分享:
分享到微信朋友圈
X
技术研究
5.0 T磁共振呼吸触发和单次屏气两种胰胆管成像序列价值比较
胡翀 王朋 何野 李少朋 音大为 纵然 邓克学

Cite this article as: HU C, WANG P, HE Y, et al. Comparison of respiratory-triggered and breath-holding sequences on 5.0 T magnetic resonance cholangiopancreatography[J]. Chin J Magn Reson Imaging, 2024, 15(11): 130-135, 152.本文引用格式:胡翀, 王朋, 何野, 等. 5.0 T磁共振呼吸触发和单次屏气两种胰胆管成像序列价值比较[J]. 磁共振成像, 2024, 15(11): 130-135, 152. DOI:10.12015/issn.1674-8034.2024.11.020.


[摘要] 目的 对比5.0 T超高场强磁共振中呼吸触发三维磁共振胰胆管成像(respiratory-triggered three-dimensional magnetic resonance cholangiopancreatography, RT-3D MRCP)和单次屏气三维磁共振胰胆管成像(breath-holding three-dimensional magnetic resonance cholangiopancreatography, BH-3D MRCP)的成像效果。材料与方法 回顾性分析50例(男23例,女27例)行5.0 T RT-3D MRCP和BH-3D MRCP患者检查结果。对所有患者的RT-3D MRCP和BH-3D MRCP图像进行主观评分及客观数据收集比较。主观评分包括对总体图像质量、图像伪影、胆总管、左肝总管、右肝总管、右前支、右后支、第2节支、第3节支、胰管及胆囊管进行4分制评分,客观数据包括图像信噪比(signal to noise ratio, SNR)、对比度(contrast ratio, CR)、对比噪声比(contrast to noise ratio, CNR)。采用配对t检验及Wilcoxon符号秩检验进行组间分析。采用Spearman相关分析方法分析年龄、性别、腹痛症状及身体质量指数(body mass index, BMI)与主观评分之间的相关性。结果 RT-3D MRCP组SNR、CR、CNR均大于BH-3D MRCP组(P均<0.001);主观评分RT-3D MRCP在总体图像质量、图像伪影、胆总管、左肝总管、右肝总管、右前支、右后支、第2节支、第3节支、胰管及胆囊管评分也优于BH-3D MRCP序列(P均<0.01);BMI与RT-3D MRCP图像伪影评分呈负相关(r=-0.330,P=0.019);有腹痛患者RT-3D MRCP总体图像质量及伪影评分低于无腹痛患者(P=0.011、0.013)。结论 5.0 T场强下,对于一般患者,RT-3D MRCP成像效果优于BH-3D MRCP,但对于有腹痛症状及BMI过大患者则可优先考虑BH-3D MRCP序列扫描。
[Abstract] Objective To compare the imaging effects of respiratory-triggered three-dimensional magnetic resonance cholangiopancreatography (RT-3D MRCP) and single breath-holding three-dimensional magnetic resonance cholangiopancreatography (BH-3D MRCP) in 5.0 T ultra-high field magnetic resonance imaging.Materials and Methods The results of 50 patients (23 males and 27 females) who underwent 5.0 T RT-3D MRCP and BH-3D MRCP were retrospectively analyzed. RT-3D MRCP and BH-3D MRCP images of all patients were subjectively scored and compared with objective data collection. The subjective score included the overall image quality, image artifacts, common bile duct, left hepatic duct, right hepatic duct, right anterior branch, right posterior branch, second and third branches, pancreatic duct and gallbladder duct. The objective data included image signal-to-noise ratio (SNR), contrast ratio (CR) and contrast-to-noise ratio (CNR). The paired t test and Wilcoxon signed rank test were used for intergroup analysis. Spearman correlation analysis was used to analyze the correlation between age, gender, abdominal pain symptoms, body mass index (BMI) and subjective scores.Results SNR, CR and CNR in RT-3D MRCP group were higher than those in BH-3D MRCP group (P<0.001). RT-3D MRCP was also superior to BH-3D MRCP sequences in overall image quality, image artifacts, common bile duct, left hepatic duct, right hepatic duct, right anterior branch, right posterior branch, second and third branch, pancreatic duct and gallbladder duct by subjective score (P<0.01). BMI was negatively correlated with RT-3D MRCP image artifacts (r=-0.330, P=0.019). The overall image quality and image artifacts score of RT-3D MRCP in patients with abdominal pain were lower than those without abdominal pain (P=0.011, 0.013).Conclusions At 5.0 T ultra-high field magnetic resonance imaging, RT-3D MRCP is better than BH-3D MRCP for general patients but BH-3D MRCP sequence can be given priority for patients with abdominal pain and excessive BMI.
[关键词] 磁共振胰胆管成像;磁共振成像;呼吸触发;单次屏气;图像质量评价
[Keywords] magnetic resonance cholangiopancreatography;magnetic resonance imaging;respiratory-trigger;single breath-holding;image quality evaluation

胡翀    王朋    何野    李少朋    音大为    纵然    邓克学 *  

中国科学技术大学附属第一医院(安徽省立医院)南区影像中心,合肥 230032

通信作者:邓克学,E-mail: dengkexue-anhui@163.com

作者贡献声明:邓克学设计本研究方案,对稿件重要内容进行了审阅修改;胡翀起草和撰写稿件,获取、分析及解释本研究的数据;王朋、何野、音大为分析并解释数据,参与稿件撰写;李少朋、纵然获取、分析并解释数据,对重要内容进行修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2024-05-10
接受日期:2024-11-04
中图分类号:R445.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.11.020
本文引用格式:胡翀, 王朋, 何野, 等. 5.0 T磁共振呼吸触发和单次屏气两种胰胆管成像序列价值比较[J]. 磁共振成像, 2024, 15(11): 130-135, 152. DOI:10.12015/issn.1674-8034.2024.11.020.

0 引言

       磁共振胰胆管成像(magnetic resonance cholangiopancreatography, MRCP)是一种利用胆汁具有长T2特性采用重T2WI序列结合压脂技术无创性显示胰胆管道的MRI方式,近年来广泛使用于胆道胰腺相关疾病的诊断以及预后评估,包括肝胰胆系统变异、结石、肿瘤、炎症等[1, 2]。相比其他成像方式(如CT,超声等),MRI以其优越的软组织对比度和提供胆道详细解剖信息的能力,目前已成为诊断胆管肿瘤、胆管炎等胆道疾病的首选方式[3, 4, 5]。除了肿瘤及炎症之外,在胆道结石诊断方面,MRCP与超声内镜(endoscopic ultrasound, EUS)诊断效能相似[6],由于EUS是侵入性检查,所以怀疑胆石疾病时仍应首选MRCP检查。对于胰腺疾病,MRCP亦成为诊疗过程中不可或缺的环节,其能清晰显示胰管走形,结合轴位图像能有效判别胰管变化及其与周围组织的连通及周围组织侵犯情况,对于胰腺疾病治疗以及手术方式有着明确的指导作用[7, 8]

       为了有效避免磁共振检查的伪影以及扫描时间过长问题,目前最常用MRCP成像方式为快速-自旋回波(fast spin echo/turbo spin echo, FSE/TSE)序列和梯度-自旋回波序列(gradient and spin echo, GRASE)。根据图像成像方式MRCP分为2D和3D两种,2D是单一角度观察胰胆管情况,可在数秒屏气内完成,但常由于器官重叠而遗漏重要病变信息,所以目前2D MRCP一般选择多个角度扫描全面观察病变情况[9]。3D MRCP是一种利用重组技术进行任意角度全面显示胰胆管情况的方法,根据采集方式不同可分为呼吸触发采集(respiratory triggering 3D MRCP, RT-3D MRCP)和单次屏气采集(breath-hold 3D MRCP, BH-3D MRCP),RT-3D MRCP即受检者处于自由平稳呼吸状态,采用长回波链FSE/TSE配合呼吸门控进行3D容积采集,获得原始图像后经最大信号投影(maximum intensity projection, MIP)获得效果图。BH-3D MRCP是在FSE/TSE、GRASE等序列基础上采用各种压缩感知、并行采集等加速采集技术在患者单次屏气内完成信号采集,单次屏气时长约15~20 s[10, 11, 12]

       以往研究中MRCP多是在3.0 T或1.5 T上进行[13, 14, 15],采集方式的选取一般取决于患者自身状态及屏气能力,屏气能力好可采用BH-3D MRCP,对于屏气能力差患者则首选RT-3D MRCP[16, 17, 18]。有报道称在1.5 T场强磁共振检查中,呼吸触发图像质量优于屏气图像,而在3.0 T场强磁共振中屏气图像好于呼吸触发图像[19]。但在更高场强两种MRCP采集效果如何未见相关报道,目前市场上出现可用于全身系统成像的5.0 T磁共振扫描仪,本研究旨在初步对比5.0 T磁共振中BH-3D MRCP及RT-3D MRCP的成像效果及临床应用成果。

1 材料与方法

1.1 临床资料

       回顾性分析2024年3月至2024年5月中国科学技术大学第一附属医院南区影像中心行MRCP检查患者病例及影像资料。纳入标准:(1)MRI图像资料完整,无明显伪影;(2)患者屏气能力好,单次屏气能达到20 s以上。排除标准:(1)患者一般情况差,大量腹水;(2)临床资料不全,手术史不明。本研究中疾病诊断时行胆囊切除或胰胆管探查取石术的患者以手术结果为金标准,未行手术患者以在初次行MRI后的2周内经超声成像、CT中的一种及以上的诊断结果为判断标准[20, 21]。本研究遵守《赫尔辛基宣言》,经中国科学技术大学附属第一医院医学研究伦理委员会批准,免除受试者知情同意,批准文号:2024-RE-170。

1.2 MRI检查方法

       采用联影公司5.0 T uMR Jupiter磁共振扫描仪,配备24通道体线圈和24通道脊柱线阵列连接接收器,所有患者均禁食水4 h以上,检查前对患者进行呼吸屏气训练,确保每位患者能单次屏气20 s以上,患者采用仰卧位,头先进,双手上举姿势,扫描序列包括常规腹部轴位T2WI压脂序列,冠状位T2WI序列,3D-grase-cor-fs-bh(三维屏气梯度-自旋回波压脂成像)序列即BH-3D MRCP序列,T2-mx3D-spair-trigger(三维呼吸触发自旋回波压脂成像)序列即RT-3D MRCP序列,具体参数见表1。前两个序列定位胆总管(common bile duct, CBD)和胰管位置,将BH-3D MRCP和RT-3D MRCP序列的扫描角度平行于主胰管行3D容积采集得到原始图像,利用主机自带图像后处理功能,采用MIP技术处理得到3D效果图。

表1  两种MRCP扫描序列参数比较
Tab. 1  Comparison of parameters of two MRCP scan sequences

1.3 MRI图像分析

1.3.1 客观评价

       由1名具有10年影像工作经验的副主任医师在联影后处理工作站对所有图像进行原始定量分析。参考既往文献[22, 23, 24]在BH-3D MRCP及RT-3D-MRCP MIP图像选取CBD显示清晰且无明显伪影层面,放置感兴趣区(region of interest, ROI)于CBD、CBD周围组织和肝脏内测量信号强度(signal intensity, SI),CBD ROI面积≥5 mm2,肝脏及周围组织ROI面积≥20 mm2,肝脏ROI避开明显血管胆管组织及伪影区域,两序列所有ROI区域位置保持一致,如图1。将CBD、肝脏图像噪声分别定义为对应ROI信号强度的标准差(standard deviation,SD)。根据以下公式1~3定义图像信噪比(signal noise ratio,SNR)、胆管与周围组织对比度(contrast ratio,CR)、CBD和肝脏之间的对比噪声比(contrast to noise ratio,CNR)。

图1  感兴趣区(ROI)勾画及测量示意图。将ROI分别放置在胆总管,胆总管周围区域以及肝脏区域(避开明显血管及胆管),测量各ROI的平均信号强度及标准差。
Fig. 1  Diagram of region of interest (ROI) delineation and measurement. ROIs are placed in the common bile duct, the area around the common bile duct, and the liver (avoiding obvious blood vessels and bile ducts), the mean signal intensity and standard deviation of each ROIs are measured.

1.3.2 主观评价

       由两名分别具有10年和8年影像诊断经验的副主任医师和主治医师在不知晓患者病史情况下独立评阅后处理图像。窗宽窗位根据评阅者习惯调节,3D图像可任意旋转角度进行观察,以对分支及病变观察清楚为准,分别对整体图像质量、图像伪影、CBD、左肝总管、右肝总管、右前支、右后支、第2节支、第3节支、胰管、胆囊管显示情况进行4分制评分,评分标准参考既往文献[24]。整体图像质量:分为好、良、一般、差四类,分别打分为4、3、2、1分。图像伪影:1分,大量伪影,正常管道结构不可见;2分,部分伪影,部分管道结构不可见,不能满足诊断;3分,少许伪影影响正常结构,通过角度转换可满足诊断;4分,无明显伪影,各结构显示良好。CBD、左肝总管、右肝总管、右前肝管、右后肝管、第2节支、第3节支、胰管、胆囊管可见度评分:1分,管道几乎不可见;2分,显示一般、部分管道图像模糊;3分,管道基本显示清楚,少量模糊图像,但可以满足诊断需求;4分,各管道走形清楚明确,各结构边缘锐利,完美可视化。两位医师图像评分有差异时引入另1名具有30年影像诊断经验的主任医师进行图像评分,以其评分结果为准得出结论,最终评分为3分及以上图像则满足诊断要求。

1.4 统计学方法

       采用SPSS 22.0软件进行数据分析。对计数资料用频数表示,对计量资料进行Shapiro-Wilk正态性检验,符合分布的结果采取(x¯±s)表示,组间比较采用配对t检验;不符合正态分布用中位数(上、下四分位数)表示,组间采用Wilcoxon配对检验。两名审阅者之间主观评分一致性采用Kappa检验(Kappa系数0.71~1.00为一致性较强;0.41~0.70为一致性中等;≤0.40为一致性较差)。采用Spearman相关分析年龄、身体质量指数(body mass index, BMI)、性别、腹痛症状等因素和两组MRCP总体图像质量及伪影主观评分的相关性。P<0.05表示检验结论具有统计学意义。

2 结果

2.1 一般资料

       本研究最终纳入50例受试者,其中男23例,女27例,年龄46.5(37.0,58.0)岁,其中胆囊结石患者26例,胆囊结石伴胆管结石患者3例,胆囊息肉2例,胆囊切除术后患者4例,阴性15例,详见表2

表2  基本信息及单因素与主观评分相关性研究结果
Tab. 2  Results of basic information and correlation between single factor and subjective score

2.2 客观结果

       RT-3D-MRCP组SNR、CR、CNR均优于BH-3D-MRCP组(P均<0.001),详见表3

表3  两组MRCP客观评分比较
Tab. 3  Comparison of MRCP objective scores between the two groups

2.3 主观结果

       两名审阅者之间主观评分一致性较强(Kappa值为0.790~1.000)。RT-3D MRCP组总体图像质量、图像伪影、CBD、右肝管、左肝管、右前支、右后支、第2节支、第3节支、胰管和胆囊管主观评分均优于BH-3D-MRCP组(P<0.01),详见表4。BH-3D MRCP图像中第2节支、第3节支以及胰管图像显示效果差,不能达到诊断要求;而呼吸触发序列中此三分支均能基本满足诊断要求,如图2。BH-3D MRCP以及RT-3D MRCP对于胆囊管显示评分分别为1.00(1.00,2.00),2.00(1.00,3.00)分,均不能满足诊断要求(图3)。

图2  女,37岁,MRCP检查阴性。2A:RT-3D-MRCP序列,扫描时长186秒,胆总管及各级分支、胆囊管、胰管显示良好,主观评分均为4分;2B:BH-3D-MRCP序列,屏气扫描17秒,胆总管主观评分3分、左肝管、右肝管主观评分2分,第2、3节支及胆囊管、胰管均显示不清,主观评分1分。MRCP:磁共振胰胆管成像;RT-3D-MRCP:呼吸触发三维MRCP;BH-3D-MRCP:单次屏气三维MRCP。
Fig. 2  Female, 37 years old, MRCP test negative. 2A: RT-3D-MRCP sequence, scanning duration is 186 seconds, the common bile duct and all levels of branches, gallbladder duct, pancreatic duct showed good, the subjective score was 4 points; 2B: BH-3D-MRCP sequence, breath holding scan for 17 seconds, the subjective score of the common bile duct was 3 points, the subjective score of the left hepatic duct and the right hepatic duct was 2 points, the second and third branches, the cystic duct and the pancreatic duct were not clear, the subjective score was 1 point. MRCP: magnetic resonance cholangiopancreatography; RT-3D-MRCP: respiratory-triggered three-dimensional MRCP; BH-3D-MRCP: breath-holding three-dimensional MRCP.
图3  女,38岁,常规体检发现胆囊颈部结石。3A~3B:分别为RT-3D-MRCP序列,扫描时长132秒和BH-3D-MRCP序列,屏气扫描时长17秒,两图均显示胆囊颈部低信号(箭),胆囊管显示不清,主观评分均为1分;3C:轴位T2序列,显示胆囊颈部结石(箭)。MRCP:磁共振胰胆管成像;RT-3D-MRCP:呼吸触发三维MRCP;BH-3D-MRCP:单次屏气三维MRCP。
Fig. 3  Female, 38 years old, routine physical examination found gallbladder and neck stones. 3A-3B: RT-3D-MRCP sequence (3A), scanning time 132 seconds, BH-3D-MRCP sequence (3B), breath-holding scanning duration of 17 seconds, both images shows low signal in the neck of the gallbladder (arrow), unclear display of the gallbladder duct, and the subjective score was 1. 3C: Axial T2 sequence, show gallbladder neck stones (arrow). MRCP: magnetic resonance cholangiopancreatography; RT-3D-MRCP: respiratory-triggered three-dimensional MRCP; BH-3D-MRCP: breath-holding three-dimensional MRCP.
表4  两组MRCP总体及各节段主观评分比较
Tab. 4  Comparison of overall MRCP and subjective scores of each segment between the two groups

2.4 单因素对MRCP主观评分的相关性研究结果

       BMI与RT-3D MRCP伪影主观评分呈负相关(P=0.019),与BH-3D MRCP伪影主观评分无明显相关性。无腹痛症状患者RT-3D MRCP整体图像及伪影的主观评分均优于有腹痛症状者(P=0.011、0.013)。详见表2图4

图4  男,29岁,腹痛数天就诊。4A:RT-3D-MRCP序列,扫描时长148秒,左肝管、右肝管及各级分支显示模糊,主观评分1~2分;4B:BH-3D-MRCP序列,屏气扫描时长17秒,左肝管、右肝管、右前支、右后支显示较4A分辨率更高,主观评分2~4分;4C:轴位T2序列显示胆囊颈部结石伴胆囊壁增厚(箭)。MRCP:磁共振胰胆管成像;RT-3D-MRCP:呼吸触发三维MRCP;BH-3D-MRCP:单次屏气三维MRCP。
Fig. 4  Male, 29 years old, presented with abdominal pain for several days. 4A: RT-3D-MRCP sequence, scanning duration 148 seconds, the left hepatic duct, right hepatic duct and branches at all levels shows fuzzy, subjective score 1-2 points; 4B: BH-3D-MRCP sequence, the breath holding scan lasted 17 seconds, the left hepatic duct, right hepatic duct, right anterior branch and right posterior branch shows higher resolution than 4A, and the subjective score was 2-4 points. 4C: Axial T2 sequence shows gallbladder neck stones with thickening of the gallbladder wall (arrow). MRCP: magnetic resonance cholangiopancreatography; RT-3D-MRCP: respiratory-triggered three-dimensional MRCP; BH-3D-MRCP: breath-holding three-dimensional MRCP.

3 讨论

       本研究首次利用5.0 T超高场强磁共振对比了屏气与自由呼吸两种MRCP成像方式的图像质量,并且分析了可能影响图像质量的相关因素。结果显示RT-3D MRCP序列SNR、CR、CNR均优于BH-3D MRCP序列,主观评分中总体评分、图像伪影、CBD、右肝管、左肝管、右前支、右后支、第2节段、第3节段、肝内胆管及胰管评分对比中,RT-3D MRCP序列也优于BH-3D MRCP序列。RT-3D MRCP伪影主观评分与BMI呈负相关,RT-3D MRCP伪影及整体图像质量主观评分与是否具有腹部症状具有相关性。本研究对于超高场强磁共振中MRCP图像质量评价以及临床工作中MRCP成像序列的选择具有可靠参考价值。

3.1 呼吸触发以及屏气序列MRCP磁共振参数分析

       本研究结果显示主客观评分RT-3D MRCP均优于BH-3D MRCP,与郑恩双等[22]研究结果相似,其主要原因为:(1)屏气序列中TR时间短,信号强度弱;(2)屏气序列中TE较短,T1效应明显导致CBD信号减低,噪声相对较高,BLAISE等[19]研究结果亦指出无论是1.5 T还是3.0 T序列,屏气序列的背景噪声均大于自由触发序列;(3)呼吸触发序列中的长回波链可以使T2回波信号趋于平缓,减少图像模糊程度。但在YOSHIDA等[25]之前的3 T研究中,SNR与CNR在屏气序列中表现较优,可能原因是:(1)该研究两序列回波链之比为79∶14,而本研究中回波链之比为182∶33,回波链越长,图像质量越高;(2)该研究呼吸触发采集时间过长(6 min 27 s),大于本研究对应序列采集时间(216.14±50.55)s,患者检查时间过长,腹部呼吸不均匀所致。除此之外,在本研究中BH-3D MRCP体素(1.57 mm×1.18 mm×2.40 mm)大于RT-3D MRCP体素(1.33 mm×1.00 mm×2.40 mm),在FOV相同的情况下,其空间分辨率低于RT-3D MRCP,即对于细节(第2节支、第3节支)的显示触发序列优于屏气序列,在BH-3D MRCP扫描中如果减小矩阵,则会降低时间分辨率,使整个屏气采集时间变长,患者耐受性更差。两者之间如何做好最佳平衡此前在3.0 T、1.5 T磁场中研究中相对透彻,合适的参数能使BH-3D MRCP效果与RT-3D MRCP效果相当甚至优于RT-3D MRCP,但在高场强下研究较少,所以在5.0 T场强下如何找到BH-3D MRCP时间分辨率和空间分辨率关系最优解未来需要更多的数据来分析。

3.2 影响MRCP图像质量的其他相关因素

       本研究BH-3D MRCP以及RT-3D MRCP对于胆囊管均不能满足诊断要求,原因可能是:(1)4例患者已行胆囊切除手术,胆囊管显示不清;(2)部分患者胆囊结石过大过密,塞及胆囊管,导致胆囊管显示不清。除此之外,具有腹痛患者RT-3D MRCP图像主观评分低于无腹部症状者,其原因可能是本研究中胆囊结石患者较多(28例,56%),胆囊结石伴发胆囊炎临床症状常表现为右上腹疼痛,伴有横膈膜侵扰常伴发右肩颈背部放射性疼痛[26, 27]。而在此项检查中患者双手上举则疼痛愈加明显,在呼吸触发扫描时间较长,该过程中可能由于疼痛导致腹部呼吸不够均匀或患者位置轻微移动所致,在以往文献中较少提到此,遂对于有腹痛症状患者,扫描时间较短的BH-3D-MRCP序列可作为首选序列进行扫描。虽然本研究中BH-3D-MRCP主观评分中第2、3节支及胰管评分较低,但后续有望通过其他改善图像质量的方法来纠正,如SHIRAISHI等[28]用深度学习重建(deep-learning-based reconstruction, DLR)法对3T BH-3D MRCP进行图像降噪处理,结果显示DLR-BH-3D MRCP的SNR、CNR优于普通的BH-3D-MRCP,对于腹部呼吸不均匀的患者DLR-BH-3D MRCP效果亦优于RT-3D-MRCP。另外,本研究中BMI与RT-3D MRCP主观伪影评分呈负相关,可能是由于患者体型较大,图像各方向信号强度不均匀,容易产生介电伪影,并且由于腹部横截面积较大,而此款机器孔径较小(60 cm),加之腹部线圈覆盖,患者有一定压迫感,导致RT-3D MRCP长时间扫描过程中呼吸不均匀产生部分轻度运动伪影。

3.3 超高场强磁共振的腹部应用价值

       由于B0大小与图像SNR呈线性关系,所以在高场强下扫描具有更高的SNR以及时间分辨率,同时,高场强对运动伪影更加敏感,且由于其高SAR值及驻波效应存在,其扫描时间也进一步增加,这也是目前7.0 T及更高场强磁共振还无法应用于腹部成像的原因之一[29, 30, 31]。5.0 T的出现实现了超高场强磁共振胸腹部成像,并展现其独特优势,之前文献中[32, 33, 34]报道5.0 T磁共振在心脏、肝脏DWI中表现可观:如在ZHANG等[32]的一项比较5.0 T和3.0 T肝胰脾肾等腹部器官小视野DWI图像质量的研究结果显示,无论是自由呼吸、呼吸触发还是膈肌导航序列,5.0 T的DWI图像SNR以及解剖位置的显示细节程度均优于3.0 T,且在5.0 T三种成像方式中,呼吸触发图像质量总体评分最高(RT5.0 T为3.9±0.3分),建议在腹部高场强MRI中尽量使用呼吸触发或膈肌导航方式避免呼吸运动伪影。

3.4 本研究的局限性

       (1)患者数量少,还需要更大的样本来证实研究结果以及RT-3D-MRCP的实用性,如在屏气能力差受试群体进行验证;(2)只讨论了图像质量评分问题,而未讨论5.0 T MRCP对不同疾病的诊断效能;(3)本研究仅是对两种序列图像质量的初步探究,未引入其他如深度学习等方法提高图像质量,尤其是屏气图像质量;(4)未将5.0 T图像和3.0 T或者其他场强图像进行对比,得出不同场强下显示图像细节的差异性,这也是今后研究的方向之一。

4 结论

       5.0 T场强下,对于一般患者,RT-3D MRCP效果优于BH-3D MRCP,但对于有腹痛症状及BMI过大患者则可优先考虑BH-3D MRCP序列扫描来提供更优质量的图像。

[1]
MAHALINGAM N, RALLI G P, TROUT A T, et al. Comparison of quantitative 3D magnetic resonance cholangiography measurements obtained using three different image acquisition methods[J]. Abdom Radiol, 2022, 47(1): 196-208. DOI: 10.1007/s00261-021-03330-2.
[2]
VIDAL B P C, LAHAN-MARTINS D, PENACHIM T J, et al. MR cholangiopancreatography: what every radiology resident must know[J]. Radiographics, 2020, 40(5): 1263-1264. DOI: 10.1148/rg.2020200030.
[3]
KIDANEMARIAM S, GU J, YOON J H, et al. Cholangiocarcinoma: epidemiology and imaging-based review[J]. R I Med J, 2024, 107(5): 43-48.
[4]
TRAUNER M, HALILBASIC E, TATSCHER E, et al. Primary sclerosing cholangitis-Diagnosis and treatment 2024[J]. Inn Med, 2024, 65(4): 347-356. DOI: 10.1007/s00108-024-01697-0.
[5]
DAR F S, ABBAS Z, AHMED I, et al. National guidelines for the diagnosis and treatment of hilar cholangiocarcinoma[J]. World J Gastroenterol, 2024, 30(9): 1018-1042. DOI: 10.3748/wjg.v30.i9.1018.
[6]
AFZALPURKAR S, GIRI S, KASTURI S, et al. Magnetic resonance cholangiopancreatography versus endoscopic ultrasound for diagnosis of choledocholithiasis: an updated systematic review and meta-analysis[J]. Surg Endosc, 2023, 37(4): 2566-2573. DOI: 10.1007/s00464-022-09744-3.
[7]
CHHABRA M, GUPTA P, SHAH J, et al. Imaging diagnosis and management of fistulas in pancreatitis[J]. Dig Dis Sci, 2024, 69(2): 335-348. DOI: 10.1007/s10620-023-08173-z.
[8]
MATSUBAYASHI H, MORIZANE C. Familial and hereditary pancreatic cancer in Japan[J]. Fam Cancer, 2024, 23(3): 365-372. DOI: 10.1007/s10689-024-00395-y.
[9]
ITANI M, LALWANI N, ANDERSON M A, et al. Magnetic resonance cholangiopancreatography: pitfalls in interpretation[J]. Abdom Radiol, 2023, 48(1): 91-105. DOI: 10.1007/s00261-021-03323-1.
[10]
中华医学会放射学分会腹部学组. 磁共振胰胆管成像扫描技术及临床应用中国专家共识[J]. 磁共振成像, 2023, 14(4): 1-5, 21. DOI: 10.12015/issn.1674-8034.2023.04.001.
Abdominal Group of Chinese Society of Radiology Chinese Medical Association. Chinese expert consensus of scanning protocol and clinical application of magnetic resonance cholangiopancreatography[J]. Chin J Magn Reson Imaging, 2023, 14(4): 1-5, 21. DOI: 10.12015/issn.1674-8034.2023.04.001.
[11]
许逸超, 徐正道, 张家会, 等. 三维屏气梯度-自旋回波序列在MR胰胆管成像中的应用[J]. 中华放射学杂志, 2021, 55(1): 64-69. DOI: 10.3760/cma.j.cn112149-20200215-00160.
XU Y C, XU Z D, ZHANG J H, et al. The application of three-dimensional breath-hold gradient and spin-echo sequence in the MR cholangiopancreatography[J]. Chin J Radiol, 2021, 55(1): 64-69. DOI: 10.3760/cma.j.cn112149-20200215-00160.
[12]
CHIEN, CHIU F M, SHEN Y C, et al. Magnetic resonance cholangiopancreatography at 3T in a single breath-hold: comparative effectiveness between three-dimensional (3D) gradient- and spin-echo and two-dimensional (2D) thick-slab fast spin-echo acquisitions[J]. Quant Imaging Med Surg, 2020, 10(6): 1265-1274. DOI: 10.21037/qims.2020.04.14.
[13]
许逸超, 尹李俊, 徐正道, 等. 3D BH-GRASE序列MRCP对肝外胆系结石诊断价值的初步研究[J]. 磁共振成像, 2023, 14(11): 62-67, 83. DOI: 10.12015/issn.1674-8034.2023.11.011.
XU Y C, YIN L J, XU Z D, et al. Preliminary study on the diagnosis of 3D BH-GRASE sequence MRCP in extrahepatic cholelithiasis[J]. Chin J Magn Reson Imag, 2023, 14(11): 62-67, 83. DOI: 10.12015/issn.1674-8034.2023.11.011.
[14]
王梦珂, 白岩, 孟楠, 等. 常规胰胆管成像与压缩感知胰胆管成像对胰胆系显示的对比[J]. 磁共振成像, 2021, 12(3): 30-33. DOI: 10.12015/issn.1674-8034.2021.03.007.
WANG M K, BAI Y, MENG N, et al. Comparison of conventional cholangiopancreatography and compressed sensing cholangiopancreatography in the display of biliary dilatation and pancreatic duct dilatation[J]. Chin J Magn Reson Imag, 2021, 12(3): 30-33. DOI: 10.12015/issn.1674-8034.2021.03.007.
[15]
魏志民, 宋玉坤, 韩海伟, 等. 对比分析屏气三维梯度-自旋回波与呼吸门控触发三维快速自旋回波MR胰胆管成像[J]. 中国医学影像技术, 2020, 36(8): 1234-1238. DOI: 10.13929/j.issn.1003-3289.2020.08.027.
WEI Z M, SONG Y K, HAN H W, et al. Comparison on three-dimensional MR cholangiopancreatography with breath-hold gradient-spin echo and respiratory gated triggering turbo-spin echo[J]. Chin J Med Imag Technol, 2020, 36(8): 1234-1238. DOI: 10.13929/j.issn.1003-3289.2020.08.027.
[16]
KIM Y, LEE E S, PARK H J, et al. Comparison between conventional breath-hold and respiratory-triggered magnetic resonance cholangiopancreatography with and without compressed sensing: cross-sectional study[J/OL]. Curr Med Imaging, 2023 [2024-05-02]. https://pubmed.ncbi.nlm.nih.gov/37018526/. DOI: 10.2174/1573405620666230328093206.
[17]
MORIMOTO-ISHIKAWA D, HYODO T, TAKENAKA M, et al. Comparison between gradient and spin-echo (GRASE) and compressed sensing sequences for single breath-hold three-dimensional magnetic resonance cholangiopancreatography in patients with T1 hyperintense bile[J/OL]. Eur J Radiol, 2022, 150: 110279 [2024-05-02]. https://pubmed.ncbi.nlm.nih.gov/35364450/. DOI: 10.1016/j.ejrad.2022.110279.
[18]
TARON J, WEISS J, NOTOHAMIPRODJO M, et al. Acceleration of magnetic resonance cholangiopancreatography using compressed sensing at 1.5 and 3 T: a clinical feasibility study[J]. Invest Radiol, 2018, 53(11): 681-688. DOI: 10.1097/RLI.0000000000000489.
[19]
BLAISE H, REMEN T, AMBARKI K, et al. Comparison of respiratory-triggered 3D MR cholangiopancreatography and breath-hold compressed-sensing 3D MR cholangiopancreatography at 1.5T and 3T and impact of individual factors on image quality[J/OL]. Eur J Radiol, 2021, 142: 109873 [2024-05-02]. https://pubmed.ncbi.nlm.nih.gov/34371309/. DOI: 10.1016/j.ejrad.2021.109873.
[20]
SONG J S, KIM S H, KUEHN B, et al. Optimized breath-hold compressed-sensing 3D MR cholangiopancreatography at 3T: image quality analysis and clinical feasibility assessment[J/OL]. Diagnostics, 2020, 10(6): 376 [2024-05-02]. https://pubmed.ncbi.nlm.nih.gov/32517113/. DOI: 10.3390/diagnostics10060376.
[21]
MEERALAM Y, AL-SHAMMARI K, YAGHOOBI M. Diagnostic accuracy of EUS compared with MRCP in detecting choledocholithiasis: a meta-analysis of diagnostic test accuracy in head-to-head studies[J]. Gastrointest Endosc, 2017, 86(6): 986-993. DOI: 10.1016/j.gie.2017.06.009.
[22]
郑恩双, 薛蕴菁, 孙斌, 等. 单次屏气3D-SPACE序列MR胰胆管成像技术的可行性初探[J]. 中华放射学杂志, 2020, 54(8): 799-803. DOI: 10.3760/cma.j.cn112149-20190921-00438.
ZHENG E S, XUE Y J, SUN B, et al. Feasibility of single breath holding 3D-SPACE MR cholangiopancreatography: a preliminary study[J]. Chin J Radiol, 2020, 54(8): 799-803. DOI: 10.3760/cma.j.cn112149-20190921-00438.
[23]
YOKOYAMA K, NAKAURA T, IYAMA Y, et al. Usefulness of 3D hybrid profile order technique with 3T magnetic resonance cholangiography: comparison of image quality and acquisition time[J]. J Magn Reson Imaging, 2016, 44(5): 1346-1353. DOI: 10.1002/jmri.25289.
[24]
ITATANI R, NAMIMOTO T, KUSUNOKI S, et al. Usefulness of the short-echo time cube sequence at 3-T magnetic resonance cholangiopancreatography: prospective comparison with the conventional 3-dimensional fast spin-echo sequence[J]. J Comput Assist Tomogr, 2016, 40(4): 551-556. DOI: 10.1097/RCT.0000000000000401.
[25]
YOSHIDA M, NAKAURA T, INOUE T, et al. Magnetic resonance cholangiopancreatography with GRASE sequence at 3.0T: does it improve image quality and acquisition time as compared with 3D TSE?[J]. Eur Radiol, 2018, 28(6): 2436-2443. DOI: 10.1007/s00330-017-5240-y.
[26]
LAM R, ZAKKO A, PETROV J C, et al. Gallbladder disorders: a comprehensive review[J/OL]. Dis Mon, 2021, 67(7): 101130 [2024-05-02]. https://pubmed.ncbi.nlm.nih.gov/33478678/. DOI: 10.1016/j.disamonth.2021.101130.
[27]
SCHIRMER B D, WINTERS K L, EDLICH R F. Cholelithiasis and cholecystitis[J]. J Long Term Eff Med Implants, 2005, 15(3): 329-338. DOI: 10.1615/jlongtermeffmedimplants.v15.i3.90.
[28]
SHIRAISHI K, NAKAURA T, UETANI H, et al. Deep learning-based reconstruction and 3D hybrid profile order technique for MRCP at 3T: evaluation of image quality and acquisition time[J]. Eur Radiol, 2023, 33(11): 7585-7594. DOI: 10.1007/s00330-023-09703-z.
[29]
SHI Z, ZHAO X Y, ZHU S, et al. Time-of-flight intracranial MRA at 3 T versus 5 T versus 7 T: visualization of distal small cerebral arteries[J/OL]. Radiology, 2022, 305(3): E72 [2024-05-02]. https://pubmed.ncbi.nlm.nih.gov/36040333/. DOI: 10.1148/radiol.229027.
[30]
LADD M E, BACHERT P, MEYERSPEER M, et al. Pros and cons of ultra-high-field MRI/MRS for human application[J]. Prog Nucl Magn Reson Spectrosc, 2018, 109: 1-50. DOI: 10.1016/j.pnmrs.2018.06.001.
[31]
BOER A D, HOOGDUIN J M, BLANKESTIJN P J, et al. 7 T renal MRI: challenges and promises[J]. MAGMA, 2016, 29(3): 417-433. DOI: 10.1007/s10334-016-0538-3.
[32]
ZHANG Y F, SHENG R F, YANG C, et al. Higher field reduced FOV diffusion-weighted imaging for abdominal imaging at 5.0 Tesla: image quality evaluation compared with 3.0 Tesla[J/OL]. Insights Imaging, 2023, 14(1): 171 [2024-05-02]. https://pubmed.ncbi.nlm.nih.gov/37840062/. DOI: 10.1186/s13244-023-01513-7.
[33]
LIN L, LIU P J, SUN G, et al. Bi-ventricular assessment with cardiovascular magnetic resonance at 5 Tesla: a pilot study[J/OL]. Front Cardiovasc Med, 2022, 9: 913707 [2024-05-02]. https://pubmed.ncbi.nlm.nih.gov/36172590/. DOI: 10.3389/fcvm.2022.913707.
[34]
ZHANG Y F, YANG C, LIANG L, et al. Preliminary experience of 5.0 T higher field abdominal diffusion-weighted MRI: agreement of apparent diffusion coefficient with 3.0 T imaging[J]. J Magn Reson Imaging, 2022, 56(4): 1009-1017. DOI: 10.1002/jmri.28097.

上一篇 三维高分辨压缩感知对比增强全身MRA技术的可行性研究
下一篇 基于复合灵敏度编码的小视野扩散加权成像在宫颈癌中的临床价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2