分享:
分享到微信朋友圈
X
综述
阻塞性睡眠呼吸暂停患者脑结构及功能磁共振成像研究进展
孙利强 李琳 胡婧 刘丽莹 崔凯歌 杨冀萍 贾娟 于佳琪

Cite this article as: SUN L Q, LI L, HU J, et al. The progress of brain structural and functional magnetic resonance imaging in patients with obstructive sleep apnea[J]. Chin J Magn Reson Imaging, 2024, 15(11): 160-168.本文引用格式:孙利强, 李琳, 胡婧, 等. 阻塞性睡眠呼吸暂停患者脑结构及功能磁共振成像研究进展[J]. 磁共振成像, 2024, 15(11): 160-168. DOI:10.12015/issn.1674-8034.2024.11.025.


[摘要] 阻塞性睡眠呼吸暂停(obstructive sleep apnea, OSA)是一种最常见的睡眠障碍性疾病,可引起脑结构和功能异常,进而导致认知障碍。近些年来,磁共振成像技术的发展日新月异,包括基于体素的形态测量学(voxel based morphometry, VBM)、扩散张量成像(diffusion tensor imaging, DTI)、沿血管周围间隙扩散张量成像分析(diffusion tensor imaging analysis along the perivascular space, DTI-ALPS)、扩散峰度成像(diffusion kurtosis imaging, DKI)、静息态功能磁共振成像(resting state functional MRI, rs-fMRI)、动脉自旋标记(arterial spin labeling, ASL)、磁共振波谱(magnetic resonance spectroscopy, MRS)等,为OSA患者脑微观结构改变及功能连接异常提供了良好的神经生物影像学标志。特别是DTI-ALPS和DKI等近年来新出现的磁共振成像技术,为OSA研究提供了更加新颖的角度和更为开阔的视野。DTI-ALPS可以无创性评估大脑类淋巴系统功能,揭示OSA患者大脑淋巴代谢障碍机制,为OSA患者病理生理学基础研究提供新的视角,甚至为治疗方案的完善提供新的观点。DKI能够在常规影像出现变化之前更为敏感地显示大脑微观结构异常,为OSA患者的更早期诊断和治疗提供依据。本文综述了近年来OSA患者脑结构及功能磁共振成像研究进展,揭示了其神经影像学改变及病理生理学机制,旨在为OSA患者更早期诊断和治疗以及治疗方案的完善提供部分依据。
[Abstract] Obstructive sleep apnea (OSA) is the most common sleep disorder with abnormal brain structure and function, leading to a complication of cognitive impairment. In recent years, MRI has been flourishing, including voxel based morphometry (VBM), diffusion tensor imaging (DTI), diffusion tensor imaging analysis along the perivascular space (DTI-ALPS), diffusion kurtosis imaging (DKI), resting state functional magnetic resonance imaging (rs-fMRI), arterial spin labeling (ASL), magnetic resonance spectroscopy (MRS). Especially newly emerging DTI-ALPS and DKI techniques have provided a more novel perspective and broader field of view. DTI-ALPS can evaluate the function of the cerebral lymphatic system non-invasively and reveal the mechanism of lymphatic metabolism disorders in OSA patients, which provide a new perspective for the pathological and physiological mechanism of OSA patients, and provide new ideas for the improvement of treatment plans. DKI could demonstrate microstructural abnormalities of the brain more sensitively before changes might be found with conventional imaging, that provide a basis for earlier diagnosis and treatment of OSA patients. This article reviews the progress of cerebral structural and functional magnetic resonance imaging of OSA patients in recent years, aiming to reveal their neuroimaging changes and pathophysiological mechanisms, and to provide basis for early diagnosis, treatment, and improvement of treatment plans for OSA patients.
[关键词] 阻塞性睡眠呼吸暂停;磁共振成像;静息态功能磁共振成像;沿血管周围间隙扩散张量成像分析;扩散峰度成像;类淋巴系统
[Keywords] obstructive sleep apnea;magnetic resonance imaging;resting state functional magnetic resonance imaging;diffusion tensor imaging analysis along the perivascular space;diffusion kurtosis imaging;glymphatic system

孙利强 1   李琳 2   胡婧 3   刘丽莹 3   崔凯歌 3   杨冀萍 3*   贾娟 3   于佳琪 3  

1 河北省人民医院医学影像科,石家庄 050051

2 河北省人民医院耳鼻咽喉科,石家庄050051

3 河北医科大学第二医院医学影像科,石家庄 050000

通信作者:杨冀萍,E-mail: ran0511@sina.com

作者贡献声明:杨冀萍设计本研究的方案,对稿件重要内容进行了修改,获得了河北省卫生健康委员会医学科学研究重点课题计划项目、河北省2023年政府资助临床医学优秀人才培养项目、河北省重点研发计划项目的资助;孙利强起草和撰写稿件,收集分析本研究文献;李琳、胡婧、刘丽莹、崔凯歌、贾娟、于佳琪获取、分析和解释本研究文献,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 河北省重点研发计划项目 21377784D 河北省卫生健康委员会医学科学研究重点课题计划项目 20160123,20150681 河北省2023年政府资助临床医学优秀人才培养项目 ZF2023149
收稿日期:2024-07-26
接受日期:2024-11-08
中图分类号:R445.2  R765.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.11.025
本文引用格式:孙利强, 李琳, 胡婧, 等. 阻塞性睡眠呼吸暂停患者脑结构及功能磁共振成像研究进展[J]. 磁共振成像, 2024, 15(11): 160-168. DOI:10.12015/issn.1674-8034.2024.11.025.

0 引言

       阻塞性睡眠呼吸暂停(obstructive sleep apnea, OSA)是一种最常见的睡眠障碍性疾病,全球成年人中约9.36亿人患病,中重度患者约4.25亿,我国患病人数最多[1]。OSA主要是上呼吸道解剖结构异常及肌张力异常、肥胖、遗传因素等原因所致的上呼吸道完全或部分阻塞,导致睡眠期间通气不足,常伴随间歇性低氧血症、高碳酸血症、反复的微觉醒、睡眠片段化等[2],出现打鼾、睡眠呼吸暂停、晨起头痛、日间嗜睡等典型症状,可引发全身多器官、多系统功能损害,是多种疾病的独立危险因素,包括心脏病[3]、慢性肾病[4]、阿尔茨海默病[5]、帕金森病[6]、多发性硬化[7]等。另外,OSA可引起患者脑结构及功能异常,进而导致认知功能障碍[8],表现为记忆力、注意力、执行力、警觉性等功能减退,还可以导致性格、情绪改变,降低患者工作效率,甚至增加交通事故的风险[9],给社会造成巨大损失。OSA诊断金标准为多导睡眠监测(polysomnography, PSG),低通气指数(apnea hypopnea index, AHI)是OSA诊断及病情分度的重要指标[10]。近些年来,MRI技术的发展日新月异,包括基于体素形态测量学(voxel based morphometry, VBM)、扩散张量成像(diffusion tensor imaging, DTI)、沿血管周围间隙扩散张量成像分析(diffusion tensor imaging analysis along the perivascular space, DTI-ALPS)、扩散峰度成像(diffusion kurtosis imaging, DKI)、静息态功能磁共振成像(resting state functional MRI, rs-fMRI)、动脉自旋标记(arterial spin labeling, ASL)、磁共振波谱(magnetic resonance spectroscopy, MRS)等,对OSA患者脑微观结构改变及功能连接异常提供良好的神经生物影像学标志。特别是DTI-ALPS和DKI等近年来新出现的磁共振成像技术,为OSA研究提供了崭新的视角。本文综述了近年来OSA患者脑结构及功能磁共振成像研究进展,揭示了其神经影像学改变及病理生理学机制,旨在为OSA患者更早期诊断和治疗以及治疗方案的完善提供部分依据。

1 VBM研究进展

       VBM是基于体素水平定量分析计算脑灰、白质密度和体积改变的技术[11],与常规影像学检查相比,VBM有助于从微观层面更精确地显示OSA患者大脑结构的形态学异常,进而为OSA患者局部脑区的损伤和代偿机制提供解剖学基础。

       研究发现OSA患者多个脑区灰质体积发生改变,双侧海马体和左侧杏仁核的体积减小并与睡眠中周期性肢体运动显著负相关[12]。脑干和颞叶萎缩可能是OSA脑损伤的神经影像学标志[13]。右侧顶下小叶灰质体积增大可能是一种应对多种缺氧事件的补偿机制[14]。OSA患儿右侧额中回灰质体积增大,提示与注意力相关的额叶皮质发育对OSA敏感[15]。低氧所致的有毒物质积累可能导致重度OSA患者右侧壳核灰质体积显著减小和活性降低,并导致上呼吸道运动减弱[16]。除了灰质体积,OSA患者也存在全脑灰质密度减低,并与认知障碍显著负相关,其中扣带回密度减低可以解释OSA患者记忆力减退和情感障碍[17]。同时,长期缺血缺氧、低灌注还可能导致OSA患者脑白质高信号的形成和加重[18]。脑白质高信号范围增大与OSA严重程度相关[19]。此外,与大脑峰值灰质体积相关的最佳睡眠持续时间为7小时,OSA患者较短和较长的睡眠持续时间与额叶、扣带回、颞叶、枕叶灰质体积减小相关[20]。且较长的睡眠持续时间与脑白质高信号和海马体积减小相关,并与记忆力等认知障碍有关[21]。综上,OSA患者多表现为海马、杏仁核、壳核、脑干、颞叶等脑区的灰质体积减小,额叶、顶叶部分脑区灰质体积的代偿性增大,以及全脑灰质密度特别是扣带回灰质密度减低,这为解释OSA患者睡眠中周期性肢体运动、间歇性低氧、上呼吸道运动减弱,以及注意力、记忆力减退等临床表现提供了解剖学基础,然而,之前的研究较少对各脑区内部的亚区结构做更为精细化观察,而这显得更为重要,同时治疗前后的纵向随访观察仍然缺乏。

2 扩散磁共振成像研究进展

2.1 DTI研究进展

       DTI是在扩散加权成像(diffusion weighted imaging, DWI)基础上施加多个不共线方向的扩散敏感梯度而形成的,是目前唯一无创观察活体脑白质纤维结构的技术,其可以定量分析纤维束的完整性,对评估脑组织微结构、髓鞘和轴突损伤具有优势[22]。DTI参数包括各向异性分数(fractional anisotropy, FA)、轴向扩散系数(axial diffusivity, AD)、平行扩散系数(radial diffusivity, RD)、平均扩散系数(mean diffusivity, MD)等。FA是反映髓鞘完整性的重要指标,与纤维束的致密程度正相关。MD降低提示水分子扩散运动受限。

       研究发现脑白质纤维异常在OSA患者中广泛存在,丘脑前辐射、下额枕束、下纵束和上纵束FA减低且RD增加,钩束、皮质脊髓束和扣带回FA减低[23]。与轻度OSA患儿相比,重度OSA患儿右侧额中回和额下回FA显著降低,右侧额下回、左侧角回AD增高[24]。重度OSA患者胼胝体膝部FA减低且与脑白质高信号相关[25]。此外,部分学者进行了治疗前后纵向研究。提出CPAP治疗3个月后,OSA患者脑干、胼胝体和双侧内囊FA显著增高,胼胝体、放射冠和右侧内囊AD增加,并且放射冠、胼胝体、内囊、边缘系统FA和神经心理学评分存在显著负相关[26]。边缘系统FA在手术治疗后改善更加明显,言语记忆能力的改善与丘脑辐射、额斜束等区域FA正相关[27]。肯定了持续正压气道通气(continuous positive airway pressure, CPAP)治疗的有益效果,指出脑白质完整性的恢复可能与神经认知功能改善有关。有学者引入了一种新的结构连接(structural connection, SC)和功能连接(functional connection, FC)带宽的多层网络分析方法,发现OSA患者右侧后扣带回与右侧楔叶、双侧额中回、双侧直回之间带宽明显降低,并表现出SC-FC直接、SC-FC三角和SC-FC四边形网络内和网络间连接减少,可能导致大脑网络信息传递和通讯异常[28]。上述研究表明OSA患者在白质纤维领域存在广泛的损伤,包括皮质脊髓束、丘脑前辐射、上下纵束以及胼胝体等结构的异常,少有FA值或白质纤维代偿的区域,而这与OSA患者灰质体积异常不同,后者存在额叶、顶叶部分脑区的结构补偿。经过CPAP等治疗后白质纤维出现了广泛的恢复,尤其是胼胝体、内囊、放射冠、边缘系统的恢复,为治疗的有益效果提供了可靠证据,侧面反映脑白质纤维对治疗反映的敏感性更好。同时先进的数学分析方法的引入为DTI相关研究提供了更多的角度。

2.2 DTI-ALPS研究进展

       DTI-ALPS基于DTI技术,观察血管周围间隙方向的水扩散情况,是一种无创性评估类淋巴系统(glymphatic system, GS)功能的方法。ALPS指数(ALPS-index)定量化描述沿血管周围间隙方向的扩散率与垂直于血管周围间隙方向和主要纤维束方向的扩散率的比值,ALPS-index= mean(Dxxproj, Dxxassoc)/ mean(Dyyproj, Dzzassoc),其中Dxxproj、Dxxassoc分别指投射纤维及联络纤维在X轴方向上的扩散率,Dyyproj指投射纤维在Y轴方向上的扩散率,Dzzassoc指联络纤维在Z轴方向上的扩散率,ALPS指数降低提示类淋巴系统功能受损[29]

       研究发现OSA患者脑的类淋巴系统代谢障碍,来自投射纤维区域的Dzz值、来自联合纤维区域的Dyy和Dzz值、Dyz值、ALPS指数显著降低,并与疾病严重程度、睡眠症状显著相关,且可能增加阿尔茨海默病的风险[30]。同时,ALPS指数显著降低与睡眠期间AHI和氧饱和指数呈显著负相关,增加了患痴呆症的风险[31]。此外,ALPS指数显著降低与蒙特利尔认知评估(Montreal Cognitive Assessment, MoCA)量表评分呈中度正相关,并且通过图论分析表现出拓扑属性异常,提出脑的类淋巴系统功能障碍可通过破坏大脑功能网络进而影响认知功能,进一步提出ALPS指数有望成为OSA的潜在神经影像学指标,截止值1.35,曲线下面积0.80[32]。部分学者还进行了治疗前后的纵向对比研究,发现经过治疗后,中度OSA患者ALPS指数和认知能力得到改善[33]。然而,有研究显示手术方式治疗后OSA患者ALPS指数反而下降,并与一般认知分数和特定记忆领域(包括视觉空间和延迟回忆)下降相关,提出OSA患者的类淋巴系统损伤在手术后加重,这可能导致术后长期认知障碍的风险增加[34]。上述研究表明OSA患者存在DTI-ALPS指数的降低,DTI-ALPS这一定量化指标一经发现为广大学者探索OSA提供了一个崭新的领域,为OSA的淋巴系统功能代谢机制研究提供了一个全新的视角,同时治疗前后的随访观察也对CPAP治疗方案的疗效做了肯定,但是对手术治疗方案的选择提出了质疑,提示对打算进行手术的患者的评估需要更为谨慎,这为治疗方案的完善、新的辅助治疗措施的探索,甚至治疗方式的选择提供了部分依据。目前DTI-ALPS相关研究的数量及样本量仍然较少,急需多中心、大样本量的研究,为临床诊疗提供依据。

2.3 DKI研究进展

       DKI是DTI技术的扩展,其采用非高斯场模型,应用更高的b值来表征脑组织扩散异质性。DKI反映细胞毒性水肿所致的轴突和髓鞘损伤[35]。DKI参数包括峰度各向异性分数(kurtosis fractional anisotropy, KFA)、平均峰度(mean kurtosis, MK)、轴向峰度(axial kurtosis, AK)、径向峰度(radial kurtosis, RK)。

       研究发现OSA患者MK整体显著高于对照组,在多个局部脑区也显著升高,包括海马、丘脑、岛叶皮质、基底节、边缘系统、小脑半球、顶叶皮质、脑干等,与DTI技术的MD相比,MK能够发现岛叶皮质、延髓腹外侧和脑桥中线的损伤范围更大,且损伤通常偏侧[36]。同时,DKI显示脑白质的微观结构变化也更加显著,RK和MK在脑白质显著降低,KFA显著增加,OSA患者的白质纤维束完整性指标即轴向水灌注分数也显著降低,提示白质纤维束对间歇性低氧更加敏感[37]。此外,基于全脑图谱的DKI显示:OSA患者脑区存在广泛异常,AK(54个区域)、RK(10个区域)、MK(6个区域)和KFA(41个区域)与对照组存在显著差异,指出在常规影像出现变化之前,DKI对显示微观结构异常更为敏感[38]。为OSA患者的更早期诊断和治疗提供依据。

3 rs-fMRI研究进展

       rs-fMRI通过测定氧合血红蛋白和去氧血红蛋白的比例评估局部脑区的血氧含量变化,进而反映局部脑区神经元活动的兴奋或抑制。当神经元活动改变时,局部脑区脑血流量发生变化,氧合血红蛋白含量也随之改变,形成局部脑区磁场的不均匀,进而导致MRI信号异常[39]。相对于任务态,rs-fMRI更接近生理状态,可重复性好,是近年来脑功能成像的研究热点。rs-fMRI数据处理方法包括局部方法、功能整合方法即功能连接(functional connection, FC)、图论(graph theory)方法等。局部方法包括局部一致性(regional homogeneity, ReHo)、低频振幅(amplitude of low frequency fluctuation, ALFF),功能连接包括基于种子点的功能连接分析(seed based analysis, SBA)、独立成分分析(independent component analysis, ICA)、体素镜像同伦连接(voxel mirrored homotopic connectivity, VMHC),图论分析包括基于图论的复杂脑网络分析、度中心性(degree centrality, DC)分析。

3.1 ReHo分析

       ReHo基于体素水平,计算特定体素与相邻体素的肯德尔系数,从而得到该体素的ReHo值,生成全脑ReHo图,ReHo值反映局部脑区内神经元自发活动的同步性[40]。研究发现OSA患者多个脑区ReHo异常。重度OSA患者双侧尾状核ReHo显著减低,可能与学习和记忆能力受损相关[41]。双侧额上回及内侧前额叶皮质、左侧额中回ReHo减低,与AHI、SaO2负相关,左侧额中下回ReHo减低与默认模式网络有关,表明额叶功能障碍是OSA神经认知功能障碍潜在的关键机制[42, 43]。与不伴认知障碍的OSA患者相比,伴有轻度认知障碍的OSA患者双侧舌回和左侧颞上回ReHo显著著减低,这有助于理解认知障碍的潜在脑区和神经影像学机制[44]。另外,OSA患者双侧丘脑、壳核、中央后回、中央旁小叶和右侧岛叶ReHo增高,可能提示上述脑区存在代偿机制[45]。此外,OSA患者CPAP治疗前后的纵向观察发现,即使一个晚上的CPAP治疗,双侧尾状核ReHo也有所提高,即尾状核神经元功能改善[41]。而在3个月的CPAP 治疗后,额叶和顶叶皮质减低的ReHo得以改善,异常睡眠和情绪评分恢复至正常水平[45]。也有研究发现CPAP治疗后,双侧颞中回、中央前回、额叶内侧回等脑区ReHo发生显著变化与特定频段有关,提示存在与频率相关的自发神经活动改变[46]。部分学者在高海拔地区进行了研究,发现OSA患者左侧额上回、额中回、右侧前扣带回等脑区ReHo反而增高,提出在含氧量低的高海拔地区额叶发生了代偿和正向激活,相比之下,OSA患者左侧梭状回和小脑6区ReHo减低及功能受损[47, 48]。OSA患者ReHo减低的脑区主要涉及尾状核、额叶、颞叶、舌回等,同时也发现了丘脑、壳核、右侧岛叶等脑区的ReHo功能代偿,这为解释OSA患者的学习记忆能力受损以及认知功能障碍提供了脑功能学的依据。然而ReHo功能代偿脑区和前述VBM脑灰质体积代偿脑区并不完全吻合,这也为脑微观解剖学和功能学的联系和差异的研究提出了更高的要求。同时不同海拔地区脑适应、损伤和代偿机制的研究则更加复杂,需要多中心、大样本的研究。

3.2 ALFF分析

       ALFF通过对全脑体素信号强度的时间序列逐个进行傅里叶变换得到体素BOLD信号的功率谱,进而计算出大脑各体素的ALFF,从振幅能量的角度来反映神经元自发活动的强弱水平[49]。研究发现OSA患者多个脑区ALFF存在异常。右侧楔前叶和双侧后扣带回ALFF减低,左侧额下回ALFF增高,提示默认模式网络的功能障碍和额叶的适应性代偿反应[49]。在经典(0.01~0.10 Hz)和五个亚频带(slow-2至slow-6)研究发现OSA患者双侧楔前叶、后扣带皮层等脑区ALFF减低,而双侧小脑后叶、双侧额叶等脑区ALFF增高[50]。slow-4频段发现双侧颞下回ALFF显著降低以及左侧楔前叶和右侧扣带回ALFF显著升高等更多异常脑区,CPAP治疗后slow-4频段下距状回ALFF明显降低,提出OSA患者存在频率相关的异常自发神经活动,slow-4频段更具特异性[51]。此外,有研究发现OSA患者左侧海马、杏仁核、尾状核、小脑ALFF增高,左侧楔前叶ALFF减低,交叉采样相关的基因在门控通道活动和突触传递、谷氨酸突触和神经元方面富集[14]。部分学者在高海拔地区的研究发现OSA患者左侧额上回、右侧额下回、右侧扣带回和旁扣带回、右侧岛叶、右侧海马等脑区ALFF显著增高,双侧距状回、右侧枕中下回和右侧小脑7b区ALFF减低[47, 48],提示高海拔地区OSA患者额叶的ALFF存在适应和代偿机制。此外,部分学者对儿童进行了研究,发现OSA患儿右侧舌回的分数低频振幅(fractional ALFF, fALFF)显著降低,左侧额中回fALFF降低与多个睡眠参数显著相关并且表现出了最佳的曲线下面积,但左侧楔前叶fALFF升高[43]。OSA患者楔前叶、扣带回等脑区ALFF减低提示默认模式网络功能障碍,同时额叶、小脑后叶ALFF代偿性增高,尤其额叶ALFF代偿性增高,与OSA患者额叶灰质体积代偿保持一致,进一步印证了额叶作为OSA患者主要的代偿脑区,因此对额叶内部亚区的精细化研究显得尤为重要。此外,儿童的研究与成人ALFF异常脑区存在一定差异,可能是随着年龄增长,大脑的发育、功能调节以及代偿机制不同所致。

3.3 SBA分析

       SBA基于模型驱动,是FC最常用、最基本的分析方法,根据试验目的,通过先验假设或标准脑图谱,选取感兴趣区作为种子点,计算该种子点与剩余全脑各体素之间的时间序列相关系数,反映二者之间的功能连接强度[52]。研究发现OSA患者存在广泛的脑功能连接异常。OSA患者连接不同功能网络的大小脑之间FC减低,而在涉及默认模式网络和控制网络的前额叶皮质网络间FC增强且与语言流利度降低有关,提示OSA影响小脑通路并与睡眠碎片化和缺氧有关,默认模式网络被认为参与了OSA的认知衰退过程[53]。双侧海马和内侧前额叶皮层,左侧海马、后扣带皮层和楔前叶之间FC减低与较高的AHI显著相关,推测这些功能连接异常先于可检测到的认知缺陷[54]。同时OSA患者表现出明显异常的皮层下功能活动模式,选择性地涉及与丘脑FC增强,提示夜间反复觉醒导致丘脑皮质回路激活增加[55]。此外,高海拔地区OSA患者后扣带回皮质与左侧尾状核和丘脑FC增强,这可能与人们对高海拔缺氧环境发生了适应有关[48]。部分学者将OSA患者传统脑区细分为不同的亚区,进行精细化研究。小脑亚区相关研究发现右侧小脑Ⅱ区和双侧楔前叶、右侧后扣带皮层FC异常且与氧耗竭指数负相关,提示小脑功能偏侧并与后部默认模式网络密切相关[56]。海马亚区显示左侧海马前部和左侧颞中回、左侧海马中部与左侧额下回等FC增强,主要分布在感觉运动网络、额顶叶网络和语义/默认模式网络[57]。CPAP 治疗6个月后左侧海马前部与中央后回、右侧海马前部与多个脑区FC降低,左侧海马中部和左侧中央前回FC增强,表明CPAP治疗可以有效改变OSA患者海马亚区的功能连接模式[58]。此外,杏仁核亚区发现左侧背侧杏仁核-右后扣带回皮层的FC异常[59]。岛叶亚区发现参与认知处理的背侧前岛叶到双侧小脑后叶、额上回等认知相关脑区FC异常[60]。CPAP治疗6个月后,右侧腹前岛叶至双侧额上中回FC增强,左侧后岛叶至左侧颞中下回FC增强,且主要涉及默认模式网络[61]。网状上行激活系统研究也显示蓝斑与楔前叶、后扣带回等脑区FC异常,提出蓝斑-皮质去甲肾上腺素能功能连接异常[62]。目前脑功能连接的研究主要涉及海马、前额叶、扣带回和小脑通路受损,以及丘脑皮质通路代偿等,同时包含了默认模式网络、控制网络等。但是人类大脑存在巨大的功能连接通路和网络,加之化学感受器和神经纤维等通路的引入,以及大量脑区内部各亚区精细化研究仍不充分,导致脑功能连接越来越成为神经科学的研究热点,受到广大学者的关注。

3.4 ICA分析

       ICA基于数据驱动,不需要先验假设模型,是一种由盲源分离技术发展而来的信号处理方法,ICA直接将全脑各体素的BOLD信号分解成若干空间独立或时间独立的成分,从而提取不同的静息态网络和FC[63]。先前的研究提出OSA特别影响认知和感觉运动相关的脑网络,而不影响视觉和听觉网络[64]。近年来确定了8个大脑静息状态网络,OSA患者在默认模式网络中的双侧后扣带回、背侧注意网络中的右侧额中回、腹侧注意网络内的左侧颞上回FC显著降低,表明上述脑网络在静息状态下受损[65]。此外,动态功能网络连接和滑动时间窗识别出两种不同的连通性状态,OSA患者在强连接状态Ⅰ中表现出广泛的功能连接异常,在低连接状态Ⅱ中表现出较少的FC减少,且主要位于显著网络、默认模式网络和执行控制网络[66]。还有学者揭示了另外两种连接状态,OSA患者低连接状态Ⅰ的发生频率比对照组高34%,而超连接状态Ⅱ的发生率则按比例减少[67]。此外,OSA患者前后显著网络、双侧执行控制网络和腹侧默认模式网络FC降低,且与压力反射敏感性障碍相关,表明自主神经功能障碍[68]

3.5 VMHC分析

       VMHC主要分析两侧大脑半球对称脑区之间的功能连通性和时间序列相关性,是反映两侧半球之间活动协调性的指标,是大脑内在功能架构的重要特征之一[69]。研究发现重度OSA患者双侧距状回和顶上回VMHC降低,且与双侧舌回、右侧枕中回及左侧颞中回等多个脑区FC异常,提出重度OSA患者存在认知功能受损及潜在抑郁和焦虑风险[70]。双侧距状回皮质和楔前叶VMHC连接显著增强与AHI呈显著正相关[71]。此外,VMHC对高碳酸血症的反应呈弥漫性下降[72]。双侧后扣带回、岛叶和颞上回VMHC显著增强,且双侧后扣带回和岛叶VMHC均与空间再认记忆选择相关[73]

3.6 基于图论的复杂脑网络分析

       基于图论的复杂脑网络分析是通过分析大脑的空间拓扑结构,进而研究全脑网络整体连通性的方法。从图论分析的角度,大脑网络由节点和边组成,节点是指特定的脑区,边是指不同脑区之间的信息传递通路。参数包括:节点度、聚类系数(Cp)、特征路径长度(Lp)、标准化聚类系数γ、标准化路径长度λ、小世界属性σ、全局效率(Eglobal)、局部效率(Elocal)等[74]。小世界网络的特征为λ值较小,而γ值较大,保证了信息在局部和全局水平高效而低耗能地传递[75]。研究显示OSA患者和对照组的网络在0.05~0.40的稀疏度范围内均表现出有效的小世界拓扑属性,然而OSA组的γ显著降低,但λ和σ显著升高。OSA组的脑网络在0.09-0.15的稀疏度范围内显示Eglob降低,但是在0.23~0.40的稀疏度范围内Eloc显著增加,提示大脑连接的高度局部整合的完整性可能被破坏[76]。OSA患者默认模式网络、凸显网络和中央执行网络区域的节点中心性存在异常[77]。此外,OSA患者功能整合拓扑特性和专业化特征显示出在FC改变的脑区中下降的趋势,提示功能障碍延伸至静息状态[78]。OSA患儿右侧中央前回、双侧前扣带回的节点效率降低,左侧梭状回的节点效率增加,左侧缘上回的节点中心性增强且与全量表智能商呈正相关[79]。OSA患儿额叶、颞叶的节点特性与AHI、言语理解指数相关[80]。图论分析作为一种先进的数学分析方法,从大脑工作效率和能耗的角度对OSA患者进行分析,可以应用于rs-fMRI、DTI等多种影像学技术研究,以及更加广泛的神经科学疾病分析,同时期待更多更先进的数学以及物理模型分析方法的引入,为神经科学的发展提供助力。

3.7 DC分析

       DC基于体素水平分析某个体素节点与大脑其他体素之间的FC数量,研究脑网络中该节点的拓扑属性,节点度越大意味着这个节点的度中心性越高,是反映脑网络中节点重要性的度量指标[81]。脑网络的功能枢纽(hubs)是具有高DC值的脑区,是脑网络中处理信息的核心部位。研究发现OSA患者在左侧枕中回、后扣带皮层、额上回和双侧顶下小叶中表现出DC显著降低的模式,然而在右侧眶额皮质、双侧小脑后叶DC增强,且与功能枢纽重叠。此外后扣带皮层和左侧额上回的DC与MoCA评分呈正相关,左侧枕中回和双侧顶下小叶DC与AHI呈负相关,提示OSA患者存在特定异常的内在功能中枢[82]。还有研究发现OSA患者双侧小脑后叶DC增强并与MoCA评分呈正相关,CPAP治疗后双侧小脑后叶的DC有所恢复,提示CPAP治疗可有效逆转双侧小脑后叶代偿反应和功能网络损伤带来的影响[83]。此外,还有学者结合机器学习方法使用体素DC特征来区分OSA患者是否患有轻度认知障碍,筛选出十个DC特征并指出支持向量机的分类效率最好[84]

4 ASL研究进展

       ASL是一种无需注射对比剂的磁共振灌注成像技术,将磁化标记的动脉血中水质子作为自由扩散的内源性对比剂,首先对成像层面上游的血液自旋状态进行反转标记,然后待标记的血液流经成像层面并与组织发生交换时,对其产生的信号衰减进行成像,最后对标记前后的图像进行剪影,从而获得脑血流量(cerebral blood flow, CBF)图,CBF能够定量反映局部脑组织的灌注情况[85]

       有研究显示OSA患者右侧内侧前额叶皮层、左侧中央前回的CBF升高,右侧颞极和右侧小脑Crus Ⅱ的CBF降低,这提示OSA患者额叶、小脑等脑区的血液灌注代谢异常,并与行为、心理、认知功能异常密切相关[86]。有研究发现前扣带回和海马的AHI与局部CBF存在显著差异,即在健康的受试者中前扣带回和海马的CBF值反而更低,推测OSA患者间歇性低氧可能触发了上述脑区的代偿反应从而导致CBF值增加[19]。一项高海拔地区的研究提出了一个新颖的观点,该研究通过药物注射提高了OSA患者CBF,且随着CBF增加,中枢性睡眠呼吸暂停有所缓解,与呼吸相关的负反馈控制系统的环路增益(loop gain)减少,并推测这可能是通过降低高碳酸通气反应的控制增益来实现的[87]。这也从侧面反映了不同海拔地区的OSA患者发病机理和反馈机制可能有所不同。一项回顾性研究显示,OSA患者全脑灰质的CBF显著降低,且主要集中在右侧顶叶和颞叶,该研究也证实了OSA患者脑白质高信号负担明显增加,并进一步指出CBF值减低与脑白质高信号密切相关,这可能与长期的缺血缺氧有关[18]。另外,患有OSA的孕妇在早孕期间的不同姿势会影响CBF的调节,即使是仰卧位OSA也会对脑动态调节产生不利影响[88]。综上,OSA患者存在大体上灰质灌注的减低,同时存在部分脑区、脑叶灌注的代偿性增高,包括额叶、颞极、海马、小脑等,且较VBM的灰质体积代偿和rs-fMRI的ALFF代偿范围更加广泛,从侧面提示了脑灌注可能是OSA患者最活跃的代偿机制。

5 MRS研究进展

       MRS是通过利用磁共振化学位移效应,进而测定物质的分子组成成分的成像技术,基于1H在不同化合物中的磁共振频率和谱线位置差异,MRI峰的高度和面积反映物质的浓度,是目前能够无创测量活体组织代谢以及生化定量分析的方法,常用参数包括N-乙酰天冬氨酸(N-acetylaspartate, NAA)、胆碱(choline, Cho)、肌酸(creatine, Cr)、谷氨酸(glutamate, Glu)等[89, 90]

       近期一项关于老年小鼠的研究发现,睡眠片段化可以导致内侧隔核以及海马CA1区的Glu/Cr升高,而海马CA1区NAA/Cr降低,同时DTI的结果显示睡眠片段化也降低了海马的FA值,提示睡眠片段化诱导老年小鼠认知相关脑区的高谷氨酸代谢水平和微观结构连接损伤,这可能参与了其病理生理过程[91]。同时岛叶的研究,也发现OSA患者岛叶皮质的NAA/Cr、Glu/Cr、NAA/Cho比值显著降低,后者与汉密尔顿焦虑量表、汉密尔顿抑郁量表呈显著负相关,并与匹兹堡睡眠质量指数和埃普沃斯嗜睡量表得分呈正相关,提示OSA患者的焦虑和抑郁症状可能与岛叶神经元损伤和功能障碍有关,MRS可以为OSA患者的早期诊断提供客观的成像依据[92]。另外中脑的研究发现OSA患者中脑NAA峰减低,提示神经元活性减弱,Glu、抗坏血酸(ascorbate, Asc)和肌醇(myo-inositol, mI)峰升高,这可能提示星形胶质细胞激活和兴奋毒性增加,并与间歇性缺氧的氧化应激有关[93]。此外,关于OSA儿童的研究发现,OSA患儿的NAA/Cr、NAA/Cho明显降低,且与AHI呈负相关,与平均血氧饱和度呈正相关,而患儿Cho/Cr明显升高,提示NAA峰减低可能与反复低氧有关,Cho峰升高可能是反复缺氧导致细胞膜的破坏所致[94]。另外一项关于模拟驾驶的研究显示,中重度OSA患者在延长清醒期后左侧眶额皮质的Cr、Glu、NAA峰减低,提示额叶脑区的线粒体生物能量学受损,可能增加驾驶障碍的风险[95]

6 局限性与展望

       本文从脑结构和功能方面对OSA进行了综述,聚焦了近年来的MRI研究热点,包括VBM、DTI、DTI-ALPS、DKI、rs-fMRI、ASL、MRS等,为OSA患者脑微观结构改变及FC异常提供神经生物影像学标志。DTI-ALPS可以无创性评估大脑类淋巴系统功能,揭示OSA患者大脑淋巴代谢障碍机制,为OSA患者病理生理学基础研究提供新的视角,甚至为治疗方案的完善提供新的观点。DKI能够在常规影像出现变化之前更为敏感地显示大脑微观结构异常,为OSA患者的更早期诊断和治疗提供依据。然而以下方面尚存在不足:(1)OSA研究样本量较少,女性患者和轻度OSA患者样本量更少;(2)OSA患者大量脑区内部亚区尚未精细化研究,比如额叶表现为ReHo减低,却表现为ALFF增高及灰质体积增大即结构性代偿,这需要对额叶亚区进一步精细化研究,同理,颞叶亚区、枕叶亚区也是如此;(3)不同海拔梯度研究不均衡,不同海拔梯度人群所处的气压和空气含氧量不同,急需相关研究为不同海拔梯度OSA患者的诊断和治疗提供更加差异化的参考;(4)多种成像技术和方法的联合运用仍然缺乏,需要对脑结构像和功能像的联合、脑区和脑网络的结合、脑功能和脑代谢包括淋巴代谢的整合进行研究;(5)OSA治疗后不同时间的纵向随访仍然较少和患者随访依存性不一,普遍认为不同脑区的功能恢复所需时间不尽相同,OSA患者治疗前后,尤其是治疗后不同时间的纵向随访仍然较少,导致不同脑区功能恢复的具体时间节点尚不清楚,同时需要解决OSA患者随访依存性等问题。展望未来,我们相信通过多中心、大样本量研究,MRI新技术以及医工结合的迅速转化,包括数学模型等方法学的联合应用,将为OSA相关科研和临床提供新的视角和助力。

[1]
BENJAFIELD A V, AYAS N T, EASTWOOD P R, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis[J]. Lancet Respir Med, 2019, 7(8): 687-698. DOI: 10.1016/S2213-2600(19)30198-5.
[2]
KAPUR V K, AUCKLEY D H, CHOWDHURI S, et al. Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine clinical practice guideline[J]. J Clin Sleep Med, 2017, 13(3): 479-504. DOI: 10.5664/jcsm.6506.
[3]
URBANIK D, MARTYNOWICZ H, MAZUR G, et al. Environmental factors as modulators of the relationship between obstructive sleep apnea and lesions in the circulatory system[J/OL]. J. Clin. Med, 2020, 9(3): 836 [2024-07-26]. https://www.mdpi.com/2077-0383/9/3/836. DOI: 10.3390/jcm9030836.
[4]
HUI M, LI Y, YE J, et al. Obstructive sleep apnea-hypopnea syndrome (OSAHS) comorbid with diabetes rather than OSAHS alone serves an independent risk factor for chronic kidney disease (CKD)[J]. Ann Palliat Med, 2020, 9(3): 858-869. DOI: 10.21037/apm.2020.03.21.
[5]
LIGUORI C, MAESTRI M, SPANETTA M, et al. Sleep-disordered breathing and the risk of Alzheimer's disease[J/OL]. Sleep Med Rev, 2021, 55: 101375 [2024-07-26]. https://www.sciencedirect.com/science/article/abs/pii/S1087079220301180?via%3Dihub. DOI: 10.1016/j.smrv.2020.101375.
[6]
ELFIL M, BAHBAH E I, ATTIA M M, et al. Impact of obstructive sleep apnea on cognitive and motor functions in Parkinson's disease[J]. Mov Disord, 2021, 36(3): 570-580. DOI: 10.1002/mds.28412.
[7]
VALENTINE T R, KRATZ A L, KAPLISH N, et al. Sleep disordered breathing and neurocognitive function in multiple sclerosis: differential associations across cognitive domains[J]. Mult Scler, 2023, 29(7): 832-845. DOI: 10.1177/13524585231169465.
[8]
VANEK J, PRASKO J, GENZOR S, et al. Obstructive sleep apnea, depression and cognitive impairment[J]. Sleep Med, 2020, 72: 50-58. DOI: 10.1016/j.sleep.2020.03.017.
[9]
PURTLE M W, RENNER C H, MCCANN D A, et al. Driving with undiagnosed obstructive sleep apnea (OSA): high prevalence of OSA risk in drivers who experienced a motor vehicle crash[J]. Traffic Inj Prev, 2020, 21(1): 38-41. DOI: 10.1080/15389588.2019.1709175.
[10]
中国医师协会睡眠医学专业委员会. 成人阻塞性睡眠呼吸暂停多学科诊疗指南[J]. 中华医学杂志, 2018, 98(24): 1902-1914. DOI: 10.3760/cma.j.issn.0376-2491.2018.24.003.
SLEEP MEDICINE PROFESSIONAL COMMITTEE. Chinese Medical Doctor Association. Multidisciplinary Diagnosis and Treatment Guidelines for Adult Obstructive Sleep Apnea[J]. Natl Med J China, 2018, 98(24): 1902-1914. DOI: 10.3760/cma.j.issn.0376-2491.2018.24.003.
[11]
ASHBURNER J, FRISTON K J. Voxel-based morphometry: the methods[J]. Neuroimage, 2000, 11(6): 805-821. DOI: 10.1006/nimg.2000.0582.
[12]
ANDRÁS S, MARCO H, BENEDIKT S, et al. Periodic limb movements in sleep are linked to decreased hippocampus and amygdala volumes in the population-based BiDirect Study[J/OL]. Sleep, 2023, 46(2): zsac263 [2024-07-26]. https://academic.oup.com/sleep/article/46/2/zsac263/6795532. DOI: 10.1093/sleep/zsac263.
[13]
GAO J, CAO J C, CHEN J Y, et al. Brain morphology and functional connectivity alterations in patients with severe obstructive sleep apnea[J]. Sleep Med, 2023, 111: 62-69. DOI: 10.1016/j.sleep.2023.08.032.
[14]
HUANG Y J, SHEN C, ZHAO W, et al. Genes associated with altered brain structure and function in obstructive sleep apnea[J/OL]. Biomedicines, 2023, 12(1): 15 [2024-07-26]. https://www.mdpi.com/2227-9059/12/1/15. DOI: 10.3390/biomedicines12010015.
[15]
YU C Y, FU Y C, LU Y, et al. Alterations of brain gray matter volume in children with obstructive sleep apnea[J/OL]. Front Neurol, 2023, 14: 1107086 [2024-07-26]. https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2023.1107086/full. DOI: 10.3389/fneur.2023.1107086.
[16]
SELCUK O T, AYDENIZOZ D, GENC F, et al. Are there any differences at gray matter sites between severe obstructive sleep apnea patients and healthy controls?[J]. Sleep Med, 2024, 116: 27-31. DOI: 10.1016/j.sleep.2024.02.021.
[17]
杨冀萍, 齐进冲, 毛昳楠, 等. 应用VBM评价阻塞性睡眠呼吸暂停低通气综合征患者脑灰质改变的研究[J]. 脑与神经疾病杂志, 2017, 25(9): 537-542.
YANG J P, QI J C, MAO Y N, et al. Evaluation of grey matter density loss in patients with obstructive sleep apnea-hypopnea syndrome by VBM[J]. Journal of Brain and Nervous Diseases, 2017, 25(9): 537-542.
[18]
LI X S, HUI Y, SHI H J, et al. Altered cerebral blood flow and white matter during wakeful rest in patients with obstructive sleep apnea: a population-based retrospective study[J/OL]. Br J Radiol, 2023, 96(1143): 20220867 [2024-07-26]. https://academic.oup.com/bjr/article/96/1143/20220867/7471406. DOI: 10.1259/bjr.20220867.
[19]
KYLE J E, IRA D, ERIKA W H, et al. Cardiorespiratory fitness attenuates the deleterious effects of sleep apnea on cerebral structure and perfusion in the wisconsin sleep cohort study[J]. J Alzheimers Dis, 2023, 95(2): 427-435. DOI: 10.3233/JAD-220910.
[20]
REGINA E Y K, ROBERT D A, SORIUL K, et al. Sleep duration, sleep apnea, and gray matter volume[J]. J Geriatr Psychiatry Neurol, 2022, 35(1): 47-56. DOI: 10.1177/0891988720988918.
[21]
KEVIN A G, WASSIM T, ARIANA M S, et al. Sleep duration and brain MRI measures: Results from the SOL-INCA MRI study[J]. Alzheimers Dement, 2024, 20(1): 641-651. DOI: 10.1002/alz.13451.
[22]
MACEY P M, KUMAR R, WOO M A, et al. Brain structural changes in obstructive sleep apnea[J]. Sleep, 2008, 31(7): 967-977.
[23]
LIU X, WEI Z P, CHEN L T, et al. Effects of 3-month CPAP therapy on brain structure in obstructive sleep apnea: A diffusion tensor imaging study[J/OL]. Front Neurol, 2022, 13: 913193 [2024-07-26]. https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2022.913193/full. DOI: 10.3389/fneur.2022.913193.
[24]
MEI L, LI X D, ZHOU G F, et al. Effects of obstructive sleep apnoea severity on neurocognitive and brain white matter alterations in children according to sex: a tract-based spatial statistics study[J]. Sleep Med, 2021, 82: 134-143. DOI: 10.1016/j.sleep.2020.08.026.
[25]
DIEGO Z C, STUART J M, ERIK K S L, et al. Association of polysomnographic sleep parameters with neuroimaging biomarkers of cerebrovascular disease in older adults with sleep apnea[J/OL]. Neurology, 2023, 101(2): e125-e136 [2024-07-26]. https://www.neurology.org/doi/10.1212/WNL.0000000000207392. DOI: 10.1212/WNL.0000000000207392.
[26]
MARIA S, MARIA E C, VINCENZA C, et al. Microstructural changes in normal-appearing white matter in male sleep apnea patients are reversible after treatment: A pilot study[J]. J Neurosci Res, 2021, 99(10): 2646-2656. DOI: 10.1002/jnr.24858.
[27]
CHAI Y Q, HEA R P, HYUNJIN J, et al. White matter microstructure and connectivity changes after surgery in male adults with obstructive sleep apnea: recovery or reorganization?[J/OL]. Front Neurosci, 2023, 17: 1221290 [2024-07-26]. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1221290/full. DOI: 10.3389/fnins.2023.1221290.
[28]
SHI X R, SHEN G, ZHAO Z Y, et al. Decreased structural pathways mediating functional connectivity in obstructive sleep apnea[J]. Sleep Med, 2024, 116: 96-104. DOI: 10.1016/j.sleep.2024.02.013.
[29]
TAOKA T, MASUTANI Y, KAWAI H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases[J]. Jpn J Radiol, 2017, 35(4): 172-178. DOI: 10.1007/s11604-017-0617-z.
[30]
BHASWATI R, ALBA N, RAVI S A, et al. Impaired glymphatic system actions in obstructive sleep apnea adults[J/OL]. Front Neurosci, 2022, 16: 884234 [2024-07-26]. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.884234/full. DOI: 10.3389/fnins.2022.884234.
[31]
HO-JOON L, DONG A L, KYONG J S, et al. Glymphatic system dysfunction in obstructive sleep apnea evidenced by DTI-ALPS[J]. Sleep Med, 2022, 89: 176-181. DOI: 10.1016/j.sleep.2021.12.013.
[32]
XIONG Z L, BAI M X, WAN Z X, et al. Resting-state fMRI network efficiency as a mediator in the relationship between the glymphatic system and cognitive function in obstructive sleep apnea hypopnea syndrome: Insights from a DTI-ALPS investigation[J]. Sleep Med, 2024, 119: 250-257. DOI: 10.1016/j.sleep.2024.05.009.
[33]
LIN S W, LIN X S, CHEN S L, et al. Association of MRI indexes of the perivascular space network and cognitive impairment in patients with obstructive sleep apnea[J/OL]. Radiology, 2024, 311(3): e232274 [2024-07-26]. https://pubs.rsna.org/doi/10.1148/radiol.232274. DOI: 10.1148/radiol.232274.
[34]
BHASWATI R, RAJESH K, STEPHANIE-DEE S, et al. The role of the glymphatic system in perioperative neurocognitive disorders[J/OL]. J Neurosurg Anesthesiol, 2024 [2024-07-26]. https://journals.lww.com/jnsa/fulltext/9900/the_role_of_the_glymphatic_system_in_perioperative.111.aspx. DOI: 10.1097/ANA.0000000000000973.
[35]
STEVEN A J, ZHUO J, MELHEM E R. Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain[J/OL]. AJR Am J Roentgenol, 2014, 202 (1): W26-W33 [2024-07-26]. https://www.ajronline.org/doi/10.2214/AJR.13.11365. DOI: 10.2214/AJR.13.11365.
[36]
SUDHAKAR T, JOSE P, DANIEL W K, et al. Global and regional brain non-gaussian diffusion changes in newly diagnosed patients with obstructive sleep apnea[J]. Sleep, 2016, 39(1): 51-57. DOI: 10.5665/sleep.5316.
[37]
ZIA H, MANSI G, ZAFAR N, et al. Biophysical modeling and diffusion kurtosis imaging reveal microstructural alterations in normal-appearing white-matter regions of the brain in obstructive sleep apnea[J/OL]. Sleep Adv, 2024, 5(1): zpae031 [2024-07-26]. https://academic.oup.com/sleepadvances/article/5/1/zpae031/7681657. DOI: 10.1093/sleepadvances/zpae031.
[38]
SAMEER V, PARAMJEET S, NIRANJAN K, et al. Evaluation of cerebral microstructural changes in adult patients with obstructive sleep apnea by MR diffusion kurtosis imaging using a whole-brain atlas[J]. Indian J Radiol Imaging, 2019, 29(4): 356-363. DOI: 10.4103/ijri.IJRI_326_19.
[39]
OGAWA S, LEE T M, KAY A R, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation[J]. Proc NatI Acad Sci U S A, 1990, 87(24): 9868-9872. DOI: 10.1073/pnas.87.24.9868.
[40]
SMITHA K A, AKHIL RAJA K, ARUN K M, et al. Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks[J]. Neuroradiol J, 2017, 30(4): 305-317. DOI: 10.1177/1971400917697342.
[41]
SUN Y F, LEI F, LUO L, et al. Effects of a single night of continuous positive airway pressure on spontaneous brain activity in severe obstructive sleep apnea[J/OL]. Sci Rep, 2023, 13(1): 8950 [2024-07-26]. https://www.nature.com/articles/s41598-023-36206-0. DOI: 10.1038/s41598-023-36206-0.
[42]
ZHOU L, SHAN X X, PENG Y T, et al. Reduced regional homogeneity and neurocognitive impairment in patients with moderate-to-severe obstructive sleep apnea[J]. Sleep Med, 2020, 75: 418-427. DOI: 10.1016/j.sleep.2020.09.009.
[43]
BAI J, WEN H W, TAI J, et al. Altered spontaneous brain activity related to neurologic and sleep dysfunction in children with obstructive sleep apnea syndrome[J/OL]. Front Neurosci. 2021, 15: 595412 [2024-07-26]. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.595412/full. DOI: 10.3389/fnins.2021.595412.
[44]
SHU Y Q, LIU X, YU P F, et al. Inherent regional brain activity changes in male obstructive sleep apnea with mild cognitive impairment: A resting-state magnetic resonance study[J/OL]. Front Aging Neurosci, 2022, 14: 1022628 [2024-07-26]. https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2022.1022628/full. DOI: 10.3389/fnagi.2022.1022628.
[45]
SONG X P, BHASWATI R, SUSANA V, et al. Brain regional homogeneity changes after short-term positive airway pressure treatment in patients with obstructive sleep apnea[J]. Sleep Med, 2022, 91: 12-20. DOI: 10.1016/j.sleep.2022.02.005.
[46]
LI H J, LI L, KONG L H, et al. Frequency-specific regional homogeneity alterations and cognitive function in obstructive sleep apnea before and after short-term continuous positive airway pressure treatment[J]. Nat Sci Sleep, 2021, 13: 2221-2238. DOI: 10.2147/NSS.S344842.
[47]
KANG D J, QIN Z Y, WANG W, et al. Brain functional changes in tibetan with obstructive sleep apnea hypopnea syndrome: A resting state fMRI study[J/OL]. Medicine (Baltimore), 2020, 99(7): e18957 [2024-07-26]. https://journals.lww.com/md-journal/fulltext/2020/02140/brain_functional_changes_in_tibetan_with.17.aspx. DOI: 10.1097/MD.0000000000018957.
[48]
QIN Z Y, KANG D J, FENG X, et al. Resting-state functional magnetic resonance imaging of high altitude patients with obstructive sleep apnoea hypopnoea syndrome[J/OL]. Sci Rep, 2020, 10(1): 15546 [2024-07-26]. https://www.nature.com/articles/s41598-020-72339-2. DOI: 10.1038/s41598-020-72339-2.
[49]
LI H J, DAI X J, GONG H H, et al. Aberrant spontaneous low-frequency brain activity in male patients with severe obstructive sleep apnea revealed by resting-state functional MRI[J]. Neuropsychiatr Dis Treat, 2015, 11: 207-214. DOI: 10.2147/NDT.S73730.
[50]
ZENG Y P, SHU Y Q, LIU X, et al. Frequency-specific alterations in intrinsic low-frequency oscillations in newly diagnosed male patients with obstructive sleep apnea[J/OL]. Front Neurosci, 2022, 16: 987015 [2024-07-26]. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.987015/full. DOI: 10.3389/fnins.2022.987015.
[51]
SUN Y F, SOPHINE X Y, XIE M, et al. Aberrant amplitude of low-frequency fluctuations in different frequency bands and changes after one-night positive airway pressure treatment in severe obstructive sleep apnea[J/OL]. Front Neurol, 2022, 13: 985321 [2024-07-26]. https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2022.985321/full. DOI: 10.3389/fneur.2022.985321.
[52]
GOLESTANI A M, GOODYEAR B G. Regions of interest for resting-state fMRI analysis determined by inter-voxel cross-correlation[J]. Neuroimage, 2011, 56(1): 246-251. DOI: 10.1016/j.neuroimage.2011.02.038.
[53]
HEA R P, JUNGHO C, EUN Y J, et al. Altered cerebrocerebellar functional connectivity in patients with obstructive sleep apnea and its association with cognitive function[J/OL]. Sleep, 2022, 45(1): zsab209 [2024-07-26]. https://academic.oup.com/sleep/article/45/1/zsab209/6357664. DOI: 10.1093/sleep/zsab209.
[54]
GUILLERMO M V, VÉRONIQUE D, MARIE-ÈVE M D, et al. Altered resting-state functional connectivity patterns in late middle-aged and older adults with obstructive sleep apnea[J/OL]. Front Neurol, 2023, 14: 1215882 [2024-07-26]. https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2023.1215882/full. DOI: 10.3389/fneur.2023.1215882.
[55]
EMILIANO S, GIULIA S, ISABELLA S, et al. Thalamic altered spontaneous activity and connectivity in obstructive sleep apnea syndrome[J]. J Neuroimaging, 2022, 32(2): 314-327. DOI: 10.1111/jon.12952.
[56]
LI L F, LIU Y T, SHU Y Q, et al. Altered functional connectivity of cerebellar subregions in male patients with obstructive sleep apnea: A resting-state fMRI study[J]. Neuroradiology, 2024, 66(6): 999-1012. DOI: 10.1007/s00234-024-03356-5.
[57]
LIU X, CHEN L T, DUAN W F, et al. Abnormal functional connectivity of hippocampal subdivisions in obstructive sleep apnea: A resting-state functional magnetic resonance imaging study[J/OL]. Front Neurosci, 2022, 16: 850940 [2024-07-26]. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.850940/full. DOI: 10.3389/fnins.2022.850940.
[58]
HUANG L, LI H J, SHU Y Q, et al. Changes in functional connectivity of hippocampal subregions in patients with obstructive sleep apnea after six months of continuous positive airway pressure treatment[J/OL]. Brain Sci, 2023, 13(5): 838 [2024-07-26]. https://www.mdpi.com/2076-3425/13/5/838. DOI: 10.3390/brainsci13050838.
[59]
ZENG L, SHU Y Q, XIE W, et al. Functional connectivity changes in amygdala subregions of obstructive sleep apnea patients after six months of continuous positive airway pressure treatment[J]. Nat Sci Sleep, 2024, 16: 99-109. DOI: 10.2147/NSS.S442253.
[60]
KONG L H, LI H J, SHU Y Q, et al. Aberrant resting-state functional brain connectivity of insular subregions in obstructive sleep apnea[J/OL]. Front Neurosci, 2022, 15: 765775 [2024-07-26]. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.765775/full. DOI: 10.3389/fnins.2021.765775.
[61]
LONG T, LI H J, SHU Y Q, et al. Functional connectivity changes in the insular subregions of patients with obstructive sleep apnea after 6 months of continuous positive airway pressure treatment[J/OL]. Neural Plast, 2023, 2023: 5598047 [2024-07-26]. https://onlinelibrary.wiley.com/doi/10.1155/2023/5598047. DOI: 10.1155/2023/5598047.
[62]
BYUN J I, JAHNG G H, RYU C W, et al. Altered functional connectivity of the ascending reticular activating system in obstructive sleep apnea[J/OL]. Sci Rep, 2023, 13(1): 8731 [2024-07-26]. https://www.nature.com/articles/s41598-023-35535-4. DOI: 10.1038/s41598-023-35535-4.
[63]
CALHOUN V D, DE LACY N. Ten key observations on the analysis of resting-state functional MR imaging data using independent component analysis[J]. Neuroimaging Clin N Am, 2017, 27(4): 561-579. DOI: 10.1016/j.nic.2017.06.012.
[64]
ZHANG Q, WANG D W, QIN W, et al. Altered resting-state brain activity in obstructive sleep apnea[J]. Sleep, 2013, 36(5): 651-659B. DOI: 10.5665/sleep.2620.
[65]
HE Y Q, SHEN J K, WANG X, et al. Preliminary study on brain resting-state networks and cognitive impairments of patients with obstructive sleep apnea-hypopnea syndrome[J/OL]. BMC Neurol, 2022, 22(1): 456 [2024-07-26]. https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-022-02991-w. DOI: 10.1186/s12883-022-02991-w.
[66]
LI H J, LI L, LI K Y, et al. Abnormal dynamic functional network connectivity in male obstructive sleep apnea with mild cognitive impairment: A data-driven functional magnetic resonance imaging study[J/OL]. Front Aging Neurosci, 2022, 14: 977917 [2024-07-26]. https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2022.977917/full. DOI: 10.3389/fnagi.2022.977917.
[67]
BYUN J I, JAHNG G H, RYU C W, et al. Altered intrinsic brain functional network dynamics in moderate-to-severe obstructive sleep apnea[J]. Sleep Med, 2023, 101: 550-557. DOI: 10.1016/j.sleep.2022.12.003.
[68]
LIN W C, HSU T W, LU C H, et al. Alterations in sympathetic and parasympathetic brain networks in obstructive sleep apnea[J]. Sleep Med, 2020, 73: 135-142. DOI: 10.1016/j.sleep.2020.05.038.
[69]
MANCUSO L, COSTA T, NANI A, et al. The homotopic connectivity of the functional brain: a meta-analytic approach[J/OL]. Sci Rep, 2019, 9(1): 3346 [2024-07-26]. https://www.nature.com/articles/s41598-019-40188-3. DOI: 10.1038/s41598-019-40188-3.
[70]
沈过, 张慧姸, 高静, 等. 重度阻塞性睡眠呼吸暂停患者脑静息态镜像同伦连接的分析[J]. 磁共振成像, 2023, 14(11): 12-17, 61. DOI: 10.12015/issn.1674-8034.2023.11.003.
SHEN G, ZHANG H Y, GAO J, et al. Analysis of resting-state voxel-mirrored homotopic connectivity in severe obstructive sleep apnea[J]. Chin J Magn Reson Imag, 2023, 14(11): 12-17, 61. DOI: 10.12015/issn.1674-8034.2023.11.003.
[71]
LIU Y T, ZHANG H X, LI H J, et al. Aberrant interhemispheric connectivity in obstructive sleep apnea-hypopnea syndrome[J/OL]. Front Neurol, 2018, 9: 314 [2024-07-26]. https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2018.00314/full. DOI: 10.3389/fneur.2018.00314.
[72]
MARSHALL O, JINSOO U, DANIEL L, et al. The influence of mild carbon dioxide on brain functional homotopy using resting-state fMRI[J]. Hum Brain Mapp, 2015, 36(10): 3912-3921. DOI: 10.1002/hbm.22886.
[73]
伋立荣, 王二磊, 陈锐, 等. OSAHS患者的脑功能异常改变:基于VMHC的静息态fMRI研究[J]. 磁共振成像, 2023, 14(9): 13-18. DOI: 10.12015/issn.1674-8034.2023.09.003.
JI L R, WANG E L, CHEN R, et al. Abnormal changes of brain function in patients with OSAHS: VMHC-based re-fMRI study[J]. Chin J Magn Reson Imag, 2023, 14(9): 13-18. DOI: 10.12015/issn.1674-8034.2023.09.003.
[74]
FARAHANI F V, KARWOWSKI W, LIGHTHALL N R. Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review[J/OL]. Front Neurosci, 2019, 13: 585 [2024-07-26]. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2019.00585/full. DOI: 10.3389/fnins.2019.00585.
[75]
WATTS D J, STROGATZ S H. Collective dynamics of 'small-world' networks[J]. Nature, 1998, 393(6684): 440-442. DOI: 10.1038/30918.
[76]
CHEN L T, FAN X L, LI H J, et al. Disrupted small-world brain functional network topology in male patients with severe obstructive sleep apnea revealed by resting-state fMRI[J]. Neuropsychiatr Dis Treat, 2017, 13: 1471-1482. DOI: 10.2147/NDT.S135426.
[77]
CHEN L T, FAN X L, LI H J, et al. Aberrant brain functional connectome in patients with obstructive sleep apnea[J]. Neuropsychiatr Dis Treat, 2018, 14: 1059-1070. DOI: 10.2147/NDT.S161085.
[78]
BUMHEE P, JOSE A P, MARY A W, et al. Disrupted functional brain network organization in patients with obstructive sleep apnea[J/OL]. Brain Behav, 2016, 6(3): e00441 [2024-07-26]. https://onlinelibrary.wiley.com/doi/10.1002/brb3.441. DOI: 10.1002/brb3.441.
[79]
JI T T, REN X M, LONG T, et al. Aberrant topological properties of brain functional network in children with obstructive sleep apnea derived from resting-state fMRI[J]. Brain Topogr, 2023, 36(1): 72-86. DOI: 10.1007/s10548-022-00920-1.
[80]
CHEN F F, FU Y C, TANG B Q, et al. Altered cerebral white matter network topology and cognition in children with obstructive sleep apnea[J]. Sleep Med, 2024, 118: 63-70. DOI: 10.1016/j.sleep.2024.03.038.
[81]
ZUO X N, EHMKE R, MENNES M, et al. Network centrality in the human functional connectome[J]. Cereb Cortex, 2012, 22(8): 1862-1875. DOI: 10.1093/cercor/bhr269.
[82]
LI H J, LI L, SHAO Y, et al. Abnormal intrinsic functional hubs in severe male obstructive sleep apnea: Evidence from a voxel-wise degree centrality analysis[J/OL]. PLoS One, 2016, 11(10): e0164031 [2024-07-26]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164031. DOI: 10.1371/journal.pone.0164031.
[83]
LI P M, SHU Y Q, LIU X, et al. The effects of CPAP treatment on resting-state network centrality in obstructive sleep apnea patients[J/OL]. Front Neurol, 2022, 13: 801121 [2024-07-26]. https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2022.801121/full. DOI: 10.3389/fneur.2022.801121.
[84]
LIU X, SHU Y Q, YU P F, et al. Classification of severe obstructive sleep apnea with cognitive impairment using degree centrality: A machine learning analysis[J/OL]. Front Neurol, 2022, 13: 1005650 [2024-07-26]. https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2022.1005650/full. DOI: 10.3389/fneur.2022.1005650.
[85]
VAN LAAR P J, VAN DER GROND J, HENDRIKSE J. Brain perfusion territory imaging: methods and clinical applications of selective arterial spin-labeling MR imaging[J]. Radiology, 2008, 246(2): 354-364. DOI: 10.1148/radiol.2462061775.
[86]
XIAO P, HUA K, CHEN F, et al. Abnormal cerebral blood flow and volumetric brain morphometry in patients with obstructive sleep apnea[J/OL]. Front Neurosci, 2022, 16:934166[2024-10-29]. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.934166/full. DOI: 10.3389/fnins.2022.934166.
[87]
BURGESS A, ANDREWS G, COLBY K M E, et al. Loop gain response to increased cerebral blood flow at high altitude[J]. Sleep Breath, 2024, 28(2): 763-771. DOI: 10.1007/s11325-023-02956-4.
[88]
WASHIO T, HISSEN S L, TAKEDA R, et al. Effects of posture changes on dynamic cerebral autoregulation during early pregnancy in women with obesity and/or sleep apnea[J]. Clin Auton Res, 2023, 33(2): 121-131. DOI: 10.1007/s10286-023-00939-9.
[89]
BALTZER P A, DIETZEL M, KAISER W A. MR-spectroscopy at 1.5 tesla and 3 tesla. Useful? A systematic review and meta-analysis[J/OL]. Eur J Radiol, 2012, 81(Suppl 1): S6-S9 [2024-07-26]. https://www.sciencedirect.com/science/article/abs/pii/S0720048X12700037. DOI: 10.1016/S0720-048X(12)70003-7.
[90]
JENKINS D D, WIEST D B, MULVIHILL D M, et al. Fetal and neonatal effects of N-Acetylcysteine when used for neuroprotection in maternal chorioamnionitis[J/OL]. J Pediatr, 2015, 168: 67-76.e6 [2024-07-26]. https://www.jpeds.com/article/S0022-3476(15)01150-6/fulltext. DOI: 10.1016/j.jpeds.2015.09.076.
[91]
LI Y, ZHAO L, ZHANG K, et al. Neurometabolic and structural alterations of medial septum and hippocampal CA1 in a model of post-operative sleep fragmentation in aged mice: a study combining 1H-MRS and DTI[J/OL]. Front Cell Neurosci, 2023, 17: 1160761 [2024-07-26]. https://www.frontiersin.org/journals/cellular-neuroscience/articles/10.3389/fncel.2023.1160761/full. DOI: 10.3389/fncel.2023.1160761.
[92]
KANG J, TIAN Z, LI M. Changes in insular cortex metabolites in patients with obstructive sleep apnea syndrome[J]. Neuroreport, 2018, 29(12): 981-986. DOI: 10.1097/WNR.0000000000001065.
[93]
MACEY P M, SARMA M K, PRASAD J P, et al. Obstructive sleep apnea is associated with altered midbrain chemical concentrations[J]. Neuroscience, 2017, 363: 76-86. DOI: 10.1016/j.neuroscience.2017.09.001.
[94]
王婷婷, 冯奇星, 钟晓飞, 等. 1H-MRS对儿童阻塞性睡眠呼吸暂停低通气综合征脑代谢变化的初步研究[J].临床放射学杂志, 2019, 38(11): 2161-2165. DOI: 10.13437/j.cnki.jcr.2019.11.036.
WANG T T, FENG Q X, ZHONG X F, et al. Preliminary research of 1H-MRS on the changes of cerebral metabolism in children OSAHS patients[J]. J Clin Radiol, 2019, 38(11): 2161-2165. DOI: 10.13437/j.cnki.jcr.2019.11.036.
[95]
VAKULIN A, GREEN M A, D'ROZARIO A L, et al. Brain mitochondrial dysfunction and driving simulator performance in untreated obstructive sleep apnea[J/OL]. J Sleep Res, 2021, 31(2): e13482 [2024-07-26]. https://onlinelibrary.wiley.com/doi/10.1111/jsr.13482. DOI: 10.1111/jsr.13482.

上一篇 重度抑郁症患者脑网络有效连接的磁共振成像研究进展
下一篇 伴中央颞区棘波儿童良性癫痫的MRI研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2