分享:
分享到微信朋友圈
X
临床研究
合成MRI联合酰胺质子转移成像在预测脑胶质瘤IDH1基因状态中的应用价值
孙萌 马文富 葛鑫 金一萱 牛芳 党佩 周嘉鑫 王晓东

Cite this article as: SUN M, MA W F, GE X, et al. The value of synthetic MRI combined with amide proton transfer imaging in projecting IDH1 gene state in gliomas[J]. Chin J Magn Reson Imaging, 2024, 15(11): 60-66, 109.本文引用格式:孙萌, 马文富, 葛鑫, 等. 合成MRI联合酰胺质子转移成像在预测脑胶质瘤IDH1基因状态中的应用价值[J]. 磁共振成像, 2024, 15(11): 60-66, 109. DOI:10.12015/issn.1674-8034.2024.11.010.


[摘要] 目的 探讨合成磁共振成像(synthetic magnetic resonance imaging, syMRI)联合酰胺质子转移(amide proton transfer, APT)成像在预测脑胶质瘤异柠檬酸脱氢酶1(isocitrate dehydrogenase 1, IDH1)基因状态中的应用价值。材料与方法 回顾性分析2019年7月至2023年12月在宁夏医科大学总医院诊断为胶质瘤并具有完整病理资料的患者病例97例,其中IDH1突变型(IDH1 mutant, IDH1-mut)57例,IDH1野生型(IDH1 wildtype, IDH1-wt)40例,所有患者术前均接受增强前后的syMRI及APT扫描,并测量其定量参数T1-pre、T2-pre、T1-post、T2-post与APT值。使用独立样本t检验或Mann-Whitney U检验比较组间各参数的差异,运用受试者工作特征曲线和二元logistic回归分析各单一参数及联合参数对IDH1基因状态的诊断效能。DeLong检验用于比较各参数AUC的差异。结果 IDH1-wt胶质瘤APT值、T1-pre高于IDH1-mut胶质瘤(P均<0.05);IDH1-wt胶质瘤T1-post、T2-post低于IDH1-mut胶质瘤(P均<0.01);T2-pre在两组间的差异无统计学意义(P=0.107)。在所有单一参数中,APT值对IDH1-mut与IDH1-wt胶质瘤的诊断效能最高,AUC为0.867,高于T1-pre、T1-post、T2-post(AUC分别为0.620、0.811、0.723);多参数联合预测模型(T1-pre+T1-post+T2-post+APT)的AUC为0.886,敏感度为80.7%,特异度为85.0%,高于任何单一参数。DeLong检验结果显示多参数联合预测模型的诊断效能优于T1-pre、T1-post、T2-post值(P均<0.05),而与APT的AUC无显著差异(P=0.208)。结论 syMRI联合APT有助于术前无创预测脑胶质瘤IDH1基因状态,两者联合应用诊断时效能最高。
[Abstract] Objective To explore the value of synthetic magnetic resonance imaging (syMRI) combined with amide proton transfer (APT) in projecting the isocitrate dehydrogenase 1 (IDH1) gene status in gliomas.Materials and Methods A retrospective analysis was performed on 97 patients diagnosed with glioma with complete pathological data at the General Hospital of Ningxia Medical University from July 2019 to December 2023, including 57 cases of IDH1 mutant (IDH1-mut) and 40 cases of IDH1 wildtype (IDH1-wt), all of whom underwent preoperative pre- and post-contrast syMRI and APT scans, and their quantitative parameters T1-pre, T2-pre, T1-post, T2-post and APT values were measured. Independent samples t-tests or Mann-Whitney U-tests were used to analyse the differences between groups for each parameter, and the diagnostic efficacy of each single and combined parameter for IDH1 gene status was assessed using subject operating characteristic curves and binary logistic regression analyses. The DeLong test was used to compare the differences in AUC for each parameter.Results APT values and T1-pre were higher in IDH1-wt than in IDH1-mut gliomas (P<0.05); T1-pre and T2-pre were lower in IDH1-wt gliomas than in IDH1-mut gliomas (P<0.01); and T2-pre was not statistically significant between the two groups (P=0.107). Among all single parameters, the APT value had the highest diagnostic efficacy for IDH1-mut versus IDH1-wt glioma, with an AUC of 0.867, which was higher than that of T1-pre, T1-post, and T2-post (AUC 0.620, 0.811, and 0.723); the AUC of the multi-parameter combined prediction model (T1-pre+T1-post+T2-post +APT) had an AUC of 0.886, a sensitivity of 80.7%, and a specificity of 85.0%, which was higher than that of any single parameter. The DeLong test showed that the diagnostic efficacy of the multi-parameter combined prediction model was superior to the T1-pre, T1-post, and T2-post values (P<0.05), whereas there was no significant difference in the AUC with APT (P=0.208).Conclusions syMRI combined with APT is useful for preoperative noninvasive prediction of IDH1 gene status in gliomas, and the highest efficacy was achieved when the two were used in combination for diagnosis.
[关键词] 胶质瘤;磁共振成像;合成磁共振成像;酰胺质子转移成像;异柠檬酸脱氢酶1;预测
[Keywords] glioma;magnetic resonance imaging;synthetic magnetic resonance imaging;amide proton transfer imaging;isocitrate dehydrogenase 1;prediction

孙萌 1   马文富 1   葛鑫 2   金一萱 1   牛芳 1   党佩 3   周嘉鑫 1   王晓东 3, 4*  

1 宁夏医科大学临床医学院,银川 750004

2 兰州大学第二临床医学院,兰州 730030

3 宁夏医科大学总医院放射科,银川 750004

4 宁夏医科大学颅脑疾病重点实验室,银川 750004

通信作者:王晓东,E-mail:xdw80@yeah.net

作者贡献声明:孙萌、马文富、葛鑫、金一萱、牛芳、党佩、周嘉鑫、王晓东均参与选题和试验设计;王晓东设计本研究的方案,对稿件的重要内容进行了修改;孙萌起草和撰写稿件,获取、分析和解释本研究的数据;马文富、葛鑫、金一萱、牛芳、党佩、周嘉鑫获取、分析或解释本研究的数据,对稿件的部分内容进行了修改;王晓东获得了宁夏回族自治区自然科学基金项目的资助;党佩获得了宁夏回族自治区科技重点研发计划项目的资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 宁夏回族自治区自然科学基金项目 2022AAC03487 宁夏回族自治区科技重点研发计划项目 2019BEG03037
收稿日期:2024-04-22
接受日期:2024-10-11
中图分类号:R445.2  R730.264 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.11.010
本文引用格式:孙萌, 马文富, 葛鑫, 等. 合成MRI联合酰胺质子转移成像在预测脑胶质瘤IDH1基因状态中的应用价值[J]. 磁共振成像, 2024, 15(11): 60-66, 109. DOI:10.12015/issn.1674-8034.2024.11.010.

0 引言

       神经胶质瘤是最常见的恶性原发性脑肿瘤,具有恶性程度高、侵袭性强、复发风险高等特点[1]。2021年WHO中枢神经系统肿瘤分类(第五版)进一步细化肿瘤分类及分级体系,重点推进分子诊断的应用,将异柠檬酸脱氢酶(isocitrate dehydrogenase, IDH)突变视为成人弥漫性胶质瘤的核心诊断指标[2]。IDH突变型胶质瘤中90%以上是IDH1突变,因此IDH1突变被视为胶质瘤分型诊断的重要依据[3]。通常,IDH1突变型(IDH1 mutant, IDH1-mut)胶质瘤患者的预后和生存期明显优于IDH1野生型(IDH1 wildtype, IDH1-wt)患者[4, 5, 6]。目前病理检测是胶质瘤基因型鉴定的金标准,但需通过穿刺或手术,具有侵入性。更为重要的是,胶质瘤是一种高度异质性疾病,仅依赖单一样本分析可能导致结果出现偏差。因此,无创预测IDH1基因状态有助于制订个性化治疗方案并预测患者预后。

       颅脑MRI是最有效的应用于胶质瘤诊断、治疗监控及随访评估的影像学检查方法[7]。虽然传统MRI提供了高分辨率的多平面解剖信息,但其定性图像主要用于视觉诊断,无法对病灶组织特征进行定量分析[8]。合成磁共振成像(synthetic magnetic resonance imaging, syMRI)是基于MRI集成(magnetic resonance imaging compilation, MAGiC)序列的多参数定量成像技术,一次扫描可产生多种对比度图像和定量图谱,能够同时对解剖结构进行评估和量化组织的弛豫时间(如T1、T2等值)[9]。既往研究表明,syMRI在鉴别高低级别胶质瘤[10, 11]、瘤周区域的定量分析[12]及鉴别肿瘤复发与假性进展[13]等方面具有一定的临床价值,但利用syMRI预测脑胶质瘤IDH1基因状态的研究目前较为少见。酰胺质子转移(amide proton transfer, APT)成像是分子成像领域的重要技术之一,其核心原理是利用组织内源性的游离状态蛋白质和多肽中的酰胺质子产生图像对比度[14, 15],为疾病的诊断和治疗策略的选择提供了新视角。目前尚无研究将syMRI与APT技术联合用于预测胶质瘤IDH1的基因状态。因此,本研究首次尝试将两项技术相结合,评估其在预测IDH1基因状态中的应用价值,以期为临床提供一种新颖、定量且客观的影像学评估方法。

1 材料与方法

1.1 一般资料

       回顾性分析2019年7月至2023年12月在宁夏医科大学总医院诊断为脑胶质瘤的97例患者。纳入标准:(1)年龄大于18周岁;(2)具有完整病理及免疫组化结果,证实手术或活检区域为胶质瘤;(3)患者术前均行常规颅脑MRI、增强前后MAGIC及APT序列扫描。排除标准:(1)MRI检查前接受药物、化疗、放疗等干预措施的患者;(2)图像因伪影等原因不能评估。

       本研究严格按照2021年WHO CNS第五版分类指南,对胶质瘤进行组织病理学和分子学分级(未依照此分类的病例,由资深病理医生重新检测评估),当缺乏明确的分子标记物用于分级时,采用现有的组织病理学资料进行分级。

       本研究严格遵守《赫尔辛基宣言》,经宁夏医科大学总医院医学伦理委员会批准,免除受试者知情同意,批准文号:KYLL-2024-1359。

1.2 MRI检查方法

       采用GE SIGNA Architect 3.0 T MRI扫描设备和48通道头部线圈进行术前颅脑MRI检查。患者以仰卧位接受常规MRI序列[T1WI、T2WI、T1液体衰减反转恢复(fluid attenuated inversion recovery, FLAIR)、T1WI+C]、APT序列以及增强前后的MAGIC序列扫描,所有序列均采用标准轴位图像。APT采用平面回波成像序列,选取肿瘤实质成分最大层面以获取APT图像数据,扫描参数:TR 3000 ms,TE 25 ms,层厚5 mm,FOV 24.0 cm×24.0 cm,矩阵128×128,饱和时间2 s,扫描时长为2 min 36 s。MAGIC序列增强前后的扫描参数相同,具体如下:采用多动态多回波序列,TR 4581 ms,TE 17.5 ms,层厚5 mm,层间距1 mm,层数24,FOV 24.0 cm×24.0 cm,矩阵240×240,激励次数1次,扫描时间为4 min 17 s。随后采用高压注射器经肘静脉注入钆特酸葡胺对比剂(GE,美国),剂量为0.1 mmol/kg,随后注入20 mL生理盐水,注射速率均为3.0 mL/s,1 min 30 s后再进行增强MAGIC序列扫描。

1.3 图像处理

       从我院医学影像归档与传输系统获取所有胶质瘤患者的常规MRI、syMRI及APT数据,在GE ADW 4.7及GE iQuant 2.0工作站上分别获取syMRI(合成T1WI、合成T1WI FLAIR、合成T2 FLAIR和合成T1 FLAIR+C)和APT后处理图像,运用MATLAB软件的SPM模版将所有图像配准至合成T2 FLAIR。

1.3.1 MAGIC图像处理

       在GE ADW 4.7工作站上使用MAGIC软件分析syMRI图像,获取增强前后的T1、T2弛豫定量图谱。由两位具有5年和10年工作经验的神经影像医师在对病理结果不知情的前提下勾画感兴趣区(regions of interest, ROI)。分析流程:(1)在合成T1 FLAIR+C图像上,选择肿瘤强化最明显的区域,勾画3个大小一致的ROI(范围约20~40 mm2),获取T1-pre、T2-pre、T1-post、T2-post值。若无强化或强化不明显,则在合成T2 FLAIR图像的等或高信号区域勾画ROI,注意避开囊变、坏死、钙化及出血区;(2)计算3个ROI的平均值,并取两位医师测量数据的平均值作为最终结果。

1.3.2 APT图像处理

       在GE iQuant 2.0工作站上对APT图像进行后处理。由两位具有5年以上工作经验的神经影像医师分析图像,APT信号强度在3.5 ppm的不对称磁化转移率下定义。分析流程:(1)在T1WI+C上,沿肿瘤强化边缘勾画ROI;若无强化或强化不明显,参考T2 FLAIR、T1WI确定病灶的范围与边界,在T2 FLAIR上沿病灶边缘勾画ROI,注意规避囊变、坏死、钙化及出血区;(2)复制ROI至APT 3.5 ppm参数图以获取APT信号强度;(3)取两位医师测量数据的平均值作为最终结果。

1.4 病理学分析

       IDH1基因状态通过术后肿瘤组织的免疫组化进行检测。阳性结果表现为胞浆和胞核染色呈黄色、棕黄色或褐色颗粒。在切片中选择细胞密度最高的三个区域,计算阳性细胞的比例。当阳性细胞比例≥10%时,定义为IDH1-mut;如果阳性细胞比例低于10%,则定义为IDH1-wt。此外,其中62例患者使用聚合酶链反应(polymerase chain reaction, PCR)对IDH1基因状态进行验证。

1.5 统计学分析

       使用SPSS 27.0与MedCalc 20.0.14进行数据分析。通过组内相关系数(intra-class correlation coefficient, ICC)评估两位医师的测量一致性,ICC>0.75则认为一致性良好。正态分布及方差齐性的计量资料以均数±标准差表示, 组别比较采用独立样本t检验;非正态分布的资料以中位数(上、下四分位数)[MQ1Q3)]表示, 组别比较采用Mann-Whitney U检验。计数资料以例(%)表示,组别比较采用卡方检验。运用受试者工作特征(receiver operating characteristic, ROC)曲线和二元logistic回归分析评估各参数及其联合参数的诊断效能,计算ROC曲线下面积(area under the curve, AUC),通过计算约登指数确定最佳阈值、敏感度及特异度。DeLong检验用于比较各参数AUC的差异。P<0.05为差异有统计学意义。

2 结果

2.1 两位观察者测量结果的一致性检验

       两位观察者在测量syMRI及APT各参数上具有良好的一致性,ICC均>0.85(表1)。

表1  两位观察者测量syMRI和APT定量参数的一致性检验
Tab. 1  Consistency test between two observers measuring syMRI and APT quantitative parameters

2.2 临床资料

       根据本研究设定的纳入及排除标准,97例具有完整病理资料的胶质瘤患者被纳入,其中IDH1-mut胶质瘤(图1)57例,IDH1-wt胶质瘤(图2)40例;男48例,女49例;年龄为23~76(49.65±13.87)岁。两组间在WHO分级上差异具有统计学意义(P<0.001),在年龄和性别上差异无统计学意义(P值分别为0.133和0.743)。详见表2

图1  男,52岁,右侧额颞叶星形细胞瘤(WHO 2级),IDH1突变型胶质瘤。1A:syMRI T2 FLAIR;1B:增强前syMRI T1 map;1C:增强前syMRI T2 map;1D:APT;1E:syMRI增强后T1WI;1F:syMRI增强后T1 map;1G:syMRI增强后T2 map;1H:免疫组化染色病理切片(×200,棕褐色为阳性)。IDH1:脑胶质瘤异柠檬酸脱氢酶1;syMRI:合成MRI;FLAIR:液体衰减反转恢复;APT:酰胺质子转移。
Fig. 1  Male, 52 years old, right frontotemporal lobe astrocytoma (WHO grade 2), IDH1 mutant glioma. 1A: syMRI T2 FLAIR; 1B: Pre-contrast syMRI T1 map; 1C: Pre-contrast syMRI T2 map; 1D: APT; 1E: Post-contrast syMRI T1WI; 1F: Post-contrast syMRI T1 map; 1G: Post-enhancement syMRI T2 map; 1H: Immunohistochemical stained pathological section (×200, tan is positive). IDH1: isocitrate dehydrogenase 1; syMRI: synthetic magnetic resonance imaging; FLAIR: fluid attenuated inversion recovery; APT: amide proton transfer.
图2  女,35岁,左侧额叶胶质母细胞瘤(WHO 4级),IDH1野生型胶质瘤。2A:syMRI T2 FLAIR;2B:增强前syMRI T1 map;2C:增强前syMRI T2 map;2D:APT;2E:syMRI增强后T1WI;2F:syMRI增强后T1 map;2G:syMRI增强后T2 map;2H:免疫组化染色病理切片(×200,棕褐色为阳性)。IDH1:脑胶质瘤异柠檬酸脱氢酶1;syMRI:合成MRI;FLAIR:液体衰减反转恢复;APT:酰胺质子转移。
Fig. 2  Female, 35 years old, left frontal glioblastoma (WHO grade 4), IDH1 wildtype glioma. 2A: syMRI T2 FLAIR; 2B: Pre-contrast syMRI T1 map; 2C: Pre-contrast syMRI T2 map; 2D: APT; 2E: Post-contrast syMRI T1WI; 2F: Post-contrast syMRI T1 map; 2G: Post-contrast syMRI T2 map; 2H: Immunohistochemical staining of pathological sections (×200, tan is positive). IDH1: isocitrate dehydrogenase 1; syMRI: synthetic magnetic resonance imaging; FLAIR: fluid attenuated inversion recovery; APT: amide proton transfer.
表2  IDH1-mut与IDH1-wt胶质瘤患者的临床资料
Tab. 2  Clinical data of patients with IDH1-mut and IDH1-wt gliomas

2.3 syMRI各参数与APT值在IDH1-mut胶质瘤与IDH1-wt胶质瘤间的比较

       IDH1-wt胶质瘤T1-pre、APT值高于IDH1-mut胶质瘤,差异具有统计学意义(P分别为<0.001和0.046);IDH1-wt胶质瘤T1-post、T2-post低于IDH1-mut胶质瘤,差异具有统计学意义(P均<0.001);T2-pre在两组间的差异无统计学意义(P=0.107)。详见表3

表3  syMRI各参数与APT值在IDH1-mut与IDH1-wt胶质瘤间的比较
Tab. 3  Comparison of parameters between IDH1-mut and IDH1-wt gliomas

2.4 syMRI各参数与APT值及联合参数对IDH1基因状态诊断效能的比较

       将上述差异具有统计学意义的参数(T1-pre、T1-post、T2-post、APT)进行ROC曲线分析。结果表明,T1-pre、T1-post、T2-post和APT在鉴别胶质瘤IDH1基因状态中的AUC值依次为0.620、0.811、0.723及0.867。其中APT的AUC值最高,达0.867,以2.43作为最佳截断值时,敏感度和特异度分别为84.2%和80.0%。采用二元logistics回归分析构建多参数联合预测模型(T1-pre+T1-post+T2-post+APT),其AUC值提高至0.886,显示出最佳诊断效能。DeLong检验结果显示,多参数联合模型与T1-pre、T1-post、T2-post的AUC差异具有统计学意义(P值依次为<0.001、0.036和0.002),但与APT的AUC差异无统计学意义(P=0.208)。详见表4图3

图3  syMRI各参数与APT值及其联合参数的ROC曲线。syMRI:合成MRI;APT:酰胺质子转移;ROC:受试者工作特征;AUC:曲线下面积;T1-pre:增强前T1值;T1-post:增强后T1值;T2-post:增强后T2值;联合参数:T1-pre+T1-post+T2-post+APT。
Fig. 3  Receiver operating characteristic (ROC) curves of synthetic magnetic resonance imaging (syMRI), amide proton transfer (APT) parameters and their combined parameters. T1-pre: Pre-contrast T1 value; T1-post: Post-contrast T1 value; T2-post: Post-contrast T2 value; Combined parameters: T1-pre + T1-post + T2-post + APT; AUC: area under the curve.
表4  syMRI各参数与APT值及其联合参数对IDH1基因状态诊断效能的比较
Tab. 4  Comparison of syMRI, APT parameters and their combined parameters in the diagnostic efficacy for IDH1 gene status

3 讨论

       本研究探讨了syMRI联合APT定量成像技术在无创预测脑胶质瘤IDH1基因状态中的应用价值,通过比较IDH1-mut胶质瘤与IDH1-wt胶质瘤的syMRI各参数及APT值,发现T1-pre、T1-post、T2-post和APT值差异具有统计学意义,多参数联合模型(T1-pre+T1-post+T2-post+APT)的诊断效能高于任何单一参数,这将为术前无创鉴别脑胶质瘤IDH1基因状态提供新的影像学思路。

3.1 syMRI弛豫定量参数在脑胶质瘤IDH1基因状态中的诊断价值

       T1和T2值是组织本身的物理特性,不易受磁场强度、扫描设备或参数变化的影响,其值主要与组织中的顺磁性物质、脂肪和水分含量以及分子的随机运动密切相关[16, 17]。因此,T1、T2值提供了关于组织微观结构及病理生理状态的重要信息[18, 19]。本研究发现IDH1-mut胶质瘤T1-pre低于IDH1-wt胶质瘤(P=0.046),这反映了不同IDH1基因状态下肿瘤微环境的差异。先前多项研究表明[20, 21, 22],IDH突变会显著影响胶质瘤的血管新生过程,其突变导致α-酮戊二酸(α-ketoglutarate, α-KG)转变成2-羟基戊二酸(2-hydroxyglutaate, 2-HG),2-HG的大量积累促使缺氧诱导因子α(hypoxia induced factor-1α, HIF-1α)的降解。HIF-1α的主要功能是调控血管内皮生长因子(vascular endothe lial growth factor, VEGF)的水平,而VEGF是活性最强的促血管生成因子,通过促进血管内皮细胞的有丝分裂,触发幼稚毛细血管的形成,并提高微血管的通透性[23]。因此,IDH突变抑制了血管生成相关信号,肿瘤新生血管形成减少。相较于IDH1-mut胶质瘤,IDH1-wt胶质瘤的VEGF表达更高[24]。此外,IDH1-wt胶质瘤生长速率高于IDH1-mut胶质瘤,其肿瘤坏死及血脑屏障破坏程度也更为严重。这些因素共同导致IDH1-wt胶质瘤的血管渗透性更高,血管内容物向血管外间隙的渗漏更多。因此IDH1-wt胶质瘤T1-pre值高于IDH1-mut胶质瘤。KERN等[25]针对WHO Ⅱ/Ⅲ级胶质瘤使用定量T2 mapping进行研究分析,发现与IDH1-mut胶质瘤相比,IDH1-wt胶质瘤中心区T2值明显降低(P<0.01)。本研究也发现IDH1-wt胶质瘤T2-pre低于IDH1-mut胶质瘤,但差异无统计学意义(P=0.107)。推测原因,可能与两组研究包含的胶质瘤级别范围不同及所用扫描设备不同有关,需要后续进一步扩大样本量探讨T2-pre在预测IDH1基因状态的价值。

       增强扫描使用的钆剂为顺磁性物质,钆剂通过促进周边水分子间的能量交换,加快质子回归至平衡状态,从而缩短T1、T2弛豫时间[26]。正常脑组织中血脑屏障保持完整,阻止对比剂渗漏至血管外[27]。在胶质瘤患者中,肿瘤细胞的快速增长及新生血管的形成引起血脑屏障的破坏。这些新生血管通常结构不成熟,表现为血管内皮细胞幼稚、细胞间隙扩大、基底膜不连续及裂隙增多,导致血管通透性增加[28]。因此,钆剂能从血管内泄漏至肿瘤周围组织。此外,肿瘤新生血管的走行扭曲及分布紊乱,导致钆剂大量积聚,进一步缩短肿瘤组织的弛豫时间。本研究结果表明IDH1-wt胶质瘤的T1-post、T2-post值显著低于IDH1-mut胶质瘤(P均<0.001),说明IDH1-wt胶质瘤具有更高的恶性程度、更严重的血脑屏障破坏以及数量更多的幼稚新生血管,导致钆剂的大量渗漏,也反映出IDH1-mut胶质瘤新生血管含量较少且血管结构较规整,提示较低的侵袭性和增殖性。本研究表明,在所有syMRI参数中,T1-post在区分不同IDH1基因状态中表现出最高的诊断效能,当T1-post值≤694.00 ms时,更可能诊断为IDH1-wt胶质瘤。因此T1-post可作为通过syMRI预测胶质瘤IDH1基因状态的首选指标。

3.2 APT定量参数在脑胶质瘤IDH1基因状态中的诊断价值

       APT成像是一种独特的分子MRI技术,与常规基于组织中水的氢质子获取图像不同,APT使用组织中的内源性移动蛋白及肽链中的酰胺质子进行成像。通过选择性饱和酰胺质子并监测化学交换导致的水信号变化,APT成像揭示了组织内蛋白质的含量及状态[29]。本研究结果显示,IDH1-wt胶质瘤的APT值显著高于IDH1-mut胶质瘤(P<0.01),这与先前多项研究的结果相符[30, 31, 32, 33]。以往研究表明,IDH突变改变了组蛋白和DNA的甲基化,导致IDH1-mut胶质瘤中蛋白质表达全面下调[34, 35]。由此,IDH1-mut胶质瘤含有的蛋白质和多肽较少,从而APT信号强度降低。此外,IDH1突变通常与肿瘤较低等级及其生长缓慢相关[36],肿瘤生长速度的减慢暗示了较低的细胞周转率和蛋白质代谢速度,进而可能降低APT值。相较于IDH1-wt胶质瘤,IDH1-mut胶质瘤表现出更低的蛋白质合成活性、侵袭性及更好的预后。

3.3 syMRI联合APT在脑胶质瘤IDH1基因状态中的诊断价值

       考虑到不同参数反映了病灶的不同病理生理特征,本研究构建多参数模型以实现病灶的全面评估。在比较syMRI各参数与APT的AUC后,发现APT成像的诊断效能最高,与其他参数相比差异具有统计学意义(P<0.05)。将syMRI各参数与APT结合构建的多参数联合预测模型(T1-pre+T1-post+T2-post+APT)表现出最佳的诊断效能。究其原因,胶质瘤是高度异质性疾病,而syMRI和APT成像能从不同角度反映肿瘤特征:APT成像基于组织内源性蛋白质及酰胺质子与水的化学交换,揭示肿瘤的分子水平特征[37];syMRI则提供肿瘤组织特性的定量参数,揭示肿瘤病理生理变化的相关信息[38]。这些互补信息通过多参数联合模型整合后,综合展现了肿瘤的复杂多维性,进而提高了诊断效能。相较于单参数模型,多参数模型具有更高的诊断价值,使得临床医师在使用此模型进行术前无创预测胶质瘤IDH1基因型时实现最大获益,为患者提供更为精确的治疗规划和预后评估。

3.4 局限性

       本研究存在以下局限性:(1)本研究为单中心研究,缺乏跨多中心的验证;(2)肿瘤ROI的勾画仅限于二维层面,未能充分反映肿瘤在三维空间的异质性,这可能会对测量结果造成一些偏倚;(3)本研究未纳入syMRI中的质子密度(proton density, PD)参数,尽管我们测量了PD值,但其在增强前后差异无统计学意义。因此,为了简化数据分析和解释并确保结果的准确性和可靠性,在研究设计时决定排除PD值。然而,余雪燕等[39]在探索PD值用于乳腺癌腋窝淋巴结转移预测中时发现,转移组与未转移组之间的增强前后PD值存在显著差异(P<0.05),表明其在特定场景下可能具有应用价值。未来研究需进一步探索PD值在胶质瘤基因状态预测中的价值。

4 结论

       综上所述,合成MRI定量弛豫参数有助于鉴别不同IDH1基因状态的胶质瘤,其与APT联合应用时诊断效能最高,这为术前无创鉴别胶质瘤分子诊断标志物提供了一种新的影像学策略,从而有望优化临床治疗的选择与实施,为患者提供更精准的治疗方案。

[1]
PELLERINO A, CACCESE M, PADOVAN M, et al. Epidemiology, risk factors, and prognostic factors of gliomas[J]. Clin Transl Imaging, 2022, 10(5): 467-475. DOI: 10.1007/s40336-022-00489-6.
[2]
LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of theCentral Nervous System: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
[3]
REUSS D E. Updates on the WHO diagnosis of IDH-mutant glioma[J]. J Neurooncol, 2023, 162(3): 461-469. DOI: 10.1007/s11060-023-04250-5.
[4]
MOLINARO A M, TAYLOR J W, WIENCKE J K, et al. Genetic and molecular epidemiology of adult diffuse glioma[J]. Nat Rev Neurol, 2019, 15(7): 405-417. DOI: 10.1038/s41582-019-0220-2.
[5]
HAN S, LIU Y, CAI S J, et al. IDH mutation in glioma: molecular mechanisms and potential therapeutic targets[J]. Br J Cancer, 2020, 122(11): 1580-1589. DOI: 10.1038/s41416-020-0814-x.
[6]
ŚLEDZIŃSKA P, BEBYN M G, FURTAK J, et al. Prognostic and Predictive Biomarkers in Gliomas[J/OL]. Int J Mol Sci, 2021, 22(19): 10373 [2024-04-22]. https://www.mdpi.com/1422-0067/22/19/10373. DOI: 10.3390/ijms221910373.
[7]
THENUWARA G, CURTIN J, TIAN F. Advances in diagnostic tools and therapeutic approaches for gliomas: A comprehensive review[J/OL]. Sensors, 2023, 23(24): 9842 [2024-04-22]. https://www.mdpi.com/1424-8220/23/24/9842. DOI: 10.3390/s23249842.
[8]
WEISKOPF N, EDWARDS L J, HELMS G, et al. Quantitative magnetic resonance imaging of brain anatomy and in vivo histology[J]. Nat Rev Phys, 2021, 3(8): 570-588. DOI: 10.1038/s42254-021-00326-1.
[9]
GONÇALVES F G, SERAI S D, ZUCCOLI G. Synthetic brain MRI[J]. Top Magn Reson Imaging, 2018, 27(6): 387-393. DOI: 10.1097/RMR.0000000000000189.
[10]
GE X, WANG M, MA H, et al. Investigated diagnostic value of synthetic relaxometry, three-dimensional pseudo-continuous arterial spin labelling and diffusion-weighted imaging in the grading of glioma[J]. Magn Reson Imaging, 2022, 86: 20-27. DOI: 10.1016/j.mri.2021.11.006.
[11]
谢佳培, 张卫东, 朱婧怡, 等. 磁共振T1、T2值在脑胶质瘤分级及细胞增殖活性预测中的临床价值[J]. 磁共振成像, 2021, 12(1): 15-20. DOI: 10.12015/issn.1674-8034.2021.01.004.
XIE J P, ZHANG W D, ZHU J Y, et al. The clinical value of T1 and T2 values in predicting brain glioma grading and cell proliferation activity[J]. Chin J Magn Reson Imaging, 2021, 12(1): 15-20. DOI: 10.12015/issn.1674-8034.2021.01.004.
[12]
BLYSTAD I, WARNTJES J B M, SMEDBY Ö, et al. Quantitative MRI for analysis of peritumoral edema in malignant gliomas[J/OL]. PLoS One, 2017, 12(5): e177135 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/28542553/. DOI: 10.1371/journal.pone.0177135.
[13]
吕瑞瑞, 杨治花, 葛鑫, 等. 集成MRI联合三维动脉自旋标记成像鉴别胶质瘤复发和假性进展的初步研究[J]. 磁共振成像, 2022, 13(8): 19-23, 35. DOI: 10.12015/issn.1674-8034.2022.08.004.
LÜ R R, YANG Z H, GE X, et al. Preliminary study of synthetic MRI combined withthree-dimensionalarterial spin labeling imaging in differentiating recurrence and pseudoprogression of glioma[J]. Chin J Magn Reson Imaging, 2022, 13(8): 19-23. DOI: 10.12015/issn.1674-8034.2022.08.004.
[14]
ZHOU J, PAYEN J F, WILSON D A, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nat Med, 2003, 9(8): 1085-1090. DOI: 10.1038/nm907.
[15]
CHEN K, JIANG X, DENG L, et al. Differentiation between glioma recurrence and treatment effects using amide proton transfer imaging: A mini-Bayesian bivariate meta-analysis[J/OL]. Front Oncol, 2022, 12: 852076 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/35978813/.2022.852076/full. DOI: 10.3389/fonc.2022.852076.
[16]
STANISZ G J, ODROBINA E E, PUN J, et al. T1, T2 relaxation and magnetization transfer in tissue at 3T[J]. Magn Reson Med, 2005, 54(3): 507-512. DOI: 10.1002/mrm.20605.
[17]
HATTINGEN E, MULLER A, JURCOANE A, et al. Value of quantitative magnetic resonance imaging T1-relaxometry in predicting contrast-enhancement in glioblastoma patients[J]. Oncotarget, 2017, 8(32): 53542-53551. DOI: 10.18632/oncotarget.18612.
[18]
LIU L, YIN B, GENG D Y, et al. Changes of T2 relaxation time from neoadjuvant chemotherapy in breast cancer lesions[J/OL]. Iran J Radiol, 2016, 13(3): e24014 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/27853488/. DOI: 10.5812/iranjradiol.24014.
[19]
LESCHER S, JURCOANE A, VEIT A, et al. Quantitative T1 and T2 mapping in recurrent glioblastomas under bevacizumab: earlier detection of tumor progression compared to conventional MRI[J]. Neuroradiology, 2015, 57(1): 11-20. DOI: 10.1007/s00234-014-1445-9.
[20]
ELMAOGOD E A ABD, DAOUD S A, MOSTAFA Z M, et al. Prognostic significance of HIF1-α immunohistochemical expression in gliomas and its relation to IDH1 mutation status[J/OL]. Beni-Suef Univ J Basic Appl Sci, 2022, 11(1): 140 [2024-04-22]. https://link.springer.com/article/10.1186/s43088-022-00325-w. DOI: 10.1186/s43088-022-00325-w.
[21]
CHEN W, CHENG X, WANG X, et al. Clinical implications of hypoxia-inducible factor-1α and caveolin-1 overexpression in isocitrate dehydrogenase-wild type glioblastoma multiforme[J]. Oncol Lett, 2019, 17(3): 2867-2873. DOI: 10.3892/ol.2019.9929.
[22]
LIU S, LIU X, ZHANG C, et al. T-Cell exhaustion status under high and low levels of hypoxia-inducible factor 1α expression in glioma[J/OL]. Front Pharmacol, 2021, 12: 711772 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/34305618/. DOI: 10.3389/fphar.2021.711772.
[23]
MAGAR A G, MORYA V K, KWAK M K, et al. A molecular perspective on HIF-1α and angiogenic stimulator networks and their role in solid tumors: An update[J/OL]. Int J Mol Sci, 2024, 25(6): 3313 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/38542288/. DOI: 10.3390/ijms25063313.
[24]
HU Y, CHEN Y, WANG J, et al. Non-invasive estimation of glioma IDH1 mutation and VEGF expression by histogram analysis of dynamic contrast-enhanced MRI[J/OL]. Front Oncol, 2020, 10: 593102 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/33425744/. DOI: 10.3389/fonc.2020.593102.
[25]
KERN M, AUER T A, PICHT T, et al. T2mapping of molecular subtypes of WHO grade Ⅱ/Ⅲ gliomas[J/OL]. BMC Neurol, 2020, 20(1): 8 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/31914945/. DOI: 10.1186/s12883-019-1590-1.
[26]
ROHRER M, BAUER H, MINTOROVITCH J, et al. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths[J]. Invest Radiol, 2005, 40(11): 715-724. DOI: 10.1097/01.rli.0000184756.66360.d3.
[27]
ARVANITIS C D, FERRARO G B, JAIN R K. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases[J]. Nat Rev Cancer, 2020, 20(1): 26-41. DOI: 10.1038/s41568-019-0205-x.
[28]
CARMELIET P, JAIN R K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases[J]. Nat Rev Drug Discov, 2011, 10(6): 417-427. DOI: 10.1038/nrd3455.
[29]
KOIKE H, MORIKAWA M, ISHIMARU H, et al. Amide proton transfer–chemical exchange saturation transfer imaging of intracranial brain tumors and tumor-like lesions: Our experience and a review[J/OL]. Diagnostics, 2023, 13(5): 914 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/36900058/. DOI: 10.3390/diagnostics13050914.
[30]
JIANG S, ZOU T, EBERHART C G, et al. Predicting IDH mutation status in grade Ⅱ gliomas using amide proton transfer‐weighted (APTw) MRI[J]. Magn Reson Med, 2017, 78(3): 1100-1109. DOI: 10.1002/mrm.26820.
[31]
HAN Y, WANG W, YANG Y, et al. Amide proton transfer imaging in predicting isocitrate dehydrogenase 1 mutation status of grade Ⅱ/Ⅲ gliomas based on support vector machine[J/OL]. Front Neurosci, 2020, 14: 144 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/32153362/. DOI: 10.3389/fnins.2020.00144.
[32]
GUO H, LIU J, HU J, et al. Diagnostic performance of gliomas grading and IDH status decoding A comparison between 3D amide proton transfer APT and four diffusion-weighted MRI models[J]. J Magn Reson Imaging, 2022, 56(6): 1834-1844. DOI: 10.1002/jmri.28211.
[33]
JOO B, HAN K, AHN S S, et al. Amide proton transfer imaging might predict survival and IDH mutation status in high-grade glioma[J]. Eur Radiol, 2019, 29(12): 6643-6652. DOI: 10.1007/s00330-019-06203-x.
[34]
XU Z, KE C, LIU J, et al. Diagnostic performance between MR amide proton transfer (APT) and diffusion kurtosis imaging (DKI) in glioma grading and IDH mutation status prediction at 3 T[J/OL]. Eur J Radiol, 2021, 134: 109466 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/33307459/. DOI: 10.1016/j.ejrad.2020.109466.
[35]
PAECH D, WINDSCHUH J, OBERHOLLENZER J, et al. Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multipool CEST MRI at 7.0 T[J]. Neuro Oncol, 2018, 20(12): 1661-1671. DOI: 10.1093/neuonc/noy073.
[36]
BULAKBAŞı N, PAKSOY Y. Advanced imaging in adult diffusely infiltrating low-grade gliomas[J/OL]. Insights Imaging, 2019, 10(1): 122 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/31853670/. DOI: 10.1186/s13244-019-0793-8.
[37]
SARTORETTI E, SARTORETTI T, WYSS M, et al. Amide proton transfer weighted (APTw) imaging based radiomics allows for the differentiation of gliomas from metastases[J/OL]. Sci Rep, 2021, 11(1): 5506 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/33750899/. DOI: 10.1038/s41598-021-85168-8.
[38]
孙胜君, 李芹, 李方正, 等. 合成MRI全容积直方图特征鉴别乳腺良恶性病变的价值[J]. 磁共振成像, 2023, 14(8): 58-62, 164. DOI: 10.12015/issn.1674-8034.2023.08.009.
SUN S J, LI Q, LI F Z, et al. The value of synthetic MRI full volume histogram features for identifying benign and malignant breast lesions[J]. Chin J Magn Reson Imaging, 2023, 14(8): 58-62, 164. DOI: 10.12015/issn.1674-8034.2023.08.009.
[39]
余雪燕, 周智鹏, 童秋云, 等. 合成MRI鉴别乳腺良恶性及预测乳腺癌淋巴结转移的应用价值[J]. 临床放射学杂志, 2023, 42(02): 244-251. DOI: 10.13437/j.cnki.jcr.2023.02.014.
YU X Y, ZHOU Z P, TONG Q Y, et al. Application value of synthetic MRI in the differential diagnosis of denign and malignant breast lesions and prognosis lymph node metastasis of breast cancer[J]. J Clin Radiol, 2023, 42(2): 244-251. DOI: 10.13437/j.cnki.jcr.2023.02.014.

上一篇 集成机器学习模型联合磁共振视觉及DTI直方图预测成人弥漫性胶质瘤IDH表型的研究
下一篇 MRI时间依赖扩散诊断指标判断胶质母细胞瘤MGMT启动子甲基化
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2