分享:
分享到微信朋友圈
X
综述
伴中央颞区棘波儿童良性癫痫的MRI研究进展
陈译文 张志强

Cite this article as: CHEN Y W, ZHANG Z Q. MRI progress of benign childhood epilepsy with centrotemporal spikes[J]. Chin J Magn Reson Imaging, 2024, 15(11): 169-173.本文引用格式:陈译文, 张志强. 伴中央颞区棘波儿童良性癫痫的MRI研究进展[J]. 磁共振成像, 2024, 15(11): 169-173. DOI:10.12015/issn.1674-8034.2024.11.026.


[摘要] 伴中央颞区棘波的儿童良性癫痫(benign childhood epilepsy with centrotemporal spikes, BECTS)是儿童期最常见的局灶性癫痫之一,其病生机制、临床表现、治疗管理等是近来癫痫研究的热点方向。MRI中的三维T1加权成像、功能磁共振成像、弥散张量成像、脑电联合功能磁共振、多模态成像等序列可以分析患儿的脑结构和脑功能特征,对疾病研究有重要意义。本文回顾了MRI在分析BECTS患者大脑发育及认知水平、指导患者病灶定位中的价值,并且鉴别了抗癫痫药物对大脑产生的影响以及判断患者的预后,旨在为未来进一步探索BECTS发病机制和指导临床管理提供参考。
[Abstract] Benign childhood epilepsy with centrotemporal spikes (BECTS) is one of the most common focal epilepsy in childhood. MRI is of great significance to disease research, which can analyze the structure and functional characteristics of brains. It contains three dimensions T1-weighted imaging, functional MRI, diffusion-tensor imaging, simultaneous electroencephalogram and functional MRI, multimodal MRI and so on. This study aims to review the radiological technology used to analyze the brain development and cognitive levels of patients, guide lesion localization in BECTS, identify effects of antiepileptic drugs and estimate the prognosis of patients. It provides a reference for exploring the pathogenesis of BECTS and guiding clinical management in the future.
[关键词] 伴中央颞区棘波的儿童良性癫痫;Rolandic癫痫;磁共振成像;结构磁共振成像;功能磁共振成像
[Keywords] benign childhood epilepsy with centrotemporal spikes;rolandic epilepsy;magnetic resonance imaging;structural magnetic resonance imaging;functional magnetic resonance imaging

陈译文    张志强 *  

南京医科大学金陵临床医学院,南京 210002

通信作者:张志强,E-mail: zhangzq2001@126.com

作者贡献声明:张志强设计本研究的方案,对稿件重要内容进行了修改,获得了国家自然科学基金项目的资助;陈译文获取、分析本研究的文献,起草和撰写该稿件;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82371951
收稿日期:2024-07-15
接受日期:2024-11-08
中图分类号:R445.2  R742.1 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.11.026
本文引用格式:陈译文, 张志强. 伴中央颞区棘波儿童良性癫痫的MRI研究进展[J]. 磁共振成像, 2024, 15(11): 169-173. DOI:10.12015/issn.1674-8034.2024.11.026.

0 引言

       伴中央颞区棘波的儿童良性癫痫(benign childhood epilepsy with centrotemporal spikes, BECTS)是最常见的儿童癫痫类型,其在病生机制、临床表现、治疗管理方面具有明显的特征性,是近来癫痫研究的热点方向之一。MRI作为首位的癫痫临床影像应用技术,因其具有多模态、多参数成像的优点,近来在BECTS临床应用,尤其是机制研究方面取得较多进展。国内尚未有对MRI在BECTS应用的特点、价值进行较为全面的总结,所以本文就此方面进行综述。通过系统性的归纳,总结MRI在研究BECTS大脑发育及认知水平中的作用,在检测癫痫源灶、判断抗癫痫药物疗效中的价值,并且指出MRI在BECTS预后预测中应用的不足,为未来研究方向提出建议,为进一步探索BECTS发病机制、指导临床管理提供参考。

1 BECTS机制及临床

       BECTS发病占儿童期癫痫的8%~25%[1, 2],典型BECTS特征性表现为年龄相关的良性病程:常在10岁前(高峰为7~10岁)发病、大部分于青春期前(16岁左右)缓解[3, 4]。在临床上,其典型表现为夜间发作的口面部症状,可伴有轻度的全身肢体抽搐[5];在脑电图上有频繁且明显的中央颞区(Rolandic区)棘波出现,所以又叫Rolandic癫痫[6]。相对来说,该类癫痫症状较轻,药物治疗可取得非常良好的抗癫痫效果;但是近来发现,该类患儿在病程期,具有较为明显的与学习能力相关的认知能力下降[1],如注意、执行[7]、语言能力等[8, 9]下降。考虑到其良性病程及抗癫痫药物的副作用,临床上一直存在是否用药的争议。除了典型的BECTS外,仍存在少部分患儿表现为非典型发作,主要体现为发病年龄早、仅白天发作、癫痫持续状态及非典型的脑电表现等,部分还可转化为Landau-Kleffner综合征或慢波睡眠期持续棘慢波综合征等[10]

       BECTS被认为属于遗传相关的癫痫,Grin2A是较为确定、但发现率较低的风险基因[11],也可能与BDNF、ELP4-PAX6[12]、KCNK4等风险基因存在关系[13]。从神经发育机制上讲,该病也被认为属于神经元树突/轴突改进期异常的神经发育障碍性疾病,与注意缺陷多动障碍、孤独症谱系障碍等属同谱系疾病,有重叠的症状且有较高的疾病伴发率[14, 15]

2 MRI在BECTS机制及临床转化研究中的应用

2.1 MRI在BECTS中的应用价值

       MRI是首位的癫痫临床影像诊断工具,但对于BECTS来说,其目前的主要价值可能仅为癫痫临床管理流程中的确诊(及排除诊断)。如上所述,该病临床诊断相对容易且良性的病程表现使得临床有观点倾向于尽可能减少诊治干预;除了少部分的不良预后转化类型的评估外[16],MRI在BECTS临床管理中应用较少。但是,MRI作为当前应用最广的脑成像观察手段,在BECTS疾病发生、症状发作神经机制[17, 18]中有较大价值;并且,因其具有丰富的模态和指标,可以从结构到功能、从局域到网络多角度进行研究,在BECTS认知评价、疗效预测[19]等临床转化研究中也发挥着越来越重要的作用。

       在临床个体影像诊断上,BECTS患儿均为正常的大体形态和功能学表现。在影像研究中,需要基于标准空间平台的组分析策略,结合MRI提供的丰富、敏感的指标,可发现BECTS特异的脑改变特征。应用较多的成像序列有高分辨三维T1加权结构像(three dimensions T1-weighted imaging, 3D-T1WI)、血氧水平依赖的功能磁共振成像(blood oxygenation level dependent functional MRI, BOLD-fMRI)技术[20]及弥散张量成像(diffusion-tensor imaging, DTI)等。有多个研究通过3D-T1WI的皮层和容积形态学分析,结合基于体素的形态学测量(voxel-based morphometry, VBM)[21]和基于表面的形态测量法(surface-based morphometry, SBM)[22]等技术展开研究。BOLD-fMRI可以反映大脑活动引起的血流变化,通过局域性活动评价指标和网络连接功能指标等,常用的局域性活动指标包括低频振幅(amplitude of low frequency fluctuation, ALFF)[23]和局域一致性(regional homogeneity, ReHo)[24]等方法,网络连接功能指标包括时间聚类分析(independent component correlation, ICA)[25]、脑功能连接(functional connectivity, FC)[26]及基于脑连接和图论方法的复杂网络分析[27]等。可以定量观察患儿发育、用药及病程等因素导致的脑改变。

2.2 MRI在BECTS脑发育及认知研究中的应用

       BECTS发病及缓解的年龄依赖性表现提示其脑发育障碍的特征。儿童脑发育过程中,突触形成与修剪对应灰质体积和皮质厚度呈“倒U型”发育的特点[28]。发育影像学模型显示,中央颞区(癫痫源区)皮层塑形的时间在5~10岁,相关认知功能脑区皮层塑形时间在7~15 岁,与 BECTS 发病时间吻合。这也提示了BECTS大脑发育异常与一定水平认知障碍的相关性。

       疾病初始阶段,灰质体积及皮层厚度存在广泛地增高,随着年龄的增长,这种增高趋势逐渐缓解[29]。有横断面研究显示,年龄较小的患儿(<10岁)的皮层厚度增加较为明显,而年龄较大的患儿(>10岁)的皮层厚度更薄[30]。一些MRI形态学分析表明,与癫痫产生相关的区域(Rolandic区)和执行功能相关区域(外侧前额叶皮质、顶内沟和前扣带回)灰质体积异常增加,除了Rolandic区,纹状体和额颞顶叶皮层(纹状体-皮层回路)的灰质体积也被证实有一定程度的增加,且壳核的灰质体积与癫痫发作年龄之间存在显著的负相关,经过两年的随访,壳核的体积仍然与正常对照组有差异[31, 32]。以上研究符合大脑皮层的发育轨迹,患儿大脑发育延迟[33],与正常儿童的脑发育相比推迟了0.45年[10]。此外,还有一些研究显示BECTS患儿皮层表现出广泛的变薄,发生变化的区域主要为双侧额颞叶及边缘系统[34]。纵向研究指出,BECTS患儿的左眶额叶和中央前回皮层厚度过度变薄与滤词处理之间存在着显著关系[19]。除了皮层厚度及灰质体积的改变,BECTS患儿大脑的沟回指数也存在一定的异常,相较于右半球,沟回指数的异常更多发生在左半球,涉及到语言中心(如额中下回、颞中下回)的皮层厚度和沟回异常可能是BECTS患者出现明显语言功能障碍的原因;左侧缘上回的沟回指数与患儿的语言智商呈负相关。相关功能区域的形态学异常可能是部分BECTS患儿相应认识水平下降的原因之一[34]

       总之,BECTS患儿的皮层厚度及灰质体积等方面存在异常,具体的变化情况可能与持续时间以及大脑不同的发育阶段有关。涉及到功能区的异常会导致患儿出现一定程度的认知障碍。

       BECTS还与脑功能的异常有关。在高负荷的工作记忆中,BECTS患儿在额叶、颞叶和顶叶区域的激活程度和行为学表现均降低[35]。局域性活动评价指标显示,BECTS患儿双侧边缘上回、左侧颞中回、左侧中央后回和枕上回的动态局域一致性显著降低,这种涉及到语言、注意和感觉运动回路的功能连接异常可能进一步导致BECTS儿童的认知和行为障碍[36]。与语言障碍相关的Broca区域和Rolandic区域之间的连通性降低可以证明癫痫样活动和语言障碍之间的相关性[37]。当表现为合并睡眠期间癫痫持续状态的不典型表现时,最近的研究发现BECTS患儿涉及前岛叶和前扣带皮层的显著性网络动态功能连接变异性增大,这可能是注意力、记忆、执行功能等认知水平下降的基础[38]。与先前较局限的功能连接障碍不同,有针对中国患儿的研究显示出全脑的功能连接障碍,这可能是中国特有的模式[39]

       DTI可以很好地观察患儿髓鞘发育及脑连接的情况。不少研究显示BECTS患儿白质微观结构存在异常,涉及额顶颞叶的广泛区域[40],也有研究声称分数各向异性和弥散性异常主要发生在左侧中央前后回以及脑电图(electroencephalogram, EEG)病灶的同侧[41],并且这些白质微观结构的改变在癫痫持续时间较长和认知能力较差的患者中更为明显。其中,在语言功能中发挥重要作用的弓状束结构连通性受损可能是导致患儿语言功能下降的原因[42]

       总的来说,BECTS结构和功能发育异常情况可能是造成其癫痫发作以及一定程度认知障碍的原因。MRI在研究其发育及认知水平中发挥了重要的作用,但是高清序列及功能序列的扫描时间长,患儿的配合度不佳,使用通过并行成像、单次采集、基于人工智能等方法可以缩短成像时间,提高成像效率[43]。此外,目前大多研究都是在BECTS患儿活跃期进行的,缺乏纵向研究。

2.3 MRI在BECTS癫痫源灶检测中的应用

       MRI能用于BECTS癫痫灶的定位以及癫痫活动中相关脑区激活的检测。BECTS患儿在EEG上通常表现为中央颞区高波幅棘波单发或成串发放。有研究通过静息态fMRI滞后分析显示,双侧Rolandic区在中央颞区放电之前就已经激活,并且放电越频繁激活时间就越早。该分析方法可以对BECTS病灶进行准确定位[44]。在影像学手段中,同步脑电联合功能磁共振成像(simultaneous electroencephalogram and functional MRI, EEG-fMRI)技术[45, 46]融合了EEG的高时间分辨率和BOLD-fMRI的高空间分辨率[47],可以实时、直接地评价中央颞区棘波发放相关脑活动的时空特征,对癫痫活动进行检测。在7名儿童的睡眠期间进行EEG-fMRI的记录显示,该7名儿童都表现出单侧中央颞区的棘波发放[48]。EEG-fMRI还能描述BECTS癫痫相关网络之间的定向信息流,信息流从Rolandic区产生,向中央前回、中央后回和丘脑上部传播,丘脑在发作间期癫痫样放电(interictal epileptiform discharges, IEDs)和非IEDs状态中可以进行调节[49]

       MRI丰富的模态有助于病灶的准确定位并且对癫痫源灶进行检测,在临床诊断上起到不可或缺的作用。

2.4 BECTS的药物治疗评价

       相较于神经调控,如电刺激[50]、磁刺激[51]等,抗癫痫药物是目前接受度较高的主流方法[52],临床上使用较广泛的包括左乙拉西坦(levetiracetam, LEV)、丙戊酸钠(valproate, VPA)、奥卡西平等,主要目的是降低癫痫发作次数及IEDs数量。

       与未用药的患儿相比,使用抗癫痫药物的患儿在Rolandic网络和中央前/中央后的白质网络中并未发现功能连接增加的现象,这表明抗癫痫药物有使大脑功能网络恢复正常的能力[53]。如前所述,BECTS患儿双侧Rolandic区的激活早于中央颞区的放电,静息态fMRI滞后分析表明使用LEV进行治疗的BECTS患者激活相对推迟,LEV可以在一定程度上抵消中央颞区放电和癫痫发生区域早期血流动力学激活之间的关联,印证了LEV治疗的有效性以及该方法在预估抗癫痫药物治疗方面的潜力[44]。此外,使用LEV进行治疗的BECTS患儿双侧Rolandic区的ALFF减低,且左侧中央前回和右侧额上回的ALFF与其用药时间呈负相关,这也对LEV治疗BECTS的有效性进行了验证[54]

       各种抗癫痫药物会导致不同的脑活动模式,VPA和LEV都抑制了静息状态时中央颞区的神经活动,LEV主要降低皮层的脑活动,而VPA均匀降低皮层癫痫发生区和丘脑的脑活动,并且会随着剂量的增加累积[55]。目前还缺乏通过影像学方法判断不同抗癫痫药物对于BECTS疗效的研究,未来对于BECTS患儿抗癫痫药物的选择可以通过MRI手段,结合患儿自身的临床表现、脑活动特点及不同抗癫痫药物的治疗特点,制订个性化的方案。

       但药物本身会引起副作用和不良反应,对于BECTS患儿是否需要用药存在一定争议,考虑到癫痫发作及IEDs都会带来一定程度脑功能的损伤,所以临床主流认为抗癫痫药物会带来更多益处,应根据患者特征、抗癫痫药的使用效果和社会经济因素做出选择[56]。关于抗癫痫药物的用量问题,有研究模拟了深度Q网络模型的强化学习算法模型,对BECTS患儿LEV的使用进行了智能计量推荐[57]

       虽然BECTS的整体预后良好,但仍有小部分患儿存在向其他不良预后类型转化的风险[58],例如Landau-Kleffner综合征或睡眠中持续棘慢波综合征[59]。所以对BECTS预后类型的判别尤为重要,目前临床上大多仅根据发病特征和EEG信息进行判别。比如说,始发年龄小于5岁、有热性惊厥史可以作为BECTS患儿对抗癫痫药物的初始治疗反应不佳的预测因素[60],发病年龄也可以是BECTS患儿语言能力下降程度的预测因素[61]。EEG信息中,有研究表明高频震荡比单纯的尖峰距离最后一次癫痫发作的时间更短,并且这种高频震荡更能预测癫痫的发作风险[62],随后的研究使用两种检测技术扩展和验证了高频震荡的预测价值[63]。现阶段对于BECTS患儿的临床转化研究仍有诸多不足,多集中在低维度的临床特征及EEG数据,欠缺基于MRI数据的研究,及时预测癫痫缓解时间、指导停药能够最大程度发挥药物的效益,减少BECTS的临床管理压力。

3 总结与展望

       MRI除了在癫痫临床管理流程中的确诊(及排除诊断)中发挥重要作用外,其丰富的结构序列、功能序列及分析方法还能更好地研究BECTS患儿的脑发育、认知水平,检测癫痫源灶及评价药物疗效。但是目前仍存在诸多问题,如BECTS患儿检查时的配合度欠佳,个体化诊断困难,这也导致MRI在临床上提供的价值有限。随着研究的不断进展,有望开发更先进的检查序列、分析技术及模型等,填补当前在预后预测等方面的不足,帮助临床为BECTS患制订个体化的诊断及治疗方案,更好地通过MRI对BECTS患儿进行管理,缓解患儿家庭[64]及社会等各方压力。

[1]
VETRI L, PEPI A, ALESI M, et al. Poor school academic performance and benign epilepsy with centro-temporal spikes[J/OL]. Behav Sci (Basel), 2023, 13(2): 106 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9952252/. DOI: 10.3390/bs13020106.
[2]
PANAYIOTOPOULOS C P, MICHAEL M, SANDERS S, et al. Benign childhood focal epilepsies: assessment of established and newly recognized syndromes[J]. Brain, 2008, 131(Pt 9): 2264-2286. DOI: 10.1093/brain/awn162.
[3]
RINEY K, BOGACZ A, SOMERVILLE E, et al. International league against epilepsy classification and definition of epilepsy syndromes with onset at a variable age: position statement by the ILAE task force on nosology and definitions[J]. Epilepsia, 2022, 63(6): 1443-1474. DOI: 10.1111/epi.17240.
[4]
HALASZ P, SZUCS A. Self-limited childhood epilepsies are disorders of the perisylvian communication system, carrying the risk of progress to epileptic encephalopathies-Critical review[J/OL]. Front Neurol, 2023, 14: 1092244 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10301767/. DOI: 10.3389/fneur.2023.1092244.
[5]
BHASIN H, SHARMA S. The new international league against epilepsy (ILAE) 2017 classification of seizures and epilepsy: What pediatricians need to know![J]. Indian J Pediatr, 2019, 86(7): 569-571. DOI: 10.1007/s12098-019-02910-x.
[6]
ASHOUR M, MINATO E, ALAWADHI A, et al. Diagnostic utility of specific abnormal EEG patterns in children for determining epilepsy phenotype and presence of structural brain abnormalities[J/OL]. Heliyon, 2022, 8(8): e10172 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9399955/. DOI: 10.1016/j.heliyon.2022.e10172.
[7]
ZANABONI M P, VARESIO C, PASCA L, et al. Systematic review of executive functions in children with self-limited epilepsy with centrotemporal spikes[J/OL]. Epilepsy Behav, 2021, 123: 108254 [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/34428616/. DOI: 10.1016/j.yebeh.2021.108254.
[8]
LI Y, LI Y, SUN J, et al. Relationship between brain activity, cognitive function, and sleep spiking activation in new-onset self-limited epilepsy with centrotemporal spikes[J/OL]. Front Neurol, 2022, 13: 956838 [2024-07-15]. http://pmc.ncbi.nlm.nih.gov/articles/PMC9682286. DOI: 10.3389/fneur.2022.956838.
[9]
陈世彩, 段丽芬, 孙莹, 等. 伴中央颞区棘波的儿童良性癫痫认知功能与电临床特征的相关性研究[J]. 临床儿科杂志, 2024, 42(3): 211-217. DOI: 10.12372/jcp.2024.22e1748.
CHEN S C, DUAN L F, SUN Y, et al. Correlation between cognitive function and electroclinical characteristics of benign childhood epilepsy with centrotemporal spikes[J]. J Clin Pediatr, 2024, 42(3): 211-217. DOI: 10.12372/jcp.2024.22e1748.
[10]
ZHANG Q, HE Y, QU T, et al. Delayed brain development of Rolandic epilepsy profiled by deep learning-based neuroanatomic imaging[J]. Eur Radiol, 2021, 31(12): 9628-9637. DOI: 10.1007/s00330-021-08048-9.
[11]
SAMANTA D. GRIN2A-related epilepsy and speech disorders: A comprehensive overview with a focus on the role of precision therapeutics[J/OL]. Epilepsy Res, 2023, 189: 107065 [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/36516565/. DOI: 10.1016/j.eplepsyres.2022.107065.
[12]
DUAN Y, LENG X, LIU C, et al. The correlation of ELP4-PAX6 with rolandic spike sources in idiopathic rolandic epilepsy syndromes[J/OL]. Front Neurol, 2021, 12: 643964 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8064626/. DOI: 10.3389/fneur.2021.643964.
[13]
YAN H J, HE Y Y, JIN L, et al. Expanding the phenotypic spectrum of KCNK4: From syndromic neurodevelopmental disorder to rolandic epilepsy[J/OL]. Front Mol Neurosci, 2022, 15: 1081097 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9851069/. DOI: 10.3389/fnmol.2022.1081097.
[14]
MEGUID N A, HASHEM H S, GHANEM M H, et al. Evaluation of branched-chain amino acids in children with autism spectrum disorder and epilepsy[J]. Mol Neurobiol, 2023, 60(4): 1997-2004. DOI: 10.1007/s12035-022-03202-w.
[15]
PENG J, ZHOU Y, WANG K. Multiplex gene and phenotype network to characterize shared genetic pathways of epilepsy and autism[J/OL]. Sci Rep, 2021, 11(1): 952 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7806931/. DOI: 10.1038/s41598-020-78654-y.
[16]
HE W, LIU H, LIU Z, et al. Electrical status epilepticus in sleep affects intrinsically connected networks in patients with benign childhood epilepsy with centrotemporal spikes[J/OL]. Epilepsy Behav, 2020, 106: 107032 [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/32220803/. DOI: 10.1016/j.yebeh.2020.107032.
[17]
KWON H, CHINAPPEN D M, HUANG J F, et al. Transient, developmental functional and structural connectivity abnormalities in the thalamocortical motor network in Rolandic epilepsy[J/OL]. Neuroimage Clin, 2022, 35: 103102 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9251597/. DOI: 10.1016/j.nicl.2022.103102.
[18]
SPENCER E R, CHINAPPEN D, EMERTON B C, et al. Source EEG reveals that Rolandic epilepsy is a regional epileptic encephalopathy[J/OL]. Neuroimage Clin, 2022, 33: 102956 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8844714/. DOI: 10.1016/j.nicl.2022.102956.
[19]
SMITH S D W, MCGINNITY C J, SMITH A B, et al. A prospective 5-year longitudinal study detects neurocognitive and imaging correlates of seizure remission in self-limiting Rolandic epilepsy[J/OL]. Epilepsy Behav, 2023, 147: 109397 [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/37619460/. DOI: 10.1016/j.yebeh.2023.109397.
[20]
LIU H, CHEN D, LIU C, et al. Brain structural changes and molecular analyses in children with benign epilepsy with centrotemporal spikes[J]. Pediatr Res, 2024, 96(1): 184-189. DOI: 10.1038/s41390-024-03118-2.
[21]
KOTIKALAPUDI R, DRICU M, MOSER D A, et al. Brain structure and optimism bias: A voxel-based morphometry approach[J/OL]. Brain Sci, 2022, 12(3): 315 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8946158/. DOI: 10.3390/brainsci12030315.
[22]
GOTO M, ABE O, HAGIWARA A, et al. Advantages of using both voxel- and surface-based morphometry in cortical morphology analysis: A review of various applications[J]. Magn Reson Med Sci, 2022, 21(1): 41-57. DOI: 10.2463/mrms.rev.2021-0096.
[23]
TANG X, GUO Z, CHEN G, et al. A multimodal meta-analytical evidence of functional and structural brain abnormalities across Alzheimer's disease spectrum[J/OL]. Ageing Res Rev, 2024, 95: 102240 [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/38395200/. DOI: 10.1016/j.arr.2024.102240.
[24]
DU Y, YANG W, ZHANG J, et al. Changes in ALFF and ReHo values in methamphetamine abstinent individuals based on the Harvard-Oxford atlas: A longitudinal resting-state fMRI study[J/OL]. Addict Biol, 2022, 27(1): e13080 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9286454/. DOI: 10.1111/adb.13080.
[25]
STEEL A, GARCIA B D, SILSON E H, et al. Evaluating the efficacy of multi-echo ICA denoising on model-based fMRI[J/OL]. Neuroimage, 2022, 264: 119723 [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/36328274/. DOI: 10.1016/j.neuroimage.2022.119723.
[26]
GAL S, COLDHAM Y, TIK N, et al. Act natural: Functional connectivity from naturalistic stimuli fMRI outperforms resting-state in predicting brain activity[J/OL]. Neuroimage, 2022, 258: 119359 [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/35680054/. DOI: 10.1016/j.neuroimage.2022.119359.
[27]
SEMMEL E S, QUADRI T R, KING T Z. Graph theoretical analysis of brain network characteristics in brain tumor patients: A systematic review[J]. Neuropsychol Rev, 2022, 32(3): 651-675. DOI: 10.1007/s11065-021-09512-5.
[28]
RIEDEL L, VAN DEN HEUVEL M P, MARKETT S. Trajectory of rich club properties in structural brain networks[J]. Hum Brain Mapp, 2022, 43(14): 4239-4253. DOI: 10.1002/hbm.25950.
[29]
DUBOIS J, ALISON M, COUNSELL S J, et al. MRI of the neonatal brain: A review of methodological challenges and neuroscientific advances[J]. J Magn Reson Imaging, 2021, 53(5): 1318-1343. DOI: 10.1002/jmri.27192.
[30]
SMITH S D W, SMITH A B, RICHARDSON M P, et al. Neurodevelopmental origins of self-limiting rolandic epilepsy: Systematic review of MR imaging studies[J]. Epilepsia Open, 2021, 6(2): 310-322. DOI: 10.1002/epi4.12468.
[31]
GARCIA-RAMOS C, JACKSON D C, LIN J J, et al. Cognition and brain development in children with benign epilepsy with centrotemporal spikes[J]. Epilepsia, 2015, 56(10): 1615-1622. DOI: 10.1111/epi.13125.
[32]
LUO C, ZHANG Y, CAO W, et al. Altered structural and functional feature of striato-cortical circuit in benign epilepsy with centrotemporal spikes[J/OL]. Int J Neural Syst, 2015, 25(6): 1550027 [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/26126612/. DOI: 10.1142/S0129065715500276.
[33]
XU Y, XU Q, ZHANG Q, et al. Influence of epileptogenic region on brain structural changes in Rolandic epilepsy[J]. Brain Imaging Behav, 2022, 16(1): 424-434. DOI: 10.1007/s11682-021-00517-5.
[34]
LI Z, ZHANG J, WANG F, et al. Surface-based morphometry study of the brain in benign childhood epilepsy with centrotemporal spikes[J/OL]. Ann Transl Med, 2020, 8(18): 1150 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7576069/. DOI: 10.21037/atm-20-5845.
[35]
CIUMAS C, MONTAVONT A, ILSKI F, et al. Neural correlates of verbal working memory in children with epilepsy with centro-temporal spikes[J/OL]. Neuroimage Clin, 2020, 28: 102392 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7495114/. DOI: 10.1016/j.nicl.2020.102392.
[36]
JIANG L, MA X, LIU H, et al. Aberrant dynamics of regional coherence measured by resting-state fMRI in children with benign epilepsy with centrotemporal spikes (BECTS)[J/OL]. Front Neurol, 2021, 12: 712071 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8715032/. DOI: 10.3389/fneur.2021.712071.
[37]
YANG F, TAN J, HUANG Y, et al. Altered language-related effective connectivity in patients with benign childhood epilepsy with centrotemporal spikes[J/OL]. Life (Basel), 2023, 13(2): 590 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9960797/. DOI: 10.3390/life13020590.
[38]
FATEH A A, SMAHI A, HASSAN M, et al. From brain connectivity to cognitive function: Dissecting the salience network in pediatric BECTS-ESES[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2024, 135: 111110 [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/39069247/. DOI: 10.1016/j.pnpbp.2024.111110.
[39]
WU Y, FANG F, LI K, et al. Functional connectivity differences in speech production networks in Chinese children with Rolandic epilepsy[J/OL]. Epilepsy Behav, 2022, 135: 108819 [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/35973912/. DOI: 10.1016/j.yebeh.2022.108819.
[40]
XU G, ZHANG Y, CHEN X. Combined diffusion tensor imaging and quantitative susceptibility mapping to characterize normal-appearing white matter in self-limited epilepsy with centrotemporal spikes[J]. Neuroradiology, 2024, 66(8): 1383-1390. DOI: 10.1007/s00234-024-03367-2.
[41]
CIUMAS C, SAIGNAVONGS M, ILSKI F, et al. White matter development in children with benign childhood epilepsy with centro-temporal spikes[J]. Brain, 2014, 137(Pt 4): 1095-1106. DOI: 10.1093/brain/awu039.
[42]
OSTROWSKI L M, CHINAPPEN D M, STOYELL S M, et al. Children with Rolandic epilepsy have micro- and macrostructural abnormalities in white matter constituting networks necessary for language function[J/OL]. Epilepsy Behav, 2023, 144: 109254 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10330597/. DOI: 10.1016/j.yebeh.2023.109254.
[43]
GALLO-BERNAL S, BEDOYA M A, GEE M S, et al. Pediatric magnetic resonance imaging: faster is better[J]. Pediatr Radiol, 2023, 53(7): 1270-1284. DOI: 10.1007/s00247-022-05529-x.
[44]
XU Q, HU Z, YANG F, et al. Resting state signal latency assesses the propagation of intrinsic activations and estimates anti-epileptic effect of levetiracetam in Rolandic epilepsy[J]. Brain Res Bull, 2020, 162: 125-131. DOI: 10.1016/j.brainresbull.2020.05.016.
[45]
TALAMI F, LEMIEUX L, AVANZINI P, et al. The influence of wakefulness fluctuations on brain networks involved in centrotemporal spike occurrence[J]. Clin Neurophysiol, 2024, 164: 47-56. DOI: 10.1016/j.clinph.2024.05.005.
[46]
TIMMERMANN C, ROSEMAN L, HARIDAS S, et al. Human brain effects of DMT assessed via EEG-fMRI[J/OL]. Proc Natl Acad Sci U S A, 2023, 120(13): e2218949120 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10068756/. DOI: 10.1073/pnas.2218949120.
[47]
FLEURY M, FIGUEIREDO P, VOURVOPOULOS A, et al. Two is better? combining EEG and fMRI for BCI and neurofeedback: a systematic review[J/OL]. J Neural Eng, 2023, 20(5) [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/37879343/. DOI: 10.1088/1741-2552/ad06e1.
[48]
ITO Y, MAKI Y, OKAI Y, et al. Involvement of brain structures in childhood epilepsy with centrotemporal spikes[J/OL]. Pediatr Int, 2022, 64(1): e15001 [2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/34562291/. DOI: 10.1111/ped.15001.
[49]
DAI X J, YANG Y, WANG Y. Interictal epileptiform discharges changed epilepsy-related brain network architecture in BECTS[J]. Brain Imaging Behav, 2022, 16(2): 909-920. DOI: 10.1007/s11682-021-00566-w.
[50]
MERTENS A, BOON P, VONCK K. Neurostimulation for childhood epilepsy[J]. Dev Med Child Neurol, 2024, 66(4): 440-444. DOI: 10.1111/dmcn.15692.
[51]
ZEWDIE E, CIECHANSKI P, KUO H C, et al. Safety and tolerability of transcranial magnetic and direct current stimulation in children: Prospective single center evidence from 3.5 million stimulations[J]. Brain Stimul, 2020, 13(3): 565-575. DOI: 10.1016/j.brs.2019.12.025.
[52]
STEPHEN J, WEIR C J, CHIN R F. Temporal trends in incidence of Rolandic epilepsy, prevalence of comorbidities and prescribing trends: birth cohort study[J]. Arch Dis Child, 2020, 105(6): 569-574. DOI: 10.1136/archdischild-2019-318212.
[53]
JIANG Y, SONG L, LI X, et al. Dysfunctional white-matter networks in medicated and unmedicated benign epilepsy with centrotemporal spikes[J]. Hum Brain Mapp, 2019, 40(10): 3113-3124. DOI: 10.1002/hbm.24584.
[54]
李志鹏, 杨昉, 胡正, 等. 左乙拉西坦对伴中央颞区棘波的儿童良性癫痫脑活动影响的静息态功能磁共振成像评价[J]. 中国临床医学影像杂志, 2017, 28(10): 707-711. DOI: 10.3969/j.issn.1008-1062.2017.10.005.
LI Z P, YANG F, HU Z, et al. Effect of levetiracetam in benign childhood epilepsy with centro-temporal spikes: a resting-state fMRI study based on amplitude of low frequence fluctuation[J]. J Chin Clin Med Imaging, 2017, 28(10): 707-711. DOI: 10.3969/j.issn.1008-1062.2017.10.005.
[55]
ZHANG Q, YANG F, HU Z, et al. Resting-state fMRI revealed different brain activities responding to valproic acid and levetiracetam in benign epilepsy with central-temporal spikes[J]. Eur Radiol, 2017, 27(5): 2137-2145. DOI: 10.1007/s00330-016-4531-z.
[56]
CHENG W, YANG Y, CHEN Y, et al. Anti-seizure medication treatment of benign childhood epilepsy with centrotemporal spikes: A systematic review and meta-analysis[J/OL]. Front Pharmacol, 2022, 13: 821639 [2024-07-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8960983/. DOI: 10.3389/fphar.2022.821639.
[57]
吴青, 李卓, 沈一飞. 基于深度Q网络的BECT治疗药物左乙拉西坦用药剂量推荐[J]. 中国现代应用药学, 2022, 39(12): 1585-1590. DOI: 10.13748/j.cnki.issn1007-7693.2022.12.012.
WU Q, LI Z, SHEN Y F. Dosage recommendation of levetiracetam for the treatment of BECT in children based on deep Q network[J]. Chin J Mod Appl Pharm, 2022, 39(12): 1585-1590. DOI: 10.13748/j.cnki.issn1007-7693.2022.12.012.
[58]
LI Y, FENG J, ZHANG T, et al. Brain metabolic characteristics distinguishing typical and atypical benign epilepsy with centro-temporal spikes[J]. Eur Radiol, 2021, 31(12): 9335-9345. DOI: 10.1007/s00330-021-08051-0.
[59]
UCAR H K, ARHAN E, AYDIN K, et al. Electrical status epilepticus during sleep (ESES) in benign childhood epilepsy with Centrotemporal spikes (BCECTS): insights into predictive factors, and clinical and EEG outcomes[J]. Eur Rev Med Pharmacol Sci, 2022, 26(6): 1885-1896. DOI: 10.26355/eurrev_202203_28334.
[60]
PARK Y K, EUN S H, EUN B L, et al. Factors predicting poor response to initial therapy in benign childhood epilepsy with centrotemporal spikes (BCECTS)[J]. J Epilepsy Res, 2015, 5(2): 70-74. DOI: 10.14581/jer.15012.
[61]
JURKEVICIENE G, ENDZINIENE M, LAUKIENE I, et al. Association of language dysfunction and age of onset of benign epilepsy with centrotemporal spikes in children[J]. Eur J Paediatr Neurol, 2012, 16(6): 653-661. DOI: 10.1016/j.ejpn.2012.03.011.
[62]
VAN KLINK N E, VAN 'T KLOOSTER M A, LEIJTEN F S, et al. Ripples on rolandic spikes: A marker of epilepsy severity[J]. Epilepsia, 2016, 57(7): 1179-1189. DOI: 10.1111/epi.13423.
[63]
KRAMER M A, OSTROWSKI L M, SONG D Y, et al. Scalp recorded spike ripples predict seizure risk in childhood epilepsy better than spikes[J]. Brain, 2019, 142(5): 1296-1309. DOI: 10.1093/brain/awz059.
[64]
OPERTO F F, MAZZA R, PASTORINO G M G, et al. Parental stress in a sample of children with epilepsy[J]. Acta Neurol Scand, 2019, 140(2): 87-92. DOI: 10.1111/ane.13106.

上一篇 阻塞性睡眠呼吸暂停患者脑结构及功能磁共振成像研究进展
下一篇 功能磁共振成像技术诠释针刺治疗缺血性中风机制的进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2