分享:
分享到微信朋友圈
X
临床研究
表观扩散系数在预测肝泡状棘球蚴病发生远处转移的临床价值
丹增耶昂 鲍海华 张雪倩 龙昌友 邢玉洁 田鹏启

Cite this article as: DANZENG Y A, BAO H H, ZHANG X Q, et al. Clinical value of apparent diffusion coefficient in predicting distant metastasis in hepatic alveolar echinococcosis[J]. Chin J Magn Reson Imaging, 2024, 15(11): 90-95.本文引用格式:丹增耶昂, 鲍海华, 张雪倩, 等. 表观扩散系数在预测肝泡状棘球蚴病发生远处转移的临床价值[J]. 磁共振成像, 2024, 15(11): 90-95. DOI:10.12015/issn.1674-8034.2024.11.014.


[摘要] 目的 探讨表观扩散系数(apparent diffusion coefficient, ADC)在预测肝泡状棘球蚴病(hepatic alveolar echinococcosis, HAE)发生远处转移的临床价值。材料与方法 回顾性分析2019年1月到2024年3月青海大学附属医院确诊为HAE的267例患者资料,其中远处转移组88例,无转移组179例,记录其临床及影像信息并在DWI上测量病灶实性部分及边缘带的ADC最大值(ADCmax)、ADC最小值(ADCmin)、ADC平均值(ADCmean)。采用统计学方法比较发生远处转移组患者与无转移组患者在年龄、性别、民族、病灶实性部分及边缘带的ADCmax、ADCmin、ADCmean上的差异,并绘制受试者工作特征(receiver operating characteristic, ROC)曲线,通过曲线下面积(area under the curve, AUC)评估各参数的诊断效能,计算最佳诊断截断值及其对应的敏感度、特异度。结果 HAE远处转移组与无转移组两组间年龄、性别及民族差异均无统计学意义(P>0.05);在病灶实性部分,ADCmax、ADCmin、ADCmean在远处转移组与无转移组间差异不具有统计学意义(P>0.05);在病灶边缘带,两组间ADCmax、ADCmin、ADCmean的差异均具有统计学意义(P<0.05);且无论是否发生转移,边缘带ADCmax、ADCmin、ADCmean均低于实性成分ADCmax、ADCmin、ADCmean。ROC曲线分析显示边缘带各ADC值均可有效预测HAE的远处转移。其中,联合指标预测HAE是否发生远处转移效能最佳,AUC为0.955(95% CI:0.923~0.977),敏感度为93.2%,特异度86.0%。结论 边缘带ADC值对临床前期评估HAE是否会发生远处转移具有良好的预测价值;各参数联合使用可进一步提高HAE远处转移的预测效能,更有利于个体化、精准化医疗决策的实现。
[Abstract] Objective To explore the clinical value of apparent diffusion coefficient (ADC) in predicting distant metastasis of hepatic alveolar echinococcosis (HAE).Materials and Methods A retrospective analysis was conducted on 267 patients diagnosed with HAE at Qinghai University Affiliated Hospital from January 2019 to March 2024, including 88 cases with distant metastasis and 179 cases without metastasis. Clinical and imaging information was recorded, and the maximum apparent diffusion coefficient (ADCmax), minimum apparent diffusion coefficient (ADCmin), and mean apparent diffusion coefficient (ADCmean) of the solid part and peripheral zone of the lesions were measured on diffusion-weighted imaging (DWI). Statistical methods were used to compare the differences between patients with distant metastasis and those without metastasis in terms of age, sex, ethnicity, ADCmax, ADCmin, and ADCmean of the solid part and peripheral zone of the lesions. Receiver operating characteristic (ROC) curves were plotted, and the area under the curve (AUC) was calculated to evaluate the diagnostic performance of each parameter. The optimal diagnostic cutoff values and their corresponding sensitivities and specificities were calculated.Results There were no statistically significant differences in age, sex, or ethnicity between the group with distant metastasis of HAE and the group without metastasis (P>0.05). Regarding the solid part of the lesions, there were no significant differences in ADCmax, ADCmin, or ADCmean between the group with distant metastasis and the group without metastasis (P>0.05). However, significant differences in ADCmax, ADCmin, and ADCmean were observed between the two groups in the peripheral zone of the lesions (P<0.05). Additionally, regardless of metastasis occurrence, ADCmax, ADCmin, and ADCmean in the peripheral zone were lower than those in the solid component. ROC curve analysis demonstrated that ADC values in the peripheral zone could effectively predict distant metastasis of HAE. Among them, the combined index showed the best efficacy in predicting distant metastasis of HAE, the AUC is 0.955 (95% CI: 0.923-0.977), with a sensitivity of 93.2% and a specificity of 86.0%.Conclusions The ADC values in the peripheral zone have good predictive value for assessing whether HAE will develop distant metastasis in the clinical setting. The combined use of various parameters can further enhance the predictive efficacy of distant metastasis in HAE, facilitating the realization of individualized and precise medical decision-making.
[关键词] 肝泡状棘球蚴病;远处转移;边缘带;表观扩散系数;磁共振成像
[Keywords] hepatic alveolar echinococcosis;distant metastasis;peripheral zone;apparent diffusion coefficient;magnetic resonance imaging

丹增耶昂    鲍海华 *   张雪倩    龙昌友    邢玉洁    田鹏启   

青海大学附属医院医学影像中心,西宁 810001

通信作者:鲍海华,E-mail: baohelen@sina.com

作者贡献声明:鲍海华设计本研究的方案,对稿件重要内容进行了修改,获得了国家临床重点专科建设项目的资助;丹增耶昂起草和撰写稿件,获取、分析和解释本研究的数据;张雪倩、龙昌友、邢玉洁、田鹏启获取、分析和解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家临床重点专科建设项目 青卫健办〔2024〕90号
收稿日期:2024-05-04
接受日期:2024-11-08
中图分类号:R445.2  R532.32 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.11.014
本文引用格式:丹增耶昂, 鲍海华, 张雪倩, 等. 表观扩散系数在预测肝泡状棘球蚴病发生远处转移的临床价值[J]. 磁共振成像, 2024, 15(11): 90-95. DOI:10.12015/issn.1674-8034.2024.11.014.

0 引言

       肝泡状棘球蚴病(hepatic alveolar echinococcosis, HAE)是一种罕见的由多房棘球蚴绦虫寄生于犬类或者狐狸再传染给人类的人畜共患寄生虫病[1, 2]。HAE在人体内主要以蚴虫的形式存在,蚴虫在组织内常以外生芽孢的方式浸润性增殖,不断产生新囊泡吞食新的组织,晚期经血液循环和淋巴管转移至肺、脑、脾、肾脏、骨骼、肾上腺、心脏和其他器官[3],发生转移后临床预后差,如果不及时治疗,90%的患者会在感染后10~15年后死亡[4, 5],HAE发生远处转移往往属于疾病晚期表现,几乎失去根治性手术机会[6],只能通过甲苯咪唑、阿苯达唑等药物姑息性地改善、缓解临床症状和抑制寄生虫生长[7],因此早期诊断或者预测HAE是否发生远处转移对改善患者生存质量,延长患者生存期限显得尤为重要,能够为临床判断患者预后并为患者提供个性化治疗方案,有很高的临床价值。扩散加权成像(diffusion weighted imaging, DWI)是基于组织中水分子扩散的功能性MRI技术,其取决于细胞核浆比例和细胞质中大分子的含量[8],组织细胞内外水分子发生的改变可以通过DWI进行可视化评估,也可以通过表观扩散系数(apparent diffusion coefficient, ADC)进行半定量评估,比传统MRI序列更能准确反映组织细胞的生存力与结构[9]。DWI的ADC值在肿瘤学领域有着广泛的应用,主要用于评估疾病发生、发展及预后情况[10, 11, 12, 13]。由于棘球蚴病也表现出类似于肿瘤的浸润性生长模式和转移能力,因此类似的方法也可用于HAE。既往有文献用ADC值来评估HAE的生长特性及肝脏功能储备功能等[14, 15, 16],但目前尚未发现基于DWI和ADC探讨泡状棘球蚴病远处转移的相关研究报道。因此本研究通过回顾性分析远处转移患者的MRI,旨在深入探讨DWI和ADC与HAE远处转移之间的关系,并建立基于ADC的预测模型,以期为临床治疗及预后方案的制订提供有力支持。

1 材料与方法

1.1 研究对象

       本研究遵守《赫尔辛基宣言》,经青海大学附属医院伦理委员会批准,批准文号:P-SL-2023-229,豁免受试者知情同意。本研究回顾性收集了2019年1月至2024年3月青海大学附属医院经临床病理或影像学检查表现确诊为HAE患者的病例资料。纳入标准:(1)临床怀疑为HAE的患者需接受至少两种影像学检查且依据影像学表现被诊断为HAE/HAE远处转移,并经手术或病理明确证实;(2)有完整的治疗前MRI检查资料。排除标准:(1)合并其他恶性肿瘤及转移病史;(2)临床及影像学信息缺失;(3)图像质量差、伪影重,难以进行影像学评价。

1.2 扫描设备及参数

       所有患者均采用3.0 T扫描仪(Philips,Archieva 3.0 T TX,Philips Healthcare,荷兰;Siemens,MAGNETOM Prisma 3.0 T,Erlangen,德国)及配套体部线圈。患者取仰卧位,平静呼吸,行常规轴位T1WI、T2WI冠状位压脂、T2WI轴位压脂扫描,再行DWI扫描,最终注射对比剂行全肝动态增强扫描。扫描参数如下:快速自旋回波(true spin echo, TSE)-T1WI序列扫描参数:TR 659 ms,TE 8 ms,FOV 530 mm×339 mm,矩阵256×256,层厚3 mm,层间距1 mm;TSE-T2WI序列扫描参数:TR 3931 ms,TE 66 ms,FOV 530 mm×339 mm,矩阵256×256,层厚3 mm,层间距1 mm;平面回波成像(echo planar imaging, EPI)-DWI序列扫描参数:TR 5200 ms,TE 66 ms,FOV 530 mm×339 mm,矩阵256×256,层厚3 mm,层间距1 mm;b值=0、800、1000 s/mm2。增强扫描:钆喷酸葡胺注射液(马根维显,拜耳医药,德国)外周静脉团注,剂量0.1 mL/kg,注射速度2 mL/s,随即以相同流速跟注20 mL生理盐水,注射后15~20 s(动脉期)、60~70 s(门静脉期)、180 s(平衡期)分别行全肝扫描,参数同T1WI,Philips Archieva 3.0 T 扫描仪上为DCE-MRI序列,Siemens Prisma 3.0 T扫描仪上为VIBE序列。

1.3 图像分析和ADC值测量

       将DWI原始图像输出至工作站(Philips IntelliSpace Portal和Syngo.via)后经软件自动处理后生成标准扩散系数ADC伪彩图,由两名具有7年影像诊断经验的主治医师对所有图像采用双盲法进行阅片及测量,并详细记录HAE原发部位及远处转移部位的影像学信息,如两名医师对HAE发生远处转移结果判读出现歧义时,由具有30年以上HAE影像诊断经验的主任医师进行最终判断。勾画感兴趣区(region of interest, ROI)时一般选择病灶实性部分及边缘带弥散最受限的层面,尽量避开坏死、囊变及出血区,在病灶实性部分及边缘带分别选取3个大小20~30 mm2的ROI,并计算平均值最终获得相应部位的ADCmax、ADCmin、ADCmean(图1, 2, 3)。

图1  男,56岁,HAE远处转移患者(肺+脑转移),1A:T1WI示病灶中央均质样稍低信号(红箭),边缘带呈弧形低信号(白箭);1B:T2WI示实性部分均质性改变(红箭),边缘带呈囊状稍高信号(白箭);1C~1D:T1WI增强扫描动脉期及平衡期示病灶实性部分未见明显强化(红箭),边缘带呈轻-中度强化(白箭);1E:DWI(b=800 s/mm2)示病灶边缘带呈现为环形高信号的扩散受限区域(白箭);1F:ADC伪彩图显示病灶边缘带呈条带状蓝色信号影(白箭)。HAE:肝泡状棘球蚴病;DWI:扩散加权成像;ADC:表观扩散系数。
Fig. 1  A 56-year-old male patient with distant metastasis of HAE to the lung and brain. 1A: T1WI reveals an inhomogeneous low-signal area in the center of the lesion (red arrow), with an arcuate low-signal rim (white arrow); 1B: T2WI demonstrates the solid portion exhibits homogeneous changes (red arrow), and the rim appears as a cystic slightly hyperintense area (white arrow); 1C-1D: Enhanced T1WI during the arterial and equilibrium phases shows no significant enhancement in the solid portion of the lesion (red arrow), whereas the rim exhibits mild to moderate enhancement ( white arrow); 1E: DWI (b=800 s/mm²) indicates that the rim of the lesion appears as a ring-shaped area of restricted diffusion with high signal intensity (white arrow), suggesting limited diffusion of water molecules in this region; 1F: The ADC pseudocolor map reveals a strip-like blue signal shadow in the rim of the lesion (white arrow), further confirming restricted water molecule diffusion in this area. HAE: hepatic alveolar echinococcosis; DWI: diffusion-weighted imaging; ADC: apparent diffusion coefficient.
图2  女,38岁,HAE无转移患者,2A: T1WI示病灶中央不均质样低信号(红箭),边缘带低信号不明显;2B: T2WI示中央液化坏死区呈高信号,实性部分呈地图样变(红箭),边缘带呈线样稍高信号(白箭);2C~2D:T1WI增强扫描动脉期及平衡期示病灶实性部分未见明显强化(红箭),边缘带呈轻度强化(白箭);2E:DWI(b=800 s/mm2)示病灶边缘带呈现为环形高信号的扩散受限区域(白箭);2F:ADC伪彩图显示病灶边缘带呈条带状蓝色信号影(白箭)。HAE:肝泡状棘球蚴病;DWI:扩散加权成像;ADC:表观扩散系数。
Fig. 2  A 38-year-old female patient with HAE without metastasis. 2A: T1WI shows heterogeneous low signals in the central part of the lesion (red arrow), and the low signals of the marginal zone are not obvious; 2B: T2WI shows that the central necrosis area is hyperintense, the solid part present as a map-like change (red arrow), and the marginal zone present as a linear slightly hyperintense area (white arrow); 2C-2D: T1WI enhanced scans in the arterial phase and equilibrium phase shows no significant enhancement in the solid part of the lesion (red arrow), while the marginal zone presented mild enhancement (white arrow); 2E: DWI (b=800 s/mm²) shows the marginal zone of the lesion as a ring-shaped hyperintense area with diffusion restriction (white arrow). 2F: ADC pseudo-color map shows a strip-shaped blue signal shadow in the marginal zone of the lesion (white arrow). HAE: hepatic alveolar echinococcosis; DWI: diffusion-weighted imaging; ADC: apparent diffusion coefficient.
图3  ADC测量示意图。3A~3B:分别为高b值DWI图及ADC伪彩图,分别在DWI实质部分及边缘带放置三个大小一样的ROI,相对应ADC伪彩图即可计算出相应的ADC值。红色ROI代表边缘带ADC值,绿色ROI代表实质成分ADC值。ADC:表观扩散系数;DWI:扩散加权成像;ROI:感兴趣区。
Fig. 3  Schematic diagram of ADC measurement. 3A-3B: The high b-value DWI image and the ADC pseudocolor image, respectively. Three ROI of the same size are placed in the solid part and the marginal area of the DWI image, from which the corresponding ADC values can be calculated based on the ADC pseudocolor image. The red ROI represents the ADC value of the marginal zone, while the green ROI represents the ADC value of the solid component. ADC: apparent diffusion coefficient; DWI: diffusion-weighted imaging; ROI: region of interest.

1.4 统计学分析

       统计学分析使用SPSS 27.0(Chicago, Illinois)软件进行。使用Shapiro-Wilk检验分析各参数是否符合正态分布,符合正态分布的参数用(x¯±s)表示,并使用独立样本t检验进行组间差异比较;非正态分布的参数用MQ1, Q3)表示,并使用Mann-Whitney U检验进行组间差异比较。计数资料采用卡方检验。采用单因素logistic回归进入法筛选诊断相关指标,将这些指标联合起来,再使用MedCalc 20.022受试者工作特征(receiver operating characteristic, ROC)曲线评估边缘带ADCmax、ADCmin、ADCmean及联合指标对HAE发生远处转移的预测价值。使用Origin 2024绘制对半小提琴图。采用组内相关系数(intra-class correlation coefficient, ICC)评价2名医师测量ADC值的一致性,ICC≥0.75为一致性良好,0.40<ICC<0.75为一致性中等,ICC≤0.40为一致性差。P<0.05认为差异有统计学意义。

2 结果

2.1 患者一般资料及观察者之间一致性

       本研究最终纳入267名HAE患者,其中远处转移共88例,男45例,女43例,年龄(40.14±17.16)岁,包括:单纯肺转移47例、单纯脑转移16例、单纯骨转移6例,合并肺转移、骨转移8例,合并脑转移、骨转移7例,合并脑转移、肺转移、腹膜转移3例,合并骨转移、肾转移、腹膜转移1例;无转移179例,男73例,女106例,年龄(36.04±13.80)岁。本研究中2名诊断医师测量的HAE的边缘带及实性部分的ADC值一致性范围为0.82~0.89,ICC>0.75,表明一致性良好(表1)。

表1  测量各ADC值的观察者间一致性分析
Tab. 1  Analysis of interobserver consistency for measuring ADC valuess

2.2 HAE远处转移组与无转移组各影像指标及临床指标对比分析

       实性部分的ADCmax、ADCmin、ADCmean在HAE远处转移组与无转移组间差异无统计学意义(P>0.05)。远处转移组的边缘带ADCmax、ADCmin、ADCmean均低于无转移组,组间差异具有统计学意义(P均<0.05)。虽实性部分各ADC值组间差异无统计学意义,但无论是否发生远处转移,边缘带各ADC值均低于实性成分各ADC值。无转移组与远处转移组之间年龄、性别、民族的差异均不具有统计学意义(P均>0.05)(表2图4

       ROC曲线结果显示各ADC值均能对HAE是否发生远处转移进行有效预测。其中,联合指标预测效能最佳,最佳截止值为0.792,相应ROC曲线下面积为0.955(95% CI:0.923~0.977),敏感度为93.2%,特异度86.0%(表3图5)。本研究还对不同参数的ROC曲线进行了DeLong检验,发现联合指标与边缘带ADCmax、联合指标与边缘带ADCmean、边缘带ADCmax与ADCmean的AUC值差异具有统计学意义(P<0.05)。

图4  两组间各ADC参数比较对半小提琴图。HAE有远处转移组的边缘带ADCmax、ADCmin、ADCmean均低于无转移组。浅蓝色与浅粉色分别代表了无转移组与远处转移组的边缘带各ADC值分布情况,深色虚线与上、下浅色虚线分别代表各组各ADC值的中位数、上、下四分位数。ADC:表观扩散系数;HAE:肝泡状棘球蚴;ADCmax:ADC最大值;ADCmin:ADC最小值;ADCmean:ADC平均值。
Fig. 4  Comparison of each ADC parameter between the two groups on the half-violin plot. The marginal band ADCmax, ADCmin, and ADCmean in the HAE group with distant metastases are lower than those in the non-metastasis group. The light blue and light pink colors represent the distribution of ADC values in the marginal zone of the non-metastasis group and the distant metastasis group, respectively. And the dark dashed line and the upper and lower light dotted lines separately represent the median, upper and lower quartiles of each ADC value in each group. ADC: apparent diffusion coefficient; HAE: hepatic alveolar echinococcosis; ADCmax: maximum ADC; ADCmin: minimum ADC; ADCmean: mean ADC.
图5  边缘带ADCmax、ADCmin、ADCmean及联合指标预测HAE发生远处转移的受试者操作特征曲线。其中联合指标预测效能最佳,曲线下最大面积约为0.955。HAE:肝泡状棘球蚴;ADCmax:表观扩散系数最大值;ADCmin:表观扩散系数最小值;ADCmean:表观扩散系数平均值。
Fig. 5  Receiver operating characteristic curves of marginal zone ADCmax, ADCmin, ADCmean and combined indicators to predict distant metastasis of HAE. Among them, the joint index has the best prediction performance, and the maximum area under the curve is about 0.955. HAE: hepatic alveolar echinococcosis; ADCmax: maximum apparent diffusion coefficient; ADCmin: minimum apparent diffusion coefficient; ADCmean: mean apparent diffusion coefficient.
表2  肝泡状棘球蚴远处转移与无转移组间各参数比较
Tab. 2  Comparison of distant metastasis and no metastasis of hepatic alveolar echinococcus
表3  各ADC值及联合指标预测HAE发生远处转移的ROC曲线分析
Tab. 3  The ROC curve analysis of each ADC value and joint index in predicting the distant metastasis of HAE

3 讨论

       本研究为了探究DWI与HAE向外侵袭、远处转移之间的关系,选择了高b值(800、1000 s/mm2)DWI来观察HAE远处转移与无转移患者ADC值的变化,并发现与无转移的患者相比,发生远处转移的HAE患者边缘带具有更低的ADCmax、ADCmean、ADCmin值,应用ROC曲线比较边缘带ADCmax、ADCmean、ADCmin值及联合指标的诊断效能,结果发现边缘带各ADC值均对HAE发生远处转移有一定的诊断效能,并且联合指标诊断效能最佳,因此认为ADC值可以作为预测HAE发生远处转移的重要手段,为HAE临床治疗方式的选择提供依据,具有一定临床意义。

3.1 远处转移组与无转移组边缘带ADC值的对比分析

       表观扩散系数ADC值是DWI的重要参数,可以通过分析病理状态下细胞内外水分子的扩散情况来反映病灶的病理生理状态。影响ADC值的因素有:细胞密度、细胞核/细胞质比值、胞浆内大分子物质含量以及细胞膜的通透性[17]。已有文献报道,DWI定量ADC值可以反映HAE病灶特点及病理特征,有助于界定HAE病灶边缘带范围,并且在评估边缘带微循环灌注情况有一定价值[18]。ADC值最近也被SADE等[19]用于区分AE病变与单纯囊肿和恶性病变,且AE病变的ADC值高于恶性病变,低于其他肝囊肿。

       当机体感染了HAE蚴虫后,蚴虫的增殖导致肿块范围逐渐变大,呈浸润性生长[20],病灶周边是虫体与邻近肝实质间形成的炎性免疫反应带,主要由增生纤维结缔组织、各种浸润的炎细胞及新生小血管组成,病灶边缘浸润带才是肝脏多房棘球蚴病灶真正的生物学边界[21],且经研究发现HAE实性部分、边缘带及周围正常肝组织血流灌注不同,边缘带呈现出较为丰富的微血供状态,间接反映了多发棘球蚴虫的活性。EBERHARDT等[22]和王静等[23]也发现DWI炎性细胞浸润所致的水分子扩散受限与PET/CT、PET/MRI上边缘带示踪剂摄取增加在评估HAE活性方面有同等价值。我们研究发现远处转移组和无转移组的边缘带各ADC值均能有效预测HAE的远处转移,联合指标的诊断效能最佳,且与边缘带单个ADC值之间存在统计学差异,这也与李双鑫等[24]研究结果相似。究其原因考虑与寄生虫周围细胞活性及其介导的免疫反应有关。在免疫受到抑制的个体中,HAE生长更为迅速[25, 26]。HAE囊泡周围会多发炎症反应使肝细胞变性,同时邻近新生毛细血管增生致原汇管区挤压变形,从而限制了水分子运动的空间,使得局部形成环状连续或不连续的弥散受限区域。而发生远处转移组病灶因处于病灶进展期,细胞数量和密度明显增加,胞内结构空间紊乱,胞外空间减少,故其边缘带炎性反应比无转移组更加强烈,弥散受限也较无转移组更明显。

3.2 远处转移与无转移组实性部分ADC值的对比分析

       HAE一般通过直接浸润、血行转移或淋巴转移到达机体远端器官吞噬更多的组织,因此病灶实性部分通常由蚴虫残食后聚集的囊泡、钙化、坏死区域及大量纤维结缔组织构成[20]。本研究也发现实性部分ADCmax、ADCmin、ADCmean在HAE远处转移组与无转移组组间均不具有统计学意义,且实性部分各ADC值明显高于边缘带各ADC值。这也与国内外多例研究结果相似[23, 27, 28, 29, 30],分析原因,可能与HAE病灶不同部位成分不同有关:HAE病灶实性部分主要包含纤维基质、大小不等的囊泡、液化坏死及散在钙化灶,这些组织结构松散,且坏死物质崩解、渗出液性成分明显较边缘带增多,因此水分子扩散相对不受限。但BECCE等[31]发现HAE病灶与ADCmin之间存在显著的相关性,这与我们的研究结果有所不同,可能源于纳入患者病例数的不同、患者疾病分期的差异以及ROI选取位置的差别。为了更准确地验证我们的结论,未来需要开展更大规模、多中心的研究进行深入探讨。

3.3 本研究的局限性

       本研究存在一些局限性:首先,本研究为单中心回顾性研究,缺乏多中心参与验证,未来计划加入多中心样本进一步提高诊断效能的稳定性;其次,虽然HAE相对好发于高海拔地区,但随着目前治疗水平提高,发生远处转移的病例较难获得,加之部分影像、临床资料不完整,可能存在选择偏移。后续研究将纳入多中心样本并结合影像组学及更多临床指标更全面地反映泡状棘球蚴侵袭、转移的异质性。

4 结论

       综上所述,边缘带表观扩散系数在无创性预测HAE发生远处转移中表现出了很高的应用价值,为临床早期诊断转移提供可量化的参考指标,有很大潜能作为一种辅助临床诊断工具进一步提高HAE诊断效能,为临床个性化治疗、改善患者预后提供帮助。

[1]
WANG Z, BIAN H Y, LI J Q, et al. Detection and subtyping of hepatic echinococcosis from plain CT images with deep learning: a retrospective, multicentre study[J/OL]. Lancet Digit Health, 2023, 5(11): e754-e762 [2024-01-02]. https://pubmed.ncbi.nlm.nih.gov/37770335/. DOI: 10.1016/S2589-7500(23)00136-X.
[2]
BAUMANN S, SHI R, LIU W Y, et al. Worldwide literature on epidemiology of human alveolar echinococcosis: a systematic review of research published in the twenty-first century[J]. Infection, 2019, 47(5): 703-727. DOI: 10.1007/s15010-019-01325-2.
[3]
YU X K, ZHANG L, MA W J, et al. An overview of hepatic echinococcosis and the characteristic CT and MRI imaging manifestations[J]. Infect Drug Resist, 2021, 14: 4447-4455. DOI: 10.2147/IDR.S331957.
[4]
ALVI M A, ALI R M A, KHAN S, et al. Past and present of diagnosis of echinococcosis: a review (1999-2021)[J/OL]. Acta Trop, 2023, 243: 106925 [2023-11-04]. https://pubmed.ncbi.nlm.nih.gov/37080264/. DOI: 10.1016/j.actatropica.2023.106925.
[5]
DEIBEL A, MEYER ZU SCHWABEDISSEN C, HUSMANN L, et al. Characteristics and clinical course of alveolar echinococcosis in patients with immunosuppression-associated conditions: a retrospective cohort study[J/OL]. Pathogens, 2022, 11(4): 441 [2023-11-04]. https://pubmed.ncbi.nlm.nih.gov/35456117/. DOI: 10.3390/pathogens11040441.
[6]
GRAETER T, SHI R, BAO H H, et al. Intrahepatic manifestation and distant extrahepatic disease in alveolar echinococcosis: a multicenter cohort study[J]. Acta Radiol, 2021, 62(8): 997-1005. DOI: 10.1177/0284185120951958.
[7]
BRUNETTI E, KERN P, VUITTON D A, et al. Expert consensus for the diagnosis and treatment of cystic and alveolar echinococcosis in humans[J]. Acta Trop, 2010, 114(1): 1-16. DOI: 10.1016/j.actatropica.2009.11.001.
[8]
ALTMAYER S, ARMELIN L M, PEREIRA J S, et al. MRI with DWI improves detection of liver metastasis and selection of surgical candidates with pancreatic cancer: a systematic review and meta-analysis[J]. Eur Radiol, 2024, 34(1): 106-114. DOI: 10.1007/s00330-023-10069-5.
[9]
MAHESHWARI E, NOUGARET S, STEIN E B, et al. Update on MRI in evaluation and treatment of endometrial cancer[J]. Radiographics, 2022, 42(7): 2112-2130. DOI: 10.1148/rg.220070.
[10]
JIANG L L, ZHANG J B, CHEN J, et al. rFOV-DWI and SMS-RESLOVE-DWI in patients with thyroid nodules: comparison of image quality and apparent diffusion coefficient measurements[J]. Magn Reson Imaging, 2022, 91: 62-68. DOI: 10.1016/j.mri.2022.05.010.
[11]
MICHOUX N F, CERANKA J W, VANDEMEULEBROUCKE J, et al. Repeatability and reproducibility of ADC measurements: a prospective multicenter whole-body-MRI study[J]. Eur Radiol, 2021, 31(7): 4514-4527. DOI: 10.1007/s00330-020-07522-0.
[12]
MEYER H J, MARTIN M, DENECKE T. DWI of the breast - possibilities and limitations[J]. Rofo, 2022, 194(9): 966-974. DOI: 10.1055/a-1775-8572.
[13]
KAYADIBI Y, KOCAK B, UCAR N, et al. Radioproteomics in breast cancer: prediction of ki-67 expression with MRI-based radiomic models[J/OL]. Acad Radiol, 2022, 29(Suppl 1): S116-S125 [2023-12-15]. https://pubmed.ncbi.nlm.nih.gov/33744071/. DOI: 10.1016/j.acra.2021.02.001.
[14]
TORGERSON P R, KELLER K, MAGNOTTA M, et al. The global burden of alveolar echinococcosis[J/OL]. PLoS Negl Trop Dis, 2010, 4(6): e722 [2023-10-12]. https://pubmed.ncbi.nlm.nih.gov/20582310/. DOI: 10.1371/journal.pntd.0000722.
[15]
王强, 康莹丽, 王虎, 等. 晚期肝泡型包虫病PTCD联合阿苯达唑治疗前后肝功能及ADC值变化的研究[J]. 磁共振成像, 2019, 10(4): 254-257. DOI: 10.12015/issn.1674-8034.2019.04.003.
WANG Q, KANG Y L, WANG H, et al. Effect of PTCD combined with albendazole on liver function and marginal ADC value in patients with end-stage hepatic alveolar echinococcosis[J]. Chin J Magn Reson Imag, 2019, 10(4): 254-257. DOI: 10.12015/issn.1674-8034.2019.04.003.
[16]
任波, 王静, 刘文亚, 等. MR扩散加权成像的肝泡状棘球蚴边缘带影像特征与组织病理学对照分析[J]. 中华放射学杂志, 2012, 46(1): 57-60. DOI: 10.3760/cma.j.issn.1005-1201.2012.01.014.
REN B, WANG J, LIU W Y, et al. Comparison between the MR diffusion weighted imaging and pathology of hepatic alveolar echinococcosis[J]. Chin J Radiol, 2012, 46(1): 57-60. DOI: 10.3760/cma.j.issn.1005-1201.2012.01.014.
[17]
BILGIN S S, GULTEKIN M A, YURTSEVER I, et al. Diffusion tensor imaging can discriminate the primary cell type of intracranial metastases for patients with lung cancer[J]. Magn Reson Med Sci, 2022, 21(3): 425-431. DOI: 10.2463/mrms.mp.2020-0183.
[18]
张冠蜜, 牟雅琳, 樊海宁, 等. 不同时期小鼠肝泡型包虫病生长特性的MRI研究[J]. 临床放射学杂志, 2022, 41(7): 1370-1374.
ZHANG G M, MOU Y L, FAN H N, et al. Growth properties of hepatic alveolar echinococcosis in mice at different stages by MRI[J]. J Clin Radiol, 2022, 41(7): 1370-1374.
[19]
SADE R, KANTARCI M, OGUL H, et al. Differentiation between hepatic alveolar echinococcosis and primary hepatic malignancy with diffusion-weighted magnetic resonance imaging[J]. Diagn Interv Imaging, 2018, 99(3): 169-177. DOI: 10.1016/j.diii.2017.09.007.
[20]
STEFANIAK M, DERDA M, ZMORA P, et al. Risk factors and the character of clinical course of the Echinococcus multilocularis infection in patients in Poland[J/OL]. Pathogens, 2023, 12(2): 199 [2023-12-17]. https://pubmed.ncbi.nlm.nih.gov/36839470/. DOI: 10.3390/pathogens12020199.
[21]
杨晶, 白峻虎, 张永海, 等. Revolution CT全肝灌注对肝多房棘球蚴病病灶边缘浸润带的影像学评估[J]. 中国血吸虫病防治杂志, 2018, 30(6): 678-681. DOI: 10.16250/j.32.1374.2018123.
YANG J, BAI J H, ZHANG Y H, et al. Revolution CT hepatic perfusion imaging assessment of peripheral infiltration zone of hepatic alveolar echinococcosis[J]. Chin J Schistosomiasis Contr, 2018, 30(6): 678-681. DOI: 10.16250/j.32.1374.2018123.
[22]
EBERHARDT N, PETERS L, KAPP-SCHWOERER S, et al. 18F-FDG-PET/MR in alveolar echinococcosis: multiparametric imaging in a real-world setting[J/OL]. Pathogens, 2022, 11(3): 348 [2023-10-09]. https://pubmed.ncbi.nlm.nih.gov/35335672/. DOI: 10.3390/pathogens11030348.
[23]
王静, 丁爽, 刘文亚, 等. MR扩散加权成像评价肝脏泡状棘球蚴病生物学活性的价值[J]. 中华放射学杂志, 2015, 49(2): 103-106. DOI: 10.3760/cma.j.issn.1005-1201.2015.02.006.
WANG J, DING S, LIU W Y, et al. Value of MR diffusion weighted imaging in assessing the viability of hepatic alveolar echinococcosis[J]. Chin J Radiol, 2015, 49(2): 103-106. DOI: 10.3760/cma.j.issn.1005-1201.2015.02.006.
[24]
李双鑫, 鲍海华, 李萌. 多模态MRI技术在脑泡型包虫病中的研究现状与进展[J]. 磁共振成像, 2021, 12(8): 91-93, 97. DOI: 10.12015/issn.1674-8034.2021.08.020.
LI S X, BAO H H, LI M. Research status and progress of multimodal imaging technique in cerebral alveolar echinococcosis[J]. Chin J Magn Reson Imag, 2021, 12(8): 91-93, 97. DOI: 10.12015/issn.1674-8034.2021.08.020.
[25]
LIU Y M, TIAN F M, SHAN J Y, et al. Kupffer cells: important participant of hepatic alveolar echinococcosis[J/OL]. Front Cell Infect Microbiol, 2020, 10: 8 [2023-12-29]. https://pubmed.ncbi.nlm.nih.gov/32064239/. DOI: 10.3389/fcimb.2020.00008.
[26]
WANG J, GOTTSTEIN B. Immunoregulation in larval Echinococcus multilocularis infection[J]. Parasite Immunol, 2016, 38(3): 182-192. DOI: 10.1111/pim.12292.
[27]
GOTTSTEIN B, STOJKOVIC M, VUITTON D A, et al. Threat of alveolar echinococcosis to public health: a challenge for Europe[J]. Trends Parasitol, 2015, 31(9): 407-412. DOI: 10.1016/j.pt.2015.06.001.
[28]
ŠIMEKOVÁ K, ROSOĽANKA R, SZILÁGYOVÁ M, et al. Alveolar echinococcosis of the liver with a rare infiltration of the adrenal gland[J]. Helminthologia, 2021, 58(1): 100-105. DOI: 10.2478/helm-2021-0002.
[29]
ZHENG J J, WANG J, ZHAO J Q, et al. Diffusion-weighted MRI for the initial viability evaluation of parasites in hepatic alveolar echinococcosis: comparison with positron emission tomography[J]. Korean J Radiol, 2018, 19(1): 40-46. DOI: 10.3348/kjr.2018.19.1.40.
[30]
CALAME P, WECK M, BUSSE-COTE A, et al. Role of the radiologist in the diagnosis and management of the two forms of hepatic echinococcosis[J/OL]. Insights Imaging, 2022, 13(1): 68 [2023-11-03]. https://pubmed.ncbi.nlm.nih.gov/35394226/. DOI: 10.1186/s13244-022-01190-y.
[31]
BECCE F, POMONI A, ULDRY E, et al. Alveolar echinococcosis of the liver: diffusion-weighted MRI findings and potential role in lesion characterisation[J]. Eur J Radiol, 2014, 83(4): 625-631. DOI: 10.1016/j.ejrad.2013.12.025.

上一篇 基于静息态脑活动及功能连接特征分类乳腺癌化疗相关认知障碍
下一篇 初探T1 mapping联合DWI识别早期肾间质纤维化的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2