分享:
分享到微信朋友圈
X
临床研究
初探T1 mapping联合DWI识别早期肾间质纤维化的价值
孔欣悦 华晨辰 周乐汀 庄毅 刘晓斌 蔡婷 王凉

Cite this article as: KONG X Y, HUA C C, ZHOU L T, et al. The value of T1 mapping combined with DWI in the early identification of renal interstitial fibrosis[J]. Chin J Magn Reson Imaging, 2024, 15(11): 96-102.本文引用格式:孔欣悦, 华晨辰, 周乐汀, 等. 初探T1 mapping联合DWI识别早期肾间质纤维化的价值[J]. 磁共振成像, 2024, 15(11): 96-102. DOI:10.12015/issn.1674-8034.2024.11.015.


[摘要] 目的 探讨纵向弛豫时间定量成像(T1 mapping)联合弥散加权成像(diffusion weighted imaging, DWI)在早期识别肾间质纤维化(interstitial fibrosis, IF)方面的价值。材料与方法 回顾性分析2020年1月至2023年12月在南京医科大学附属无锡人民医院就诊的经肾内科医师评估后接受肾穿刺活检的38例慢性肾脏病(chronic kidney disease, CKD)患者和20例健康志愿者的临床和影像资料。检测所有受试者的血清肌酐(serum creatinine, SCr)并估算肾小球滤过率(estimated glomerular filtration rate, eGFR),同时行T1 mapping和DWI检查,分别测量肾脏皮质T1值(cortex T1, cT1)、髓质T1值(medulla T1, mT1)、皮质表观弥散系数(apparent diffusion coefficient, ADC)值(cADC)和髓质ADC值(mADC)。根据肾脏病理的间质损伤程度,将CKD患者分为无IF的CKD-IF0组(7例)和轻度IF的IF1组(31例),健康志愿者为对照组(20例)。分别比较对照组、CKD-IF0组、IF1组的肾脏皮髓质T1值和ADC值,分析皮髓质T1值和ADC值与eGFR的相关性,进一步评估eGFR、皮髓质T1值和ADC值诊断肾间质无纤维化和轻度纤维化的效能。结果 (1)对照组和CKD-IF0组的皮髓质T1值和ADC值差异均无统计学意义(P>0.05);对照组的皮髓质ADC值均高于IF1组(P<0.05),T1值均低于IF1组(P<0.05);CKD-IF0组的皮髓质ADC值均高于IF1组(P<0.05),cT1低于IF1组(P<0.05),mT1两组间差异无统计学意义(P>0.05)。(2)将对照组和CKD-IF0组合并为IF0组后,IF0组的皮髓质T1值低于IF1组(P<0.05),ADC值高于IF1组(P<0.05)。(3)所有受试者的cT1与eGFR呈负相关(ρ=-0.476,P<0.05),cADC与eGFR呈正相关(ρ=0.391,P<0.05)。mT1和mADC与eGFR相关性不具有统计学意义(P>0.05)。(4)当单独用eGFR、cT1、mT1、cADC、mADC鉴别IF0组和IF1组时,以eGFR效能最高,AUC为0.861 [95%置信区间(confidence interval, CI):0.761~0.962],敏感度为80.6%,特异度为88.9%;当联合cT1和cADC后,鉴别IF0组和IF1组的效能进一步提高,AUC为0.912(95% CI:0.839~0.984),敏感度为83.9%,特异度为85.2%;当联合eGFR、cT1和cADC后,达到最高鉴别效能,AUC为0.963(95% CI:0.922~1.000),敏感度为87.1%,特异度为96.3%。结论 T1 mapping联合DWI可无创有效地鉴别肾脏IF,有望辅助eGFR来进一步提高早期识别肾脏组织结构损伤的能力。
[Abstract] Objective To explore the value of T1 mapping combined with diffusion-weighted imaging (DWI) in the early identification of renal interstitial fibrosis (IF).Materials and Methods A total of 38 patients with chronic kidney disease (CKD) and 20 healthy volunteers who received renal needle biopsy after evaluation by nephrologist were collected from January 2020 to December 2023 in Wuxi People's Hospital Affiliated to Nanjing Medical University. Serum creatinine (SCr) and estimated glomerular filtration rate (eGFR) were measured in all subjects. T1 mapping and DWI were performed at the same time, and T1 and ADC values of renal cortex and medulla were measured, respectively. According to the degree of interstitial damage in renal pathology, CKD patients were divided into CKD-IF0 group (7 cases) without interstitial fibrosis and IF1 group (31 cases) with mild interstitial fibrosis. Healthy volunteers were divided into control group (20 cases). Renal medullary T1 and ADC values in control group, CKD-IF0 group and IF1 group were compared. We analyzed the correlation between cutis medulla T1 and ADC values and eGFR, and further evaluated the efficacy of eGFR, cutis medulla T1 and ADC values in the diagnosis of renal interstitial fibrosis without and with mild fibrosis.Results (1) There were no significant differences in T1 and ADC values between control group and CKD-IF0 group (P>0.05). ADC values of cortex and medulla in control group were higher than those of IF1 group (P<0.05), and T1 values of control group were lower than those of IF1 group (P<0.05). The ADC values of cortex and medulla in CKD-IF0 group were higher than those in IF1 group (P<0.05), cT1 was lower than that in IF1 group (P<0.05), and there was no significant difference in mT1 between the two groups (P>0.05). (2) After the control group and CKD-IF0 were combined into IF0 group, the cortex and medulla T1 value of IF0 group was significantly lower than that of IF1 group (P<0.05), and the ADC value was significantly higher than that of IF1 group (P<0.05). (3) cT1 was negatively correlated with eGFR (ρ=-0.476, P<0.05), and cADC was positively correlated with eGFR (ρ=0.391, P<0.05). There was no significant correlation between mT1 and mADC and eGFR (P>0.05). (4) When eGFR, cT1, mT1, cADC and mADC were used separately to distinguish IF0 group and IF1 group, eGFR had the highest efficiency, with AUC of 0.861 [95% confidence interval (CI): 0.761-0.962], sensitivity of 80.6%, and specificity of 88.9%. When cT1 and cADC were combined, the efficiency of differentiation between IF0 group and IF1 group was further improved, with AUC of 0.912 (95% CI: 0.839-0.984), sensitivity of 83.9%, and specificity of 85.2%. When combined with eGFR, cT1 and cADC, the highest differential efficacy was achieved, with AUC of 0.963 (95% CI: 0.922-1.000), sensitivity of 87.1% and specificity of 96.3%.Conclusions T1 mapping combined with DWI can noninvasculatively and effectively identify renal interstitial fibrosis, and is expected to assist eGFR to further improve the ability of early identification of renal tissue and structure damage.
[关键词] 慢性肾脏病;肾间质纤维化;磁共振成像;纵向弛豫时间定量成像;弥散加权成像;早期识别
[Keywords] chronic kidney disease;renal interstitial fibrosis;magnetic resonance imaging;T1 mapping;diffusion weighted imaging;early identification

孔欣悦 1   华晨辰 2   周乐汀 1   庄毅 3   刘晓斌 1   蔡婷 1   王凉 1*  

1 南京医科大学附属无锡人民医院肾内科,无锡 214023

2 南京医科大学附属无锡人民医院影像科,无锡 214023

3 江南大学附属无锡儿童医院影像科,无锡 214023

通信作者:王凉,E-mail: wlwxsnk@163.com

作者贡献声明:王凉设计本研究的方案,解释本研究的数据,对稿件重要内容进行了修改;孔欣悦起草和撰写稿件,获取、分析和解释本研究的数据;华晨辰、周乐汀、庄毅、刘晓斌、蔡婷获取、分析本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 江苏省自然科学基金青年项目 BK20210067
收稿日期:2024-07-17
接受日期:2024-11-10
中图分类号:R445.2  R692 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.11.015
本文引用格式:孔欣悦, 华晨辰, 周乐汀, 等. 初探T1 mapping联合DWI识别早期肾间质纤维化的价值[J]. 磁共振成像, 2024, 15(11): 96-102. DOI:10.12015/issn.1674-8034.2024.11.015.

0 引言

       慢性肾脏病(chronic kidney disease, CKD)是全球重大的公共健康问题[1, 2],早期干预可最大程度延缓CKD进展[3]。间质纤维化(interstitial fibrosis, IF)是各种不同病理类型CKD的共同组织学损伤特征,并不断驱动疾病向终末期发展,是临床风险分层和预测预后的最佳指标[4, 5]。血清肌酐(serum creatinine, SCr)和通过其估算的肾小球滤过率(estimated glomerular filtration rate, eGFR)是临床上评估肾功能受损的主要方法,但由于肾脏具有强大的代偿功能,往往在组织结构已有明显损伤后才会出现SCr升高或eGFR下降,造成疾病隐匿进展[6]。肾脏病理目前仍然是诊断CKD及IF的金标准,但存在侵入性损伤和采样易变的局限性[7, 8]。近年来功能磁共振成像(functional magnetic resonance imaging, fMRI)展现出了评估CKD肾脏功能和结构改变的巨大潜能[9, 10, 11]。其中,弥散加权成像(diffusion weighted imaging, DWI)是目前应用最为广泛和成熟的功能成像技术,通过表观弥散系数(apparent diffusion coefficient, ADC)来量化组织中水分子的布朗运动,反映因肾纤维化导致的水分子弥散受限[12, 13];T1 mapping是一种新兴的定量MRI技术,在心肌和肝脏的纤维化评估中运用较为成熟[14, 15, 16],由于可以检测到因肾IF、肾小管萎缩而导致的间质含水量的变化,目前正逐步开始应用于CKD的评估[17, 18, 19]。已有研究报道使用DWI或T1 mapping评估CKD患者肾脏功能和结构改变,但部分研究未仔细区分肾脏皮髓质[20],笼统地使用肾脏实质的平均值代表单侧肾脏的整体情况;大部分研究也未对CKD患者进行分组或仅依据eGFR进行分组[19, 21],不能充分体现MRI在反映早期肾组织结构改变上的价值;另外,在以往的研究中经常单独使用某种MRI技术评估CKD,这可能在全面反映肾脏组织结构的改变上会有所不足,也容易被CKD复杂的临床、生理病理等因素所干扰,导致评估准确性下降[22]。鉴于上述局限性,本研究拟联合应用T1 mapping和DWI全面测量肾脏皮、髓质的T1值和ADC值,初探二者在反映早期肾脏IF方面的价值,旨在充分挖掘基于多参数fMRI技术的影像学标志物早期检测肾组织结构损伤的能力,探索一种比常规SCr和eGFR更早识别CKD及IF的潜在方法。

1 材料与方法

1.1 研究对象

       本研究遵守《赫尔辛基宣言》,经无锡市人民医院伦理委员会批准,免除受试者知情同意,批准文号:(2024)科研伦审第(KY24039)号。回顾性分析2020年1月至2023年12月在无锡市人民医院肾内科就诊并接受肾穿刺活检患者的临床病历及影像资料。纳入标准:(1)SCr不明原因升高或尿蛋白水平异常,基于KDIGO 2022指南诊断为CKD[23];(2)肾活检结果显示肾IF程度为轻度及轻度以下;(3)活检前患者完成包括DWI和T1 mapping功能序列的肾脏MRI检查。排除标准:(1)MRI图像存在明显运动伪影;(2)肾脏明显萎缩、畸形或严重肾积水。同时纳入体检的健康志愿者作为对照组,经无锡市人民医院伦理委员会批准,批准文号:KY22017,获得了所有健康志愿者的知情同意。健康志愿者纳入标准:(1)近期无肾毒性药物服用史;(2)临床实验室检查SCr指标无异常;(3)完成包括DWI和T1 mapping功能序列的肾脏MRI检查;(4)无肾脏疾病史,无高血压、糖尿病等影响肾功能的疾病史。所有受试者的eGFR根据SCr采用慢性肾脏病CKD-EPI公式[男性eGFR=141×(SCr/0.9)–0.411×0.993年龄;女性eGFR=144×(SCr/0.7)–0.329×0.993年龄]计算得出[24]。最终纳入无明显IF的CKD患者7例,轻度IF的CKD患者31例,健康对照组20例。样本量的确定依据如下:(1)既往类似的研究中,与本研究接近的样本量得到了较好的研究结果[10, 25];(2)使用MedCalc软件进行样本量估算,设置显著性水平为0.05,检验效能为0.8,得出三组的最小样本量分别为6、17和17,本研究样本量大于估算结果,因此本试验的样本量具有足够的统计检验力。

1.2 MRI检查方法

       MRI检查使用3.0 T磁共振扫描仪(Prisma 3.0 T,Siemens Healthineers,德国),18通道相控阵体部线圈。检查前每例受试者至少禁水、禁食4 h,并进行呼吸训练,检查过程中取仰卧位。主要扫描参数如下。DWI:TR 4500 ms,TE 61 ms,体素1.6 mm×1.6 mm×5.0 mm,矩阵104×128,层厚5 mm,层间距5 mm,视野325 mm×400 mm,b值0、800 s/mm²,扫描时间113 s。T1 mapping采用经B1+场校正的多翻转角法,B1+场:TR 5050 ms,TE 1.83 ms,体素6.0 mm×6.0 mm×8.0 mm,矩阵52×64,层厚8 mm,层间距0 mm,视野310 mm×380 mm,扫描时间10 s,需屏气;T1 mapping:TR 5.01 ms,TE 2.3 ms,体素0.8 mm×0.8 mm×4.0 mm,矩阵135×224,层厚5 mm,层间距0 mm,视野305 mm×380 mm,翻转角3°、15°,扫描时间20 s,需屏气。

1.3 图像分析

       扫描结束后将图像传送至Syngo(Siemens Healthineers,德国)后处理工作站并生成伪彩图(图1~3)。由两位分别具有9年和8年腹部MRI诊断经验的放射科主治医师采用双盲法在T1 mapping与ADC伪彩图像上分别从肾的上极、中部、下极各选择一个层面并于左右肾皮质和髓质中分别放置椭圆形感兴趣区(region of interest, ROI),面积约12~25 mm2,避开肾盂肾盏、大血管及肾周组织,记录两名观察者测得的T1 mapping定量参数值(T1值)和ADC值。先评估1名医师对左右肾测量结果的一致性;随后评估2名医师间测量结果的一致性。

图1  男,36岁,健康志愿者,eGFR=111.2 mL/(min•1.73 m2),cADC=1.92×10-3 mm2/s,mADC=1.83×10-3 mm2/s,cT1值=1 719.5 ms,mT1值=1 926.4 ms。1A~1B:ADC及T1 mapping伪彩图。
图2  男,31岁,慢性肾脏病患者,eGFR=63.9 mL/(min•1.73 m2),24 h尿蛋白定量为0.81 g,cADC=2.08×10-3 mm2/s,mADC=2.00×10-3 mm2/s,cT1值=1 735.0 ms,mT1值=2 118.4 ms。2A~2B:ADC及T1 mapping伪彩图;2C:肾活检病理结果显示为IgA肾病,Masson三色染色显示间质无明显(<5%)纤维化。
图3  男,45岁,慢性肾脏病患者,eGFR=108.0 mL/(min•1.73 m2),24 h尿蛋白定量为3.29 g,cADC=1.79×10-3 mm2/s,mADC=1.72×10-3 mm2/s,cT1值=1 860.4 ms,mT1值=2 204.7 ms。3A~3B:ADC及T1 mapping伪彩图;3C:肾活检结果显示为膜性肾病(Ⅱ)期,Masson三色染色显示间质轻度(5%~25%)纤维化。eGFR:估算的肾小球滤过率;ADC:表观弥散系数;cADC:皮质ADC;mADC:髓质ADC;cT1:皮质纵向弛豫时间;mT1:髓质纵向弛豫时间。
Fig. 1  Male, 36 years old, healthy volunteer, eGFR=111.2 mL/(min•1.73 m2), cADC=1.92×10-3 mm2/s, mADC=1.83×10-3 mm2/s, cT1=1 719.5 ms, mT1:1 926.4 ms. 1A-1B: ADC and T1 mapping pseudo color images.
Fig. 2  Male, 31 years old, chronic kidney disease, eGFR=63.9 mL/(min•1.73 m2), 24 h urinary protein of 0.81g, cADC=2.08×10-3 mm2/s, mADC=2.00×10-3 mm2/s, cT1=1 735.0 ms, mT1=2 118.4 ms. 2A-2B: ADC and T1 mapping pseudo color images; 2C: Renal biopsy shows IgA nephropathy with no significant (<5%) interstitial fibrosis on Masson's trichrome staining.
Fig. 3  Male, 45 years old, chronic kidney disease, eGFR=108.0 mL/(min•1.73 m2), 24 h urinary protein of 3.29 g, cADC=1.79×10-3 mm2/s, mADC=1.72×10-3 mm2/s, cT1=1 860.4 ms, mT1=2 204.7 ms. 3A-3B: ADC and T1 mapping pseudo color images; 3C: Renal biopsy results showed stage (Ⅱ) membranous nephropathy with mild (5% to 25%) interstitial fibrosis on Masson's trichrome staining. eGFR: estimated glomerular filtration rate; ADC: apparent diffusion coefficient; cADC: cortex ADC; mADC: medulla ADC; cT1: cortex T1; mT1: medulla T1.

1.4 肾脏病理检查

       38例CKD患者在超声引导下进行肾活检,于右肾下极取1~2条肾皮质组织,用Masson三色染色法,参照MARIANI等[26]的研究评估IF程度,分为IF0级(无纤维化,<5%皮质纤维化)和IF1级(轻度纤维化,5%~25%皮质纤维化)进一步分析。

1.5 统计学分析

       采用MedCalc 19.0软件和R语言ggpubr包进行统计学分析。采用组内相关系数(intra-class correlation coefficients, ICC)进行左右肾和观察者间测量结果一致性检验,ICC≥0.75表示一致性良好,0.50<ICC<0.75表示一致性尚可,ICC≤0.50表示一致性较差。若一致性良好,取二者平均值继续进行分析。S-W检验计量数据正态分布情况,若符合正态分布用均数±标准差表示;不符合正态分布用中位数(25分位数,75分位数)表示;采用ANOVA检验分析多组间参数差异,独立样本t检验或Mann-Whitney U检验分析两组间参数值差异。计数资料采用卡方检验。采用Spearman相关系数分析皮髓质T1值和ADC值与eGFR的相关性,|ρ|<0.3为低度相关,0.3≤|ρ|<0.7为中度相关,0.7≤|ρ|<1.0为高度相关。采用受试者工作特征(receiver operating characteristic, ROC)曲线分析各参数诊断效能,根据最大约登指数得到相对应的阈值、敏感度和特异度,并计算曲线下面积(area under the curve, AUC)值及95%置信区间(confidence interval, CI);利用DeLong检验比较两组间的AUC值的差异。P<0.05为差异具有统计学意义。

2 结果

2.1 CKD组与健康对照组临床资料

       本研究纳入健康志愿者20例,其中男9例、女11例,年龄26~65(42.6±12.3)岁。纳入38例CKD患者病例,其中男25例、女13例,年龄18~80(48.2±15.4)岁,包括CKD-IF0组7例,男3例、女4例,年龄(36.3±16.1)岁;IF1组31例,男22例、女9例,年龄(51.0±14.2)岁。对照组与CKD-IF0组的eGFR差异无统计学意义(P>0.05),IF1组的eGFR低于对照组与CKD-IF0组(P<0.05);对照组与CKD-IF0组的年龄差异无统计学意义(P>0.05),CKD-IF0组年龄小于IF1组(P<0.05);CKD-IF0组与IF1组间24 h尿蛋白定量差异无统计学意义(P>0.05),详见表1图4

图4  对照组、CKD-IF0组、IF1组eGFR、年龄的组间比较箱形图。ns表示P>0.05,差异无统计学意义;*表示P<0.05,**表示P<0.01,***表示P<0.001,差异均具有统计学意义。CKD-IF0:慢性肾脏病无间质纤维化;IF1:慢性肾脏病轻度间质纤维化;eGFR:估算的肾小球滤过率。
Fig. 4  Box plots comparison of eGFR and age among control group, CKD-IF0 group and IF1 group. ns represents P>0.05, and the difference is not statistically significant; * indicates P<0.05, ** indicates P<0.01, *** indicates P<0.001, and the differences are statistically significant. CKD-IF0: chronic kidney disease without interstitial fibrosis; IF1: chronic kidney disease with mild interstitial fibrosis.
表1  临床资料
Tab. 1  Demographics and clinical data

2.2 CKD组肾脏病理结果

       肾活检病理结果显示,38例CKD患者中有18例IgA肾病,9例膜性肾病,4例局灶节段性肾小球硬化,4例微小病变型肾病,3例糖尿病肾病。其中7例患者皮质纤维化程度低于5%(CKD-IF0组),31例患者皮质纤维化程度在5%~25%之间(IF1组)。20例健康志愿者默认为皮质纤维化程度低于5%(对照组)。多组间ANOVA分析结果显示不同病因的CKD患者组间ADC值,T1值没有差异无统计学意义(P均>0.05),详见表2

表2  不同病理类型CKD患者ADC值和T1值的多组间比较
Tab. 2  Multigroup comparison of ADC and T1 values in patients with CKD of different pathology

2.3 左右肾及两名观察者间数据一致性检验

       左右肾及两名观察者的一致性良好(ICC值均>0.75)(表3),后续的统计学分析采用两者测量结果的平均值。

表3  左右肾及两名观察者的组内相关系数
Tab. 3  Intra-class correlation coefficients of left and right kidneys and two observers

2.4 皮髓质T1值和ADC值的组间比较

       比较对照组和CKD-IF0组两组间皮髓质T1值和ADC值发现差异均无统计学意义(P>0.05);分别将对照组和CKD-IF0组与IF1组进行比较发现对照组的皮髓质ADC值均高于IF1组(P<0.05),皮髓质T1值均低于IF1组(P<0.05),CKD-IF0组的皮髓质ADC值均高于IF1组(P<0.05),cT1低于IF1组(P<0.05),mT1两组间差异无统计学意义(P>0.05),详见图5

       由于cT1、mT1、cADC、mADC在对照组和CKD-IF0组的差异均无统计学意义,且对照组与CKD-IF0组的eGFR差异无统计学意义,故将对照组和CKD-IF0组合并为IF0组,比较IF0组和IF1组的皮髓质T1值和ADC值,结果显示IF0组的皮髓质T1值低于IF1组(P<0.05),而ADC值高于IF1组(P<0.05),详见表4

图5  对照组、CKD-IF0组、IF1组MRI定量参数组间比较箱形图。ns表示P>0.05,差异无统计学意义;*表示P<0.05,**表示P<0.01,***表示P<0.001,差异均具有统计学意义。cT1为皮质纵向弛豫时间;mT1为髓质纵向弛豫时间;cADC为皮质表观弥散系数;mADC为髓质表观弥散系数。
Fig. 5  Box plots comparison of MRI quantitative parameters among control group, CKD-IF0 group and IF1 group. ns represents P>0.05, and the difference is not statistically significant; * indicates P<0.05, ** indicates P<0.01, *** indicates P<0.001, and the differences are statistically significant. cT1: cortex T1; mT1: medulla T1; cADC: cortex apparent diffusion coefficient; mADC: medulla apparent diffusion coefficient.
表4  MRI参数组间比较
Tab. 4  Group comparison of MRI parameters

2.5 MRI定量参数与eGFR的相关性分析

       所有受试者的cT1与eGFR呈中度负相关(ρ=-0.476,P<0.05),cADC与eGFR呈中度正相关(ρ=0.391,P<0.05)(图6)。mT1及mADC与eGFR相关性不具有统计学意义(P>0.05)。

图6  MRI定量参数与eGFR的相关性散点图。eGFR:估算的肾小球滤过率;cT1:皮质纵向弛豫时间;cADC:皮质表观弥散系数。
Fig. 6  Scatter plot of the correlation between MRI parameters and eGFR. eGFR: estimated glomerular filtration rate; cT1: cortex T1; cADC: cortex apparent diffusion coefficient.

2.6 eGFR、cT1、mT1、cADC、mADC对肾间质损伤程度的诊断效能分析

       当eGFR、cT1、mT1、cADC、mADC单独鉴别肾间质无纤维化(IF0组)和轻度纤维化(IF1组)时,eGFR效能最高,AUC值为0.861(95% CI:0.761~0.962),敏感度为80.6%,特异度为88.9%;在临界值是1 721.2 ms时,cT1在较高效能的同时[AUC=0.828(95% CI:0.723~0.933)],敏感度最高(93.5%);mT1和mADC的AUC值、敏感度、特异度均较cT1和cADC低。当联合影像指标cT1和cADC时,诊断效能可进一步提高,AUC值为0.912(95% CI:0.839~0.984),敏感度为83.9%,特异度为85.2%,但DeLong检验显示AUC值与eGFR差异无统计学意义(P>0.05);当联合eGFR、cT1和cADC时可达到最高的诊断效能,AUC值为0.963(95% CI:0.922~1.000),敏感度为87.1%,特异度为96.3%(表5图7)。DeLong检验显示AUC值与eGFR及cT1联合cADC差异有统计学意义(P=0.029、0.037)。

图7  MRI定量参数与eGFR对肾间质损伤程度诊断的ROC曲线。eGFR:估算的肾小球滤过率;ROC:受试者工作特征;cADC:皮质表观弥散系数;mADC:髓质表观弥散系数;cT1:皮质纵向弛豫时间;mT1:髓质纵向弛豫时间。
Fig. 7  ROC curve of MRI quantitative parameters and eGFR for the degree of renal interstitial injury. eGFR: estimated glomerular filtration rate; ROC: receiver operating characteristic; cADC: cortex apparent diffusion coefficient; mADC: medulla apparent diffusion coefficient; cT1: cortex T1; mT1: medulla T1.
表5  MRI参数及eGFR早期鉴别肾脏无间质损伤及肾脏间质轻度纤维化的效能
Tab. 5  The efficacy of MRI parameters and eGFR in early differentiation of no renal interstitial injury and mild renal interstitial fibrosis

3 讨论

       本研究联合应用T1 mapping和DWI功能成像技术,通过全面测量肾脏皮髓质定量参数cT1、mT1、cADC和mADC来鉴别健康对照组、CKD-IF0组和IF1组。结果显示健康对照组的cT1和mT1值均低于IF1组(P<0.05),cADC和mADC均高于IF1组(P<0.05),但与CKD-IF0组差异不具有统计学意义(P>0.05);当鉴别无IF(IF0组)和轻度IF(IF1组)时,结果显示IF0组的cT1和mT1值均低于IF1组(P<0.05),cADC和mADC均高于IF1组(P<0.05)。本研究分析了MRI定量参数与肾功能eGFR的相关性,结果显示cT1与eGFR呈中度负相关,cADC与eGFR呈中度正相关;并进一步比较了MRI定量参数与eGFR在鉴别有无肾IF时的诊断效能,创新性地探讨了联合cT1、cADC和eGFR来识别早期肾组织结构损伤的可行性,有望为临床更早地发现CKD提供有力参考。

3.1 MRI定量参数鉴别肾脏有或无IF

       GRAHAM-BROWN等[18]曾采用T1 mapping评估IgA肾病患者肾纤维化,结果显示IgA肾病患者的cT1高于健康对照组(P<0.05);王悦等[19]也采用T1 mapping鉴别CKD患者和健康人群,结果同样显示CKD组患者双肾cT1值高于健康人群(P<0.05)。我们的研究结果也表明,IF1组的cT1高于对照组。此外我们还测量了mT1,结果与cT1类似,IF1组的mT1高于对照组,这提示MRI可以通过测量皮髓质T1值来区分轻度IF的肾脏和健康人群的肾脏。但在我们的研究中,CKD-IF0组的cT1、mT1与对照组差异无统计学意义,这与GRAHAM-BROWN MP等和王悦等的研究结果不同,原因可能是,我们依据病理结果将CKD患者细分为无IF的CKD-IF0组和间质轻度纤维化的IF1组,CKD-IF0组患者的肾脏组织结构改变轻微,尚未引起皮髓质T1值的明显变化,因此与对照组差异无统计学意义;同时由于我们入组的CKD-IF0组的患者数量较少,不能排除选择性偏倚的存在。除了T1值之外,我们还比较了不同组的皮髓质ADC值。LI等[27]依据KATAFUCHI等的标准,将71例CKD患者根据肾脏病理严重程度分为轻度、中度和重度损伤组,他们发现随着病理评分的增加,肾脏平均ADC值逐渐降低(P<0.05),但轻度损伤组和健康对照组的平均ADC值差异无统计学意义(P>0.05)。我们的研究与LI等研究的不同点在于,首先Li等人测量的是肾脏平均ADC值,而我们分别测量了皮质和髓质的ADC值,但我们得出了类似的结果,即IF1组的cADC、mADC均低于CKD-IF0组,这说明ADC值与肾纤维化程度呈负相关;其次我们和LI等参考了不同的标准对CKD患者进行分组,我们将无IF的CKD患者单独分为一组(CKD-IF0组)从而与轻度IF进行区分,更能够反映早期CKD患者的肾脏改变,我们研究结果显示CKD-IF0组的cADC、mADC与对照组差异无统计学意义,但IF1组的cADC、mADC均低于对照组,该结果说明我们的分组更细致且更有意义,与LI等得出的轻度损伤组和健康对照组的平均ADC值差异无统计学意义的结果相比,我们将CKD-IF0组区分出来后,轻度IF的IF1组与对照组的皮髓质ADC值差异有统计学意义。

       由于对照组和CKD-IF0组的eGFR差异无统计学意义,且对照组和CKD-IF0组的cT1、mT1、cADC、mADC差异均无统计学意义,因此我们将健康对照组和CKD-IF0组合并为IF0组,用以代表所有无IF的人群,并以此来观察有或无IF的肾脏在MRI上的表现差异。经统计学分析我们发现IF1组的cT1、mT1高于IF0组,cADC、mADC低于IF0组,该结果说明MRI指标能够区分出肾脏有或无IF,我们从病理学角度分析了该结果:(1)CKD伴发的肾脏炎症、氧化应激等损伤会引起细胞肿胀和间质水肿,使得T1弛豫时间延长,由于间质细胞外基质积聚、肾小管萎缩导致肾脏间质空间扩大,引起含水量增加,T1值随之升高;(2)IF会引起肾间质细微组织结构扭曲和纤维胶原沉积,导致组织中水分子的布朗运动受限,使ADC值降低。

3.2 MRI定量参数与肾功能eGFR的相关性

       在本研究中我们将影像学指标(cT1、mT1、cADC、mADC)进一步与临床指标eGFR做相关性分析发现,所有入组患者的cT1与eGFR呈中度负相关,cADC与eGFR呈中度正相关。这一点佐证了FRIEDLI等[17]、GRAHAM-BROWN等[18]和DILLMAN等[28]在既往的研究中发现的cT1、cADC与eGFR的相关性,这表明用cT1或cADC来评估肾功能是可行的。但在本研究中,mT1、mADC与eGFR无显著性相关,这可能是由于肾脏髓质的水合情况较皮质更为复杂[29]。因此,mT1和mADC能否很好地评估肾功能还需进一步研究。

3.3 MRI定量参数辅助eGFR鉴别有无肾IF的效能

       在用eGFR、cT1、mT1、cADC、mADC对肾脏IF程度的诊断效能分析中,我们发现mT1的AUC值、敏感度、特异度较cT1低,mADC的AUC值、敏感度、特异度也较cADC低,我们推测原因可能是髓质的含水量较皮质更丰富,出现IF后髓质含水量的改变不如皮质明显[30, 31, 32]。临床指标eGFR的敏感度不够,往往肾脏结构已有明显损伤时才会出现下降,因此eGFR不能早期反映肾IF。在此背景下我们在研究中发现,在临界值为1 721.2 ms时,cT1的敏感度超过了eGFR(cT1敏感度93.5%,eGFR敏感度80.6%),但cT1的特异度不高(特异度59.3%),单用cT1来反映早期肾IF容易出现较高的假阳性率。于是我们联合cT1和cADC两个影像学指标,发现cT1+cADC可以达到与eGFR相匹配的诊断效能(AUC:0.912 vs. 0.861),进一步,我们将cT1、cADC和eGFR联合后发现诊断效能最高(AUC值0.963,敏感度87.1%,特异度96.3%)。这表明cT1和cADC能够辅助eGFR更好地识别早期肾脏损伤。

3.4 局限性及展望

       本研究尚存在以下局限性:(1)本研究为单中心研究,样本量相对不足,未来需要扩大样本量并引入外部数据进行验证;(2)CKD组经肾活检证实无IF(CKD-IF0组)的病例数相对不足,同时将健康对照组纳入IF0组,可能会产生偏倚,对研究结果产生影响;(3)本研究为横断面研究,未来还需要进行纵向研究,进一步探索影像学标志物的价值。

4 结论

       综上,T1 mapping和DWI可无创且有效地鉴别肾脏IF,二者均在CKD的诊断评估中具有潜在临床应用价值,联合应用有望辅助eGFR进一步提高早期识别肾脏组织结构损伤的能力,为临床更早地发现CKD提供有力参考。

[1]
KOVESDY C P. Epidemiology of chronic kidney disease: an update 2022[J]. Kidney Int Suppl, 2022, 12(1): 7-11. DOI: 10.1016/j.kisu.2021.11.003.
[2]
COCKWELL P, FISHER L A. The global burden of chronic kidney disease[J]. Lancet, 2020, 395(10225): 662-664. DOI: 10.1016/S0140-6736(19)32977-0.
[3]
SHLIPAK M G, TUMMALAPALLI S L, BOULWARE L E, et al. The case for early identification and intervention of chronic kidney disease: conclusions from a Kidney Disease: improving Global Outcomes (KDIGO) Controversies Conference[J]. Kidney Int, 2021, 99(1): 34-47. DOI: 10.1016/j.kint.2020.10.012.
[4]
RUIZ-ORTEGA M, RAYEGO-MATEOS S, LAMAS S, et al. Targeting the progression of chronic kidney disease[J]. Nat Rev Nephrol, 2020, 16(5): 269-288. DOI: 10.1038/s41581-019-0248-y.
[5]
REISS A B, JACOB B, ZUBAIR A, et al. Fibrosis in chronic kidney disease: pathophysiology and therapeutic targets[J/OL]. J Clin Med, 2024, 13(7): 1881 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/38610646/. DOI: 10.3390/jcm13071881.
[6]
QUINN G Z, ABEDINI A, LIU H B, et al. Renal histologic analysis provides complementary information to kidney function measurement for patients with early diabetic or hypertensive disease[J]. J Am Soc Nephrol, 2021, 32(11): 2863-2876. DOI: 10.1681/ASN.2021010044.
[7]
LUCIANO R L, MOECKEL G W. Update on the native kidney biopsy: core curriculum 2019[J]. Am J Kidney Dis, 2019, 73(3): 404-415. DOI: 10.1053/j.ajkd.2018.10.011.
[8]
袁春艳, 何群鹏, 黄耀禹. 超声引导下经皮肾穿刺活检术后出血并发症及原因分析[J]. 医学影像学杂志, 2023, 33(04): 719-721. DOI: 1006-9011(2023)04-0719-03.
YUAN C Y, HE Q P, HUANG Y Y. Analysis of influencing factors of perirenal and subcapsular hematoma after ultrasound-guided percutaneous renal biopsy[J]. J Med Imag, 2023, 33(04): 719-721. DOI: 1006-9011(2023)04-0719-03.
[9]
BUCHANAN C E, MAHMOUD H, COX E F, et al. Quantitative assessment of renal structural and functional changes in chronic kidney disease using multi-parametric magnetic resonance imaging[J]. Nephrol Dial Transplant, 2020, 35(6): 955-964. DOI: 10.1093/ndt/gfz129.
[10]
HUA C C, QIU L, ZHOU L T, et al. Value of multiparametric magnetic resonance imaging for evaluating chronic kidney disease and renal fibrosis[J]. Eur Radiol, 2023, 33(8): 5211-5221. DOI: 10.1007/s00330-023-09674-1.
[11]
FRANCIS S T, SELBY N M, TAAL M W. Magnetic resonance imaging to evaluate kidney structure, function, and pathology: moving toward clinical application[J]. Am J Kidney Dis, 2023, 82(4): 491-504. DOI: 10.1053/j.ajkd.2023.02.007.
[12]
CAROLI A, SCHNEIDER M, FRIEDLI I, et al. Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology: a systematic review and statement paper[J/OL]. Nephrol Dial Transplant, 2018, 33(suppl_2): ii29-ii40 [2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/30137580/. DOI: 10.1093/ndt/gfy163.
[13]
MAO W, ZHOU J J, ZENG M S, et al. Intravoxel incoherent motion diffusion-weighted imaging for the assessment of renal fibrosis of chronic kidney disease: a preliminary study[J]. Magn Reson Imaging, 2018, 47: 118-124. DOI: 10.1016/j.mri.2017.12.010.
[14]
ALABED S, SAUNDERS L, GARG P, et al. Myocardial T1-mapping and extracellular volume in pulmonary arterial hypertension: a systematic review and meta-analysis[J]. Magn Reson Imaging, 2021, 79: 66-75. DOI: 10.1016/j.mri.2021.03.011.
[15]
UGANDER M. Exercise CMR T1 mapping for myocardial ischemia testing: No gad, No drugs, No problem?[J]. JACC Cardiovasc Imaging, 2020, 13(3): 681-683. DOI: 10.1016/j.jcmg.2019.06.005.
[16]
WANG Q, LIU H F, ZHU Z H, et al. Feasibility of T1 mapping with histogram analysis for the diagnosis and staging of liver fibrosis: Preclinical results[J]. Magn Reson Imaging, 2021, 76: 79-86. DOI: 10.1016/j.mri.2020.11.006.
[17]
FRIEDLI I, CROWE L A, BERCHTOLD L, et al. New magnetic resonance imaging index for renal fibrosis assessment: a comparison between diffusion-weighted imaging and T1 mapping with histological validation[J/OL]. Sci Rep, 2016, 6: 30088 [2024-06-25]. https://pubmed.ncbi.nlm.nih.gov/27439482/. DOI: 10.1038/srep30088.
[18]
GRAHAM-BROWN M P, SINGH A, WORMLEIGHTON J, et al. Association between native T1 mapping of the kidney and renal fibrosis in patients with IgA nephropathy[J/OL]. BMC Nephrol, 2019, 20(1): 256 [2024-06-25]. https://pubmed.ncbi.nlm.nih.gov/31296183/. DOI: 10.1186/s12882-019-1447-2.
[19]
王悦, 鞠烨, 卜欣淼, 等. 初探T1 mapping和APTw成像对慢性肾病的诊断价值[J]. 磁共振成像, 2023, 14(2): 56-60, 67. DOI: 10.12015/issn.1674-8034.2023.02.010.
WANG Y, JU Y, BU X M, et al. The diagnostic value of T1 mapping and APTw imaging in chronic kidney disease[J]. Chin J Magn Reson Imag, 2023, 14(2): 56-60, 67. DOI: 10.12015/issn.1674-8034.2023.02.010.
[20]
SHI Z Y, SUN C, ZHOU F, et al. Native T1-mapping as a predictor of progressive renal function decline in chronic kidney disease patients[J/OL]. BMC Nephrol, 2024, 25(1): 121 [2024-06-20]. https://pubmed.ncbi.nlm.nih.gov/38575883/. DOI: 10.1186/s12882-024-03559-1.
[21]
索朗尼玛, 冒炜, 曾蒙苏, 等. T1-mapping评估慢性肾病肾功能损伤的价值[J]. 放射学实践, 2023, 38(8): 1039-1043. DOI: 10.13609/j.cnki.1000-0313.2023.08.014.
SUO LANG N M, MAO W, ZENG M S, et al. The value of T1-mapping to evaluate renal function injury in chronic kidney disease[J]. Radiol Pract, 2023, 38(8): 1039-1043. DOI: 10.13609/j.cnki.1000-0313.2023.08.014.
[22]
SELBY N M, BLANKESTIJN P J, BOOR P, et al. Magnetic resonance imaging biomarkers for chronic kidney disease: a position paper from the European Cooperation in Science and Technology Action PARENCHIMA[J/OL]. Nephrol Dial Transplant, 2018, 33(suppl_2): ii4-ii14 [2024-05-28]. https://pubmed.ncbi.nlm.nih.gov/30137584/. DOI: 10.1093/ndt/gfy152.
[23]
KIDNEY DISEASE: IMPROVING GLOBAL OUTCOMES DIABETES WORK GROUP. KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease[J/OL]. Kidney Int, 2022, 102(5S): S1-S127 [2024-06-10]. https://pubmed.ncbi.nlm.nih.gov/36272764/. DOI: 10.1016/j.kint.2022.06.008.
[24]
LEVEY A S, STEVENS L A, SCHMID C H, et al. A new equation to estimate glomerular filtration rate[J]. Ann Intern Med, 2009, 150(9): 604-612. DOI: 10.7326/0003-4819-150-9-200905050-00006.
[25]
WEI C G, ZENG Y, ZHANG R, et al. Native T1 mapping for non-invasive quantitative evaluation of renal function and renal fibrosis in patients with chronic kidney disease[J]. Quant Imaging Med Surg, 2023, 13(8): 5058-5071. DOI: 10.21037/qims-22-1304.
[26]
MARIANI L H, MARTINI S, BARISONI L, et al. Interstitial fibrosis scored on whole-slide digital imaging of kidney biopsies is a predictor of outcome in proteinuric glomerulopathies[J]. Nephrol Dial Transplant, 2018, 33(2): 310-318. DOI: 10.1093/ndt/gfw443.
[27]
LI Q H, LI J N, ZHANG L, et al. Diffusion-weighted imaging in assessing renal pathology of chronic kidney disease: A preliminary clinical study[J]. Eur J Radiol, 2014, 83(5): 756-762. DOI: 10.1016/j.ejrad.2014.01.024.
[28]
DILLMAN J R, BENOIT S W, GANDHI D B, et al. Multiparametric quantitative renal MRI in children and young adults: comparison between healthy individuals and patients with chronic kidney disease[J]. Abdom Radiol (NY), 2022, 47(5): 1840-1852. DOI: 10.1007/s00261-022-03456-x.
[29]
MORA-GUTIÉRREZ J M, FERNÁNDEZ-SEARA M A, ECHEVERRIA-CHASCO R, et al. Perspectives on the role of magnetic resonance imaging (MRI) for noninvasive evaluation of diabetic kidney disease[J/OL]. J Clin Med, 2021, 10(11): 2461 [2024-06-10]. https://pubmed.ncbi.nlm.nih.gov/36272764/. DOI: 10.3390/jcm10112461.
[30]
ALNAZER I, BOURDON P, URRUTY T, et al. Recent advances in medical image processing for the evaluation of chronic kidney disease[J/OL]. Med Image Anal, 2021, 69: 101960 [2024-05-13]. https://pubmed.ncbi.nlm.nih.gov/33517241/. DOI: 10.1016/j.media.2021.101960.
[31]
GBD CHRONIC KIDNEY DISEASE COLLABORATION. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2020, 395(10225): 709-733. DOI: 10.1016/S0140-6736(20)30045-3.
[32]
DEKKERS I A, PAIMAN E H M, DE VRIES A P J, et al. Reproducibility of native T1 mapping for renal tissue characterization at 3T[J]. J Magn Reson Imaging, 2019, 49(2): 588-596. DOI: 10.1002/jmri.26207.

上一篇 表观扩散系数在预测肝泡状棘球蚴病发生远处转移的临床价值
下一篇 磁共振结合临床指标对优化O-RADS MRI 4分肿块风险分层的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2