光谱学可显著提高信噪比和分辨率,获得高质量波谱曲线。KAN等[47]首次在7.0 T下对健康受试者静止状态下肌肉中的无机磷酸盐池进行体内定量测量,随后研究者发现,肌肉能量代谢的变化与衰老有关,检测衰老肌肉中腺苷三磷酸产生的磷光谱学差异,可评估体内的肌肉能量代谢[4]。糖尿病和肌肉萎缩症等各种疾病以及运动会改变腺苷三磷酸酶活性,从而改变人体骨骼肌中的离子分布。骨骼肌细胞是钠离子和钾离子的重要储存库。ZARIC等[48]发现钠离子MRI可以区分健康组织和病理组织之间钠离子水平的差异,甚至区分小腿的不同肌肉。7.0 T超高场MRI可以无创性地测定肌肉组织中钠离子和钾离子浓度,评估肌肉营养不良病和通道病,监测肌肉对运动的反应,在各种疾病的诊断中有巨大的潜力[49, 50]。但是磷离子、钠离子MRI的空间分辨率较低,且需要较长的扫描时间,增加了成像难度,未来需要在射频线圈,信号接收等方面进行更多的研究[51]

3 定量成像

       超高场MRI可用于非侵入性检测与膝关节骨关节炎相关的早期半月板变性。新型定量技术T2* mapping不仅可以对撕裂前早期变性做出诊断,还可以精确监测疾病进展,从而对不同的手术治疗方案进行评估[52]。7.0 T MRI亦可评价肌腱附着点情况并进行定量分析,GUENOUN等[53]首次评估了股四头肌肌腱内的T2*分布并提供了参考范围。ANZ等[54]对30名健康志愿者膝关节前交叉韧带T2、T2*值和体积进行定量评估,发现准确定量评估可能是评估术后肌腱移植物韧带化过程有力的工具,但与3.0 T MRI相比,7.0 T MRI定量评估并没有表现出明显的优势。

       骨骼肌线粒体合成腺苷三磷酸的能力高度依赖于氧气的供应。因此,通过动脉自旋标记量化肌肉组织灌注是非常有意义的,特别是在外周动脉疾病患者中[55]。T1弛豫引起的流入时间内的信号衰减弛豫和低信噪比通常会限制动脉自旋标记检查,使用超高场MRI可以解除这两个限制,同时与T2加权成像结合来提供有关血氧的信息[56]。SCHMID等[57]比较了健康志愿者的血氧水平依赖信号,发现在评估7.0 T下肌肉微循环时,对比噪声比和信噪比显著增加。MAHMUD等[58]发现7.0 T MRI能够同时量化骨骼肌灌注和T2*,无论是在静止状态还是在运动后恢复期间,都能对小腿肌肉进行量化,这对了解健康受试者和存在活动障碍的群体(如多发性硬化症患者、帕金森病患者和老年人)的肌肉代谢非常有价值。此外,还可以探索超高场MRI在肌肉萎缩症、遗传性肌病、肌肉损伤以及代谢性疾病的应用价值。

4 不足和展望

       超高场MRI在临床的应用面临挑战,例如标准射频激发技术的不均匀性、体内过高的SAR值以及B0和B1场的不均匀性等[59, 60]。不同于神经系统,骨骼肌肉系统的磁共振成像多数为偏中心扫描,相较于3.0 T组织对比度也会有一定的差异,化学位移伪影也会较3.0 T更明显。在超高场MRI下,较高的射频和较短的波长可能会导致不均匀激发的穿透力下降,这会导致SAR值增加。由于受到SAR值的限制,扫描层数及范围也需要适当控制。未来超高场MRI的应用前景将取决于硬件、软件和序列方面不断发展和创新,例如并行成像的实施[28, 61],B1填充技术和MRI指纹识别等[62]。有研究表明可以通过增加接收带宽、倾斜角以及用于金属伪影校正的编码等方法来减少植入物周围信号空洞和几何失真[63]。在7.0 T MRI下,复合成像技术的发展会突飞猛进,如CEST MRI,动态葡萄糖增强MRI和X核MRI等,这些技术提供有关生理和病理生理过程的代谢信息,未来使用超高场MRI可进行基因、蛋白及细胞代谢等分子水平功能影像的研究[64, 65]

       综上所述,超高场MRI为骨骼肌肉系统成像提供了非常重要的诊断价值。更高的信噪比和对比噪声比可获得更高的分辨率,改善肌肉骨骼解剖细节的显示,提高骨骼肌肉疾病的诊断效能。光谱和定量成像的改进提供了生化和代谢信息,使组织特征可以得到更好地观察。然而,我们需要更多的研究来证明超高场MRI常规临床使用的优势。临床7.0 T及9.4 T磁共振的不断成熟、新应用的不断涌现,使得观察解剖结构和评估组织功能的能力上升到一个新的台阶,为骨骼肌肉系统细微疾病的诊断和监测铺平了道路。

[1]
TRATTNIG S, HANGEL G, ROBINSON S D, et al. Ultrahigh-field MRI: where it really makes a difference[J/OL]. Radiologie, 2023 [2024-04-05]. https://www.ncbi.nlm.nih.gov/pubmed/37584681. DOI: 10.1007/s00117-023-01184-x.
[2]
BRINKHOF S, NIZAK R, SIM S, et al. In vivo biochemical assessment of cartilage with gagCEST MRI: correlation with cartilage properties[J/OL]. NMR Biomed, 2021, 34(3): e4463 [2024-04-07]. https://pubmed.ncbi.nlm.nih.gov/33352622/. DOI: 10.1002/nbm.4463.
[3]
ZBÝŇ Š, LUDWIG K D, WATKINS L E, et al. Changes in tissue sodium concentration and sodium relaxation times during the maturation of human knee cartilage: ex vivo 23Na MRI study at 10.5 T[J]. Magn Reson Med, 2024, 91(3): 1099-1114. DOI: 10.1002/mrm.29930.
[4]
KRUMPOLEC P, KLEPOCHOVÁ R, JUST I, et al. Multinuclear MRS at 7T uncovers exercise driven differences in skeletal muscle energy metabolism between young and seniors[J/OL]. Front Physiol, 2020, 11: 644 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/32695010/. DOI: 10.3389/fphys.2020.00644.
[5]
JIN J, WEBER E, DESTRUEL A, et al. An open 8-channel parallel transmission coil for static and dynamic 7T MRI of the knee and ankle joints at multiple postures[J]. Magn Reson Med, 2018, 79(3): 1804-1816. DOI: 10.1002/mrm.26804.
[6]
TREUTLEIN C, BÄUERLE T, NAGEL A M, et al. Comprehensive assessment of knee joint synovitis at 7 T MRI using contrast-enhanced and non-enhanced sequences[J/OL]. BMC Musculoskelet Disord, 2020, 21(1): 116 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/32085776/. DOI: 10.1186/s12891-020-3122-y.
[7]
JANSSEN M P F, PETERS M J M, STEIJVERS-PEETERS E G M, et al. 7-tesla MRI evaluation of the knee, 25 years after cartilage repair surgery: the influence of intralesional osteophytes on biochemical quality of cartilage[J/OL]. Cartilage, 2021, 13(1_suppl): 767S-779S [2024-04-06]. https://pubmed.ncbi.nlm.nih.gov/34836478/. DOI: 10.1177/19476035211060506.
[8]
LI Y, KANG P D, ZHOU Z K, et al. Magnetic resonance imaging at 7.0 T for evaluation of early lesions of epiphyseal plate and epiphyseal end in a rat model of Kashin-Beck disease[J/OL]. BMC Musculoskelet Disord, 2020, 21(1): 540 [2024-04-07]. https://pubmed.ncbi.nlm.nih.gov/32787885/. DOI: 10.1186/s12891-020-03559-w.
[9]
ZHEN Z M, CHEN W. Osteochondritis dissecans of the knee at 7-T trabecular bone MRI[J/OL]. Radiology, 2024, 311(3): e240048 [2024-07-05]. https://pubmed.ncbi.nlm.nih.gov/38860896/. DOI: 10.1148/radiol.240048.
[10]
KARJALAINEN V P, KESTILÄ I, FINNILÄ M A, et al. Quantitative three-dimensional collagen orientation analysis of human meniscus posterior horn in health and osteoarthritis using micro-computed tomography[J]. Osteoarthritis Cartilage, 2021, 29(5): 762-772. DOI: 10.1016/j.joca.2021.01.009.
[11]
KAJABI A W, ZBÝŇ Š, SMITH J S, et al. Seven tesla knee MRI T2*-mapping detects intrasubstance meniscus degeneration in patients with posterior root tears[J/OL]. Radiol Adv, 2024, 1(1): umae005 [2024-09-08]. https://www.ncbi.nlm.nih.gov/pubmed/38855428. DOI: 10.1093/radadv/umae005.
[12]
SEVERYNS M, ZOT F, HARIKA-GERMANEAU G, et al. Extrusion and meniscal mobility evaluation in case of ramp lesion injury: a biomechanical feasibility study by 7T magnetic resonance imaging and digital volume correlation[J/OL]. Front Bioeng Biotechnol, 2024, 11: 1289290 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/38249805/. DOI: 10.3389/fbioe.2023.1289290.
[13]
GERMANN C, GALLEY J, FALKOWSKI A L, et al. Ultra-high resolution 3D MRI for chondrocalcinosis detection in the knee-a prospective diagnostic accuracy study comparing 7-tesla and 3-tesla MRI with CT[J]. Eur Radiol, 2021, 31(12): 9436-9445. DOI: 10.1007/s00330-021-08062-x.
[14]
GÖTESTRAND S, BJÖRKMAN A, BJÖRKMAN-BURTSCHER I M, et al. Visualization of wrist anatomy-a comparison between 7T and 3T MRI[J]. Eur Radiol, 2022, 32(2): 1362-1370. DOI: 10.1007/s00330-021-08165-5.
[15]
HEISS R, LIBRIMIR A, LUTTER C, et al. MRI of finger pulleys at 7T-direct characterization of pulley ruptures in an ex vivo model[J/OL]. Diagnostics, 2021, 11(7): 1206 [2024-04-06]. https://pubmed.ncbi.nlm.nih.gov/34359289/. DOI: 10.3390/diagnostics11071206.
[16]
LAZIK-PALM A, KRAFF O, RIETSCH S H G, et al. 7-T clinical MRI of the shoulder in patients with suspected lesions of the rotator cuff[J/OL]. Eur Radiol Exp, 2020, 4(1): 10 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/32030499/. DOI: 10.1186/s41747-019-0142-1.
[17]
FRANETTOVICH SMITH M M, ELLIOTT J M, AL-NAJJAR A, et al. New insights into intrinsic foot muscle morphology and composition using ultra-high-field (7-Tesla) magnetic resonance imaging[J/OL]. BMC Musculoskelet Disord, 2021, 22(1): 97 [2024-04-07]. https://pubmed.ncbi.nlm.nih.gov/33478467/. DOI: 10.1186/s12891-020-03926-7.
[18]
HEISS R, HÖGER S A, UDER M, et al. Early functional and morphological changes of calf muscles in delayed onset muscle soreness (DOMS) assessed with 7T MRI[J/OL]. Anat Anz Off Organ Anat Gesell, 2024, 251: 152181 [2024-07-05]. https://www.ncbi.nlm.nih.gov/pubmed/37871829. DOI: 10.1016/j.aanat.2023.152181.
[19]
GERMANN C, SUTTER R, NANZ D. Novel observations of Pacinian corpuscle distribution in the hands and feet based on high-resolution 7-T MRI in healthy volunteers[J]. Skeletal Radiol, 2021, 50(6): 1249-1255. DOI: 10.1007/s00256-020-03667-7.
[20]
WIESMUELLER M, MEIXNER C R, WEBER M, et al. Time-of-flight angiography in ultra-high-field 7 T MRI for the evaluation of peroneal perforator arteries before osseomyocutaneous flap surgery[J]. Invest Radiol, 2023, 58(3): 216-222. DOI: 10.1097/RLI.0000000000000926.
[21]
SADEGHI-TARAKAMEH A, JUNGST S, LANAGAN M, et al. A nine-channel transmit/receive array for spine imaging at 10.5 T: introduction to a nonuniform dielectric substrate antenna[J]. Magn Reson Med, 2022, 87(4): 2074-2088. DOI: 10.1002/mrm.29096.
[22]
RIETSCH S H G, BRUNHEIM S, ORZADA S, et al. Development and evaluation of a 16-channel receive-only RF coil to improve 7T ultra-high field body MRI with focus on the spine[J]. Magn Reson Med, 2019, 82(2): 796-810. DOI: 10.1002/mrm.27731.
[23]
CLARKE M A, WITT A A, ROBISON R K, et al. Cervical spinal cord susceptibility-weighted MRI at 7T: application to multiple sclerosis[J/OL]. NeuroImage, 2023, 284: 120460 [2024-04-06]. https://pubmed.ncbi.nlm.nih.gov/37979894/. DOI: 10.1016/j.neuroimage.2023.120460.
[24]
LÉVY S, ROCHE P H, GUYE M, et al. Feasibility of human spinal cord perfusion mapping using dynamic susceptibility contrast imaging at 7T: preliminary results and identified guidelines[J]. Magn Reson Med, 2021, 85(3): 1183-1194. DOI: 10.1002/mrm.28559.
[25]
GALLEY J, SUTTER R, GERMANN C, et al. High-resolution in vivo MR imaging of intraspinal cervical nerve rootlets at 3 and 7 Tesla[J]. Eur Radiol, 2021, 31(7): 4625-4633. DOI: 10.1007/s00330-020-07557-3.
[26]
SVEINSSON B, ROWE O E, STOCKMANN J P, et al. Feasibility of simultaneous high-resolution anatomical and quantitative magnetic resonance imaging of sciatic nerves in patients with Charcot-Marie-Tooth type 1A (CMT1A) at 7T[J]. Muscle Nerve, 2022, 66(2): 206-211. DOI: 10.1002/mus.27647.
[27]
MAHMUD S Z, DENNEY T S, BASHIR A. Feasibility of spinal cord imaging at 7 T using rosette trajectory with magnetization transfer preparation and compressed sensing[J/OL]. Sci Rep, 2023, 13(1): 8777 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/37258697/. DOI: 10.1038/s41598-023-35853-7.
[28]
AIGNER C S, SÁNCHEZ ALARCON M F, D'ASTOUS A, et al. Calibration-free parallel transmission of the cervical, thoracic, and lumbar spinal cord at 7T[J]. Magn Reson Med, 2024, 92(4): 1496-1510. DOI: 10.1002/mrm.30137.
[29]
TAVANA S, MASOUROS S D, BAXAN N, et al. The effect of degeneration on internal strains and the mechanism of failure in human intervertebral discs analyzed using digital volume correlation (DVC) and ultra-high field MRI[J/OL]. Front Bioeng Biotechnol, 2021, 8: 610907 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/33553116/. DOI: 10.3389/fbioe.2020.610907.
[30]
ADEJUYIGBE B, KALLINI J, CHIOU D, et al. Osteoporosis: molecular pathology, diagnostics, and therapeutics[J/OL]. Int J Mol Sci, 2023, 24(19): 14583 [2024-04-06]. https://pubmed.ncbi.nlm.nih.gov/37834025/. DOI: 10.3390/ijms241914583.
[31]
SOLDATI E, ROSSI F, VICENTE J, et al. Survey of MRI usefulness for the clinical assessment of bone microstructure[J/OL]. Int J Mol Sci, 2021, 22(5): 2509 [2024-04-07]. https://pubmed.ncbi.nlm.nih.gov/33801539/. DOI: 10.3390/ijms22052509.
[32]
SOLDATI E, VICENTE J, GUENOUN D, et al. Validation and optimization of proximal femurs microstructure analysis using high field and ultra-high field MRI[J/OL]. Diagnostics, 2021, 11(9): 1603 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/34573945/. DOI: 10.3390/diagnostics11091603.
[33]
SOLDATI E, PITHIOUX M, GUENOUN D, et al. Assessment of Bone Microarchitecture in Fresh Cadaveric Human Femurs: what Could Be the Clinical Relevance of Ultra-High Field MRI[J/OL]. Diagnostics, 2022, 12(2): 439 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/35204529/. DOI: 10.3390/diagnostics12020439.
[34]
SOLDATI E, ESCOFFIER L, GABRIEL S, et al. Assessment of in vivo bone microarchitecture changes in an anti-TNFα treated psoriatic arthritic patient[J/OL]. PLoS One, 2021, 16(5): e0251788 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/34010320/. DOI: 10.1371/journal.pone.0251788.
[35]
JARRAYA M, HEISS R, DURYEA J, et al. Bone structure analysis of the radius using ultrahigh field (7T) MRI: relevance of technical parameters and comparison with 3T MRI and radiography[J/OL]. Diagnostics, 2021, 11(1): 110 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/33445536/. DOI: 10.3390/diagnostics11010110.
[36]
EINARSSON E, PETERSON P, ÖNNERFJORD P, et al. The role of cartilage glycosaminoglycan structure in gagCEST[J/OL]. NMR Biomed, 2020, 33(5): e4259 [2024-04-06]. https://pubmed.ncbi.nlm.nih.gov/31999387/. DOI: 10.1002/nbm.4259.
[37]
EMIN S, OEI E H G, ENGLUND M, et al. Imaging-based assessment of fatty acid composition in human bone marrow adipose tissue at 7T: method comparison and in vivo feasibility[J]. Magn Reson Med, 2023, 90(1): 240-249. DOI: 10.1002/mrm.29623.
[38]
XU J D, CHUNG J J, JIN T. Chemical exchange saturation transfer imaging of creatine, phosphocreatine, and protein arginine residue in tissues[J/OL]. NMR Biomed, 2023, 36(6): e4671 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/34978371/. DOI: 10.1002/nbm.4671.
[39]
PAVULURI K, ROSENBERG J T, HELSPER S, et al. Amplified detection of phosphocreatine and creatine after supplementation using CEST MRI at high and ultrahigh magnetic fields[J/OL]. J Magn Reson, 2020, 313: 106703 [20024-04-07]. https://pubmed.ncbi.nlm.nih.gov/32179431/. DOI: 10.1016/j.jmr.2020.106703.
[40]
TKOTZ K, LIEBERT A, GAST L V, et al. Multi-echo-based fat artifact correction for CEST MRI at 7 T[J]. Magn Reson Med, 2024, 91(2): 481-496. DOI: 10.1002/mrm.29863.
[41]
SCHMITZ-ABECASSIS B, NAJAC C, PLUGGE J, et al. Investigation of metabolite correlates of CEST in the human brain at 7 T[J/OL]. NMR Biomed, 2024, 37(5): e5104 [2024-09-08]. https://www.ncbi.nlm.nih.gov/pubmed/38258649. DOI: 10.1002/nbm.5104.
[42]
CHUNG J J, JIN T. Correction of the post-irradiation T1 relaxation effect for chemical exchange-sensitive MRI: a phantom study[J/OL]. Front Phys, 2022, 10: 1033767 [2024-04-06]. https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2022.1033767/full. DOI: 10.3389/fphy.2022.1033767.
[43]
GAO T X, ZOU C Y, LI Y F, et al. A brief history and future prospects of CEST MRI in clinical non-brain tumor imaging[J/OL]. Int J Mol Sci, 2021, 22(21): 11559 [2024-04-06]. https://www.ncbi.nlm.nih.gov/pubmed/34768990. DOI: 10.3390/ijms222111559.
[44]
GAST L V, PLATT T, NAGEL A M, et al. Recent technical developments and clinical research applications of sodium (23Na) MRI[J/OL]. Prog Nucl Magn Reson Spectrosc, 2023, 138/139: 1-51 [2024-09-08]. https://pubmed.ncbi.nlm.nih.gov/38065665/. DOI: 10.1016/j.pnmrs.2023.04.002.
[45]
WEBER M A, SEYLER L, NAGEL A M. 7 tesla chlorine (35Cl) and sodium (23Na) MR imaging of an enchondroma[J]. Rofo, 2021, 193(10): 1207-1211. DOI: 10.1055/a-1472-6730.
[46]
LADD M E, BACHERT P, MEYERSPEER M, et al. Pros and cons of ultra-high-field MRI/MRS for human application[J/OL]. Prog Nucl Magn Reson Spectrosc, 2018, 109: 1-50 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/30527132/. DOI: 10.1016/j.pnmrs.2018.06.001.
[47]
KAN H E, KLOMP D W, WONG C S, et al. In vivo 31P MRS detection of an alkaline inorganic phosphate pool with short T1 in human resting skeletal muscle[J]. NMR Biomed, 2010, 23(8): 995-1000. DOI: 10.1002/nbm.1517.
[48]
ZARIC O, BEIGLBÖCK H, JANACOVA V, et al. Repeatability assessment of sodium (23)Na MRI at 7.0T in healthy human calf muscle and preliminary results on tissue sodium concentrations in subjects with Addison's disease[J/OL]. BMC Musculoskelet Disord, 2022, 23(1): 925 [2024-04-06]. https://www.ncbi.nlm.nih.gov/pubmed/36266679. DOI: 10.1186/s12891-022-05879-5.
[49]
GAST L V, BAIER L M, MEIXNER C R, et al. MRI of potassium and sodium enables comprehensive analysis of ion perturbations in skeletal muscle tissue after eccentric exercise[J]. Invest Radiol, 2023, 58(4): 265-272. DOI: 10.1097/RLI.0000000000000931.
[50]
GERHALTER T, MARTY B, GAST L V, et al. Quantitative 1H and 23Na muscle MRI in Facioscapulohumeral muscular dystrophy patients[J]. J Neurol, 2021, 268(3): 1076-1087. DOI: 10.1007/s00415-020-10254-2.
[51]
HUANG L, BAI J, ZONG R, et al. Sodium MRI at 7T for Early Response Evaluation of Intracranial Tumors following Stereotactic Radiotherapy Using the CyberKnife[J]. AJNR Am J Neuroradiol, 2022, 43(2): 181-187. DOI: 10.3174/ajnr.A7404.
[52]
EINARSSON E, SVENSSON J, FOLKESSON E, et al. Relating MR relaxation times of ex vivo meniscus to tissue degeneration through comparison with histopathology[J/OL]. Osteoarthr Cartil Open, 2020, 2(2): 100061 [2024-04-06]. https://pubmed.ncbi.nlm.nih.gov/33972933/. DOI: 10.1016/j.ocarto.2020.100061.
[53]
GUENOUN D, WIRTH T, ROCHE D, et al. Ultra-high field magnetic resonance imaging of the quadriceps tendon enthesis in healthy subjects[J]. Surg Radiol Anat, 2023, 45(8): 1049-1054. DOI: 10.1007/s00276-023-03175-y.
[54]
ANZ A W, EDISON J, DENNEY T S, et al. 3-T MRI mapping is a valid in vivo method of quantitatively evaluating the anterior cruciate ligament: rater reliability and comparison across age[J]. Skeletal Radiol, 2020, 49(3): 443-452. DOI: 10.1007/s00256-019-03301-1.
[55]
MEIXNER C R, NAGEL A M, HÖGER S A, et al. Muscle perfusion and the effect of compression garments in delayed-onset muscle soreness assessed with arterial spin labeling magnetic resonance imaging[J]. Quant Imaging Med Surg, 2022, 12(9): 4462-4473. DOI: 10.21037/qims-21-1104.
[56]
SCHEWZOW K, FIEDLER G B, MEYERSPEER M, et al. Dynamic ASL and T2-weighted MRI in exercising calf muscle at 7 T: a feasibility study[J]. Magn Reson Med, 2015, 73(3): 1190-1195. DOI: 10.1002/mrm.25242.
[57]
SCHMID A I, SCHEWZOW K, FIEDLER G B, et al. Exercising calf muscle T₂ changes correlate with pH, PCr recovery and maximum oxidative phosphorylation[J]. NMR Biomed, 2014, 27(5): 553-560. DOI: 10.1002/nbm.3092.
[58]
MAHMUD S Z, GLADDEN L B, KAVAZIS A N, et al. Simultaneous Measurement of Perfusion and T2* in Calf Muscle at 7T with Submaximal Exercise using Radial Acquisition[J/OL]. Sci Rep, 2020, 10(1): 6342 [2024-04-07]. https://pubmed.ncbi.nlm.nih.gov/32286372/. DOI: 10.1038/s41598-020-63009-4.
[59]
HEISS R, WEBER M A, BALBACH E L, et al. Variation in cartilage T2 and T2* mapping of the wrist: a comparison between 3- and 7-T MRI[J/OL]. Eur Radiol Exp, 2023, 7(1): 80 [2024-04-05]. https://www.ncbi.nlm.nih.gov/pubmed/38093075. DOI: 10.1186/s41747-023-00394-1.
[60]
PAYNE K, BHOSALE A A, ZHANG X L. Double cross magnetic wall decoupling for quadrature transceiver RF array coils using common-mode differential-mode resonators[J/OL]. J Magn Reson, 2023, 353: 107498 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/37295282/. DOI: 10.1016/j.jmr.2023.107498.
[61]
DESTRUEL A, JIN J, WEBER E, et al. Integrated multi-modal antenna with coupled radiating structures (I-MARS) for 7T pTx body MRI[J]. IEEE Trans Med Imaging, 2022, 41(1): 39-51. DOI: 10.1109/TMI.2021.3103654.
[62]
GU Y N, WANG L L, YANG H Y, et al. Three-dimensional high-resolution T1 and T2 mapping of whole macaque brain at 9.4 T using magnetic resonance fingerprinting[J]. Magn Reson Med, 2022, 87(6): 2901-2913. DOI: 10.1002/mrm.29181.
[63]
GERMANN C, FALKOWSKI A L, VON DEUSTER C, et al. Basic and advanced metal-artifact reduction techniques at ultra-high field 7-T magnetic resonance imaging-phantom study investigating feasibility and efficacy[J]. Invest Radiol, 2022, 57(6): 387-398. DOI: 10.1097/RLI.0000000000000850.
[64]
HU R M, KLEIMAIER D, MALZACHER M, et al. X-nuclei imaging: current state, technical challenges, and future directions[J]. J Magn Reson Imaging, 2020, 51(2): 355-376. DOI: 10.1002/jmri.26780.
[65]
BOYD P S, BREITLING J, ZIMMERMANN F, et al. Dynamic glucose-enhanced (DGE) MRI in the human brain at 7 T with reduced motion-induced artifacts based on quantitative R1ρ mapping[J]. Magn Reson Med, 2020, 84(1): 182-191. DOI: 10.1002/mrm.28112.

上一篇 影像基因组学在泌尿系统肿瘤中的评估机制及研究进展
下一篇 IVIM成像技术评估骨骼肌生理和病理状态的应用进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2