分享:
分享到微信朋友圈
X
综述
无症状颈动脉狭窄的脑结构和功能MRI研究进展
王俊君 宋林峰 田彬琳 江林

Cite this article as: WANG J J, SONG L F, TIAN B L, et al. Advances in structural and functional imaging in asymptomatic carotid artery stenosis[J]. Chin J Magn Reson Imaging, 2024, 15(11): 185-189, 215.本文引用格式:王俊君, 宋林峰, 田彬琳, 等. 无症状颈动脉狭窄的脑结构和功能MRI研究进展[J]. 磁共振成像, 2024, 15(11): 185-189, 215. DOI:10.12015/issn.1674-8034.2024.11.029.


[摘要] 无症状颈动脉狭窄(asymptomatic carotid stenosis, ACS)指从未或既往3~6个月内无中度颅外段颈内动脉狭窄(狭窄率≥50%)引起神经系统症状的疾病,是血管性认知功能障碍病因之一,可进展为血管性痴呆。但ACS在MRI中无特异性影像学表现,与其多领域认知受损并不相符,引起国内外研究人员关注。通过近年来相关文献总结发现,既往研究着重于基于结构或静息态功能研究,缺乏结构和功能耦合对ACS脑结构和功能异常全面分析,因此,本文从结构和功能MRI角度对ACS研究进展进行综述,以期为ACS认知受损机制提供了一些新的见解。
[Abstract] Asymptomatic carotid stenosis (ACS) refers to a condition where there have been no neurological symptoms caused by moderate extracranial internal carotid artery stenosis (stenosis rate ≥ 50%) within the past 3 to 6 months or ever before. ACS is one of the causes of vascular cognitive impairment and may progress to vascular dementia. However, ACS lacks specific imaging features on MRI, which does not correspond to its multifield cognitive impairment, drawing attention from researchers worldwide. A review of recent literature reveals that previous studies have mainly focused on structural or resting-state functional research, lacking a comprehensive analysis of structural and functional coupling in ACS-related brain structure and function abnormalities. Therefore, this article reviews research progress on ACS from the perspective of structural and functional MRI, aiming to provide new insights into the mechanisms underlying cognitive impairment in ACS.
[关键词] 无症状颈动脉狭窄;认知功能受损;磁共振成像;脑结构;脑功能;脑网络
[Keywords] asymptomatic carotid stenosis;impaired cognitive function;magnetic resonance imaging;brain structure;brain function;brain network

王俊君    宋林峰    田彬琳    江林 *  

遵义医科大学第三附属医院(遵义市第一人民医院)影像科,遵义 563000

通信作者:江林,E-mail: jlinzmc@163.com

作者贡献声明:江林设计本研究的方案,对稿件重要内容进行了修改;王俊君起草和撰写稿件,获取、分析和解释本研究的相关文献;宋林峰、田彬琳(获取、分析本研究相关文献;对稿件重要内容进行了修改;宋林峰并获得了遵义市科技计划项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 遵义市科技计划项目 遵市科合HZ字〔2023〕18号
收稿日期:2024-07-21
接受日期:2024-11-10
中图分类号:R445.2  R543 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.11.029
本文引用格式:王俊君, 宋林峰, 田彬琳, 等. 无症状颈动脉狭窄的脑结构和功能MRI研究进展[J]. 磁共振成像, 2024, 15(11): 185-189, 215. DOI:10.12015/issn.1674-8034.2024.11.029.

0 引言

       无症状颈动脉狭窄(asymptomatic carotid stenosis, ACS)是血管性认知功能障碍的独立危险因素[1]。截至2020年,我国30~79岁人群中ACS患病率约1.5%[2],中度狭窄(狭窄率50%~69%)患者约占1.9%,重度狭窄(狭窄率70%~99%)患者约占0.3%[3]。ACS是指从未或既往3~6个月内无中风、短暂性脑缺血发作或其他神经系统症状发生的颅外段颈内动脉狭窄(狭窄率≥50%)疾病[4, 5]。虽然临床上“无症状”,且常规MRI无特异性影像学表现,但患者在记忆、注意力及执行能力等多领域认知能力变差,以处理速度和学习/记忆容量降低为特征[6, 7, 8]。即使是轻度ACS在日常生活中也可发生血管性认知障碍[9],而后进展为血管性痴呆,丧失独立生活能力,加重家庭及社会负担。

       目前,通过结构和功能MRI及相应分析方法发现,ACS在长期脑血流动力学受损情况下,全脑体积明显减小[10, 11]、功能连接(functional connectivity, FC)异常改变[12, 13],推测ACS结构和功能受损与慢性脑灌注不足密切相关[14]。但既往针对ACS研究在结构上主要聚焦于全脑结构萎缩[9, 10, 11],特定脑区的皮质厚度、体积及表面积减小[15, 16],白质高信号(white matter hyperintensity, WMH)[17, 18]等与认知功能的相关性,对白质(white matter, WM)结构完整性和连通性改变研究不足,针对WM损伤研究也仅限于以弥散张量成像[12]研究为主,相关综述[19, 20]也以基于体素的形态学测量进行灰质受损分析,缺乏多元化皮层量化;而在功能上,之前研究强调基于感兴趣区[12, 21, 22]和基于种子点[23, 24]全脑FC分析,对网络水平分析以默认模式网络[12, 25]功能为主,缺乏对局部脑FC和多网络水平研究。随着神经影像技术及分析方法快速进展,ACS脑微观和宏观改变研究不断深入,针对ACS可发现更细微的脑结构和功能异常,做出更精准评估,为进一步了解ACS认知受损相关的脑结构和功能异常提供可靠的影像学依据。因此,本文将从现有ACS脑多元化皮层量化、WM完整性及连通性和全脑和局部脑功能等方面文献进行综述,以期为后续研究提供帮助和参考。

1 结构MRI在ACS中的应用

       结构MRI是非侵入性覆盖全脑的成像技术,具有安全性好、准确性高、可重复性等优点,广泛应用于神经、精神疾病,如痴呆[26]、阿尔茨海默病[27]、创伤后应激障碍[28]等。常用分析有基于体素和表面的形态学方法对脑结构体积和形态等测量,及扩散张量成像和基于纤维素示踪的空间统计观察WM微观结构完整性和连通性。

1.1 基于体素和基于表面的形态学测量方法

       基于体素的形态学测量方法是以体素为单位,通过对皮层厚度、体积及表面积进行定量来反映相应解剖结构差异确定脑结构改变;基于表面的形态学测量方法在此基础上,通过对皮层表面积、凹凸度、曲率等进行多元化量化,可更精准评估脑皮层萎缩,发现结构与功能间的相关性。皮层加速萎缩是导致认知障碍的结构基础之一[29],如双侧颞顶区皮质厚度介导了与年龄相关的处理速度和非语言智力的认知表现[30]。即使在年龄相关纠正后,ACS仍有广泛而明显的皮层萎缩[10, 15],并和认知功能障碍关系密切[10],且皮层萎缩程度与颈动脉狭窄程度正相关[31]。有研究基于体素的形态学测量发现ACS皮层萎缩主要分布于前循环供血区[12],以双侧额颞顶叶及部分枕叶显著[16]。特定脑区皮层萎缩与ACS多领域认知损伤相关[11],GAO等[15]发现重度ACS颞中回后部和躯体运动区皮层右偏化,随年龄增长可累及三角部、颞外侧和小脑区域。而颞中回后部皮层以左侧为主萎缩(r=-0.60,P=0.006)和右侧化不对称介导了WMH(r=0.78,P<0.001)与回忆记忆间(r=-0.57,P=0.011)的关系。而左侧岛盖部、三角部和额中回皮层萎缩与临床记忆量表正相关(r>0.7,P=0.001),其中左侧额中回与联想记忆呈高度正相关(r=0.853,P=0.001)、左侧岛盖部与语义记忆呈中度正相关(r=0.695,P=0.001)[16]。换而言之,ACS额颞叶区皮层萎缩是语言记忆表现更差的可能机制。此外,ACS在胼胝体[32]及左侧海马旁回(t=1.93,P<0.05)、辅助运动区皮层(t=3.32,P<0.05),岛叶皮层和WM(P<0.05)明显萎缩[11, 24],胼胝体、海马旁回和辅助运动区作为参与认知过程的重要脑区,其结构萎缩是ACS在记忆、执行功能和视空间功能等认知表现更差的潜在机制之一。而通过基于表面的形态学测量方法发现ACS在中央后回和顶上小叶区皮质变薄与工作记忆、语言流畅性和执行功能等认知受损相关(P<0.05)[24]。外侧裂周围因跨越了体感/运动、显著性和背侧注意网络,故该区皮质变薄、脑沟变浅,皮质回化异常及复杂度(分形维数)减低(P<0.05)也可以解释ACS在多领域认知功能受损[7]

       综上所述,皮层萎缩不仅与言语记忆和WMH相关,且增加痴呆和脑血管事件易感性。结构是功能的基础,发现微观脑结构异常有助于我们对ACS功能异常和认知受损的认识。目前,由于被试脑形状大小不同,对大脑进行分割时易产生误差,故标准化后的脑体积与实际存在差异,希望以后的研究中可结合基于感兴趣区的表面形态学研究、联合深度学习模型及元分析连接性建模等分析方法,以期更好评估脑结构异常改变。

1.2 扩散张量成像和基于纤维素示踪的空间统计

       扩散张量成像通过观察组织内自由水运动发现WM微观结构改变,广泛应用于WM完整性和连通性评估。基于纤维素示踪的空间统计在此基础上将分数各向异性等参数进行体素级构建和敏感度、特异度计算,因此对微观WM评估更灵敏。脑WM作为人脑信息交互和处理的基本结构,对缺血具有易感性,损伤以WMH最为常见。ACS患者严重或进展WMH与更差的认知表现正相关[17, 18],特别是言语记忆(即时和延迟回忆记忆,P<0.05)、整体认知(简易精神量表和蒙特利尔认知评估量表,P<0.05)、执行功能(P<0.05)[13]等认知表现呈正相关。有研究采用扩散张量成像发现ACS WM内平均、轴向、径向扩散系数增加,各向异性分数减低(P<0.001)[12, 33],其中平均扩散系数与执行功能负相关(P<0.05)[34],各向异性分数与语言记忆、个体智力正相关(P<0.05)[35, 36],例如,ACS在胼胝体膝部和压部处WM各向异性分数减低和平均扩散系数增加(P<0.001)[32],其中膝部在执行功能中起着重要作用,压部与视觉空间功能和工作记忆相关,故胼胝体膝部和压部的WM连通性异常是导致ACS在语言记忆、执行功能表现更差的机制之一。各向异性分数减低在轻度ACS损伤WM中被发现(P<0.05)[37],故可为ACS认知下降早期敏感指标之一。通过基于纤维素示踪的空间统计发现即使在去除年龄相关的萎缩后,ACS胼胝体面积、圆形度和厚度均显著减少,与WMH显著相关(r=-0.629,P<0.001)[32]。胼胝体作为颅内连接左右半球最大的WM纤维束,承担了信息整合与协调处理的重任,其完整性和连通性受损证明了ACS认知下降与WM结构损伤密切相关。

       通过扩散张量成像和基于纤维素示踪的空间探讨了ACS WM完整性和连通性,验证了其与认知损害相关性。扩散张量成像基于生物内中水扩散的高斯分布的简化,加深了我们对脑WM改变的认识。但是,复杂的细胞内外环境导致水分子扩散偏离这种简化模式,扩散峰度成像作为更准确的扩散模型,可捕获非高斯扩散行为作为组织异质性的反射标记,广泛应用于阿尔茨海默病、帕金森及其亚型和轻度认知障碍等神经精神疾病中,但尚无针对ACS扩散峰度成像研究,未来应探索ACS在扩散峰度成像研究,有助于捕捉ACS微观结构复杂性的变化,更好发现ACS的微观脑结构变化。

2 静息态功能MRI在ACS中的应用

       静息态功能MRI根据不同功能性脑区域的血流动力学变化获取活动图像,对局部活动和FC异常有较好显示,是探索ACS认知受损潜在机制的有效方法。

2.1 ACS的脑功能异常研究

2.1.1 FC

       FC是指空间不相邻但具有高度时间相关性的两个或多个脑区间的连接,分析方法主要有基于种子点、感兴趣区及体素镜像同伦连接等。目前认为ACS表现出全脑FC异常,即半球间减少和半球内增加,具体为曼哈顿距离在半球间延长,半球内缩短(P<0.05)[13, 21]。根据不同分析方法观察到ACS的FC异常,基于感兴趣研究观察到ACS额颞顶叶处半球内FC减低(P<0.05)[21]:左侧ACS在右侧内侧额上回、左侧舌回、右侧ACS在右侧小脑、颞中回处FC减低(P<0.05),与ACS在语言记忆、延迟记忆表现更差(r=0.40,P=0.03)正相关[12, 22]。而基于体素镜像同伦连接方法观察到重度ACS在双侧壳核、外侧顶叶及运动、初级体感、颞平面和岛盖皮层FC减低(P<0.05)[38],是ACS初级认知功能减退潜在机制之一。基于种子点观察到ACS在左侧额中回、额下回、颞极/楔前叶、颞极/颞中回FC减低导致ACS工作记忆、语言流畅性和执行时间方面表现更差(P<0.05)[24];KOHTA等[23]发现双侧内侧前额叶与楔前叶、左侧顶叶与右侧小脑FC显著低于对照组;脑灌注恢复后在双侧楔前叶、左侧顶叶FC明显改善(P<0.05),而在认知方面,与视觉空间功能、执行功能、注意力等方面也呈不同程度改善。众所周知,高级认知功能需要多个与认知活动相关脑区构成特异性脑网络的协同活动实现。从网络水平分析,额顶叶和默认模式网络参与认知控制和决策过程,而显著网络在广泛的认知控制任务中起作用[39]。与健康对照组相比,ACS在背侧注意网络、额顶叶网络、感觉运动网络和默认模式网络被更不对称破坏,以狭窄侧半球间额顶叶网络、双侧半球内默认模式、额顶叶网络连通性减低明显[38]。随着影像技术进步,发现ACS不仅在外侧裂周围额顶叶网络减低[40],而且在语言、体感/运动和显著网络连通性减低(P<0.05)[13]。额顶叶网络在执行功能中起着至关重要的作用,可以协调和整合所有其他大脑区域的功能,参与工作记忆、言语执行等功能[41];默认模式网络不仅在额顶叶网络正常成熟激活中起关键作用,且两者间的功能交互有助于执行功能和工作记忆的表达[42]。因此,ACS多领域认知损伤是多网络水平功能异常改变共同作用的结果。

       总而言之,ACS之所以在临床上表现为“无症状”,可能是维持基础功能的半球内连接增强,支持高级认知的半球间连接减低。所以,作为ACS早期的评估和诊断的影像学指标,FC可以在高级认知功能尚未发生受损前就提示ACS功能异常。

2.1.2 图论分析

       图论分析是通过全局和局部效率评估传递大脑信息的脑网络与相应认知相关性,是评估、预测认知功能有效方法。既往认为ACS在网络协调性、层级性、效率及小世界性信息传递效率异常与其认知受损[42]密切相关。在血管性认知损害中,整体(r=0.49,P<0.05)、局部效率和特征路径长度(r=0.36,P<0.05)改变最为明显[17, 43]。而在ACS患者中,WMH在右侧伏隔核(中介边缘网络和运动系统)和右侧平面极(参与感觉-运动功能)局部效率降低与情绪和认知障碍有关(P<0.05);WMH总量在楔前叶(默认模式网络的关键区域)、左侧颞枕梭状皮质(语义缺陷的关键部位)整体效率降低,平均路径长度增加(P<0.05)[17],可部分解释ACS认知受损。

       ACS网络分析存在小世界属性,其小世界属性与右侧额下回与左侧眶额下回、海马体、颞上回和颞中回间FC显著负相关,导致ACS短期单词记忆能看明显减退(P<0.05)[44]。ACS行颈动脉血运重建术后在左侧额中回度中心度、左侧额中回和右侧顶叶下角回节点效率显著增加,右侧颞中回度中心度、节点介数及节效率明显减低(P<0.05)[45],由于额颞叶是控制网络的关键部位,其连通性异常情况的改善,可能是ACS在记忆功能、情绪管理和执行功能恢复相关机制[17]

       通过图论分析探讨了ACS的脑连通性异常与相关认知损伤的关系,但是目前研究样本量小,未来可以多中心研究,联合其他分析方法,以期提示ACS患者早期脑功能异常,提前提供干预措施,减少高级脑功能的损害。

2.2 ACS局部脑区活动异常的研究

2.2.1 低频振幅波动和局部一致性在ACS中的应用

       低频振幅波动(amplitude of low frequency fluctuation, ALFF)是基于血氧水平依赖信号评估局部自发神经元活动,通过单个体素内神经元活动幅度反映脑局部FC改变。XIAO等[46]认为ACS认知功能受损机制是双侧背内侧前额叶、扣带皮层、楔前叶和辅助运动区的ALFF显著降低(P<0.05);同时,代偿机制是双侧梭状回、海马、海马旁回、右侧丘脑和左侧眶额回ALFF升高(P<0.05)。但大脑的功能本身具有不对称性,为了辨明ACS病理性功能不对称,FAN等[47]在ALFF基础上提出ALFF不对称指数,证明ACS在高视觉、听觉、海马旁回、罗兰区和顶上小叶等区域幅度明显下降(P<0.05);并且采用ALFF能发现,ACS在脑低灌注解除后轻微但可测量FC改善:以右侧中央前回、额中回和扣带回前段的单个体素簇活动增加显著(P<0.05)[48, 49]

       局部一致性则通过计算相邻体素间的时间序列评价不同脑区神经活动同步性的方法,可评估脑连接缺陷或异常同步与认知能力下降间的关系。轻度ACS在左侧枕上回局部一致性降低,并发现左枕上回、左中央后回和C-反应蛋白间呈负相关(P<0.05)[50],枕上回与处理速度、社会认知速度和视空间能力密切相关[51, 52],中央后回在视空间能力[53]中发挥重要作用,这可能是ACS在多领域认知受损另一个机制。

       ALFF和局部一致性对脑区局部功能敏感性与距离呈负相关,但是,ACS功能异常脑区广泛,脑区间信息交互复杂,因此仅用ALFF和局部一致性解释ACS神经机制不够完善,未来应尽可能与研究全脑活动异常的方法相结合,全面反映ACS的异常神经影像学特征,获得更可靠的影像学标记物。

2.2.2 动脉自旋标记在ACS的应用

       动脉自旋标记是以自身水分子作为示踪剂,对不同脑区脑血流量进行评估和测量的方法。在双侧颈动脉狭窄小鼠模型中,动脉自旋标记发现脑灌注不足—认知缺陷相关的海马神经障碍的定量和定性损害[54]。ACS血流动力学障碍主要位于狭窄侧前循环供血脑区,GAO等[38]发现在重度ACS低灌注区主要位于额、顶、颞叶和脑室周围,以双侧丘脑、左侧盖部、眶额部、枕叶中部及右侧前扣带回背侧明显(P<0.05)。ACS术后复查发现狭窄侧半球内FC增加,前额叶(额顶叶网络关键脑区)(P<0.05)[22]和后扣带回(默认模式网络关键区域)(P<0.05)[48]显著。因此,颈动脉血运重建术通过ACS解除脑低灌注状态[55],部分或完全逆转ACS脑FC异常连接,故为ACS有效治疗方案。

       ACS血流动力学恶化不仅使脑处于慢性低灌注状态,而且增加了缺血性事件的风险。动脉自旋标记作为一种可靠的影像学标记物,可以发现患者的脑血流动力学受损区及FC异常,对预防疾病有着重要的意义。

3 总结和展望

       目前,结构和功能MRI已广泛应用于ACS研究,为我们深入了解ACS结构和功能异常,探寻影像标志物、疗效评估提供了可靠影像学依据。但目前相关研究仍存在一些局限性,如样本量少、年龄范围广泛、个体病程及基础疾病等对脑结构和功能影响。目前对ACS尚无扩散峰度成像方法探索,在脑结构和功能耦合、动态FC的分析认知不足。未来将对以上不足开展深入研究,应用多模态MRI同时扩大样本量的,联合多种分析方法如结构和功能的耦合对ACS全面分析,局部脑结构(如海马及亚区、杏仁核及楔前叶)形态学改变,动态梯度或聚类系数等动态分析方法对ACS结构和功能进一步探索,以期更全面深入地探讨ACS认知功能受损机制,为ACS诊疗提供更为可靠的影像学依据。

[1]
LAZAR R M, WADLEY V G, MYERS T, et al. Baseline cognitive impairment in patients with asymptomatic carotid stenosis in the CREST-2 trial[J]. Stroke, 2021, 52(12): 3855-3863. DOI: 10.1161/STROKEAHA.120.032972.
[2]
SONG P G, FANG Z, WANG H Y, et al. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study[J/OL]. Lancet Glob Health, 2020, 8(5): e721-e729 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/32353319/. DOI: 10.1016/S2214-109X(20)30117-0.
[3]
POORTHUIS M H F, SHERLIKER P, MORRIS D R, et al. Development and internal validation of a risk score to detect asymptomatic carotid stenosis[J]. Eur J Vasc Endovasc Surg, 2021, 61(3): 365-373. DOI: 10.1016/j.ejvs.2020.11.029.
[4]
COUTTS S B, WEIN T H, LINDSAY M P, et al. Canadian Stroke Best Practice Recommendations: secondary prevention of stroke guidelines, update 2014[J]. Int J Stroke, 2015, 10(3): 282-291. DOI: 10.1111/ijs.12439.
[5]
INZITARI D, ELIASZIW M, GATES P, et al. The causes and risk of stroke in patients with asymptomatic internal-carotid-artery stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators[J]. N Engl J Med, 2000, 342(23): 1693-1700. DOI: 10.1056/NEJM200006083422302.
[6]
HU Z Z, ZHANG K, QIANG W, et al. Study of cognitive function in patients with severe asymptomatic carotid artery stenosis by a computerized neuropsychological assessment device[J/OL]. Front Psychol, 2023, 14: 1055244 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/36968715/. DOI: 10.3389/fpsyg.2023.1055244.
[7]
GAO L, RUAN Z, XIAO Y Q, et al. Surface-based cortical morphometry, white matter hyperintensity, and multidomain cognitive performance in asymptomatic carotid stenosis[J/OL]. Neuroscience, 2021, 467: 16-27 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/34022325/. DOI: 10.1016/j.neuroscience.2021.05.013.
[8]
PORCU M, COCCO L, SALONER D, et al. Extracranial carotid artery stenosis: the effects on brain and cognition with a focus on resting-state functional connectivity[J]. J Neuroimaging, 2020, 30(6): 736-745. DOI: 10.1111/jon.12777.
[9]
GHAZNAWI R, VONK J M, ZWARTBOL M H, et al. Low-grade carotid artery stenosis is associated with progression of brain atrophy and cognitive decline. The SMART-MR study[J]. J Cereb Blood Flow Metab, 2023, 43(2): 309-318. DOI: 10.1177/0271678X221133859.
[10]
GHAZNAWI R, RISSANEN I, DE BRESSER J, et al. Carotid artery stenosis and progression of hemispheric brain atrophy: the SMART-MR study[J]. Cerebrovasc Dis, 2023, 52(2): 226-233. DOI: 10.1159/000526261.
[11]
DUAN W, LU L, CUI C, et al. Examination of brain area volumes based on voxel-based morphometry and multidomain cognitive impairment in asymptomatic unilateral carotid artery stenosis[J/OL]. Front Aging Neurosci, 2023, 15: 1128380 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/37009454/. DOI: 10.3389/fnagi.2023.1128380.
[12]
CHENG H L, LIN C J, SOONG B W, et al. Impairments in cognitive function and brain connectivity in severe asymptomatic carotid stenosis[J]. Stroke, 2012, 43(10): 2567-2573. DOI: 10.1161/STROKEAHA.111.645614.
[13]
REN J X, XU D, MEI H, et al. Asymptomatic carotid stenosis is associated with both edge and network reconfigurations identified by single-subject cortical thickness networks[J/OL]. Front Aging Neurosci, 2022, 14: 1091829 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/36711201/. DOI: 10.3389/fnagi.2022.1091829.
[14]
PARASKEVAS K I, FAGGIOLI G, ANCETTI S, et al. Editor's choice -asymptomatic carotid stenosis and cognitive impairment: a systematic review[J]. Eur J Vasc Endovasc Surg, 2021, 61(6): 888-899. DOI: 10.1016/j.ejvs.2021.03.024.
[15]
GAO L, XIAO Y Q, XU H B. Gray matter asymmetry in asymptomatic carotid stenosis[J]. Hum Brain Mapp, 2021, 42(17): 5665-5676. DOI: 10.1002/hbm.25645.
[16]
WANG P J, CAI H, LUO R T, et al. Measurement of cortical atrophy and its correlation to memory impairment in patients with asymptomatic carotid artery stenosis based on VBM-DARTEL[J/OL]. Front Aging Neurosci, 2021, 13: 620763 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/34295237/. DOI: 10.3389/fnagi.2021.620763.
[17]
HU H Y, OU Y N, SHEN X N, et al. White matter hyperintensities and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 36 prospective studies[J/OL]. Neurosci Biobehav Rev, 2021, 120: 16-27 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/33188821/. DOI: 10.1016/j.neubiorev.2020.11.007.
[18]
XU S H, YU S S, MAO B J, et al. Cholinergic hyperintensity pathways are associated with cognitive performance in patients with asymptomatic carotid artery stenosis[J/OL]. Clin Neurol Neurosurg, 2024, 241: 108278 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/38631155/. DOI: 10.1016/j.clineuro.2024.108278.
[19]
张驰, 贺朝, 孙婧婷, 等. 多模态MRI提示无症状颈动脉狭窄与认知障碍的关系及机制[J]. 磁共振成像, 2023, 14(8): 140-144, 170. DOI: 10.12015/issn.1674-8034.2023.08.024.
ZHANG C, HE C, SUN J T, et al. Association and mechanism of asymptomatic carotid stenosis with cognitive impairment as suggested by multimodal MRI[J]. Chin J Magn Reson Imag, 2023, 14(8): 140-144, 170. DOI: 10.12015/issn.1674-8034.2023.08.024.
[20]
BARADARAN H, SARRAMI A H, GUPTA A. Asymptomatic carotid disease and cognitive impairment: what is the evidence?[J/OL]. Front Neurol, 2021, 12: 741500 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/34867724/. DOI: 10.3389/fneur.2021.741500.
[21]
PORCU M, COCCO L, CAU R, et al. The restoring of interhemispheric brain connectivity following carotid endarterectomy: an exploratory observational study[J]. Brain Imaging Behav, 2022, 16(5): 2037-2048. DOI: 10.1007/s11682-022-00674-1.
[22]
CHEN J R, LIN C J, CHANG F C, et al. Territory-related functional connectivity changes associated with verbal memory decline in patients with unilateral asymptomatic internal carotid stenosis[J]. AJNR Am J Neuroradiol, 2024, 45(7): 934-942. DOI: 10.3174/ajnr.A8248.
[23]
KOHTA M, OSHIRO Y, YAMAGUCHI Y, et al. Effects of carotid revascularization on cognitive function and brain functional connectivity in carotid stenosis patients with cognitive impairment: a pilot study[J]. J Neurosurg, 2023, 139(4): 1010-1017. DOI: 10.3171/2023.1.JNS222804.
[24]
MAIMAITIAILI S, TANG C, LIU C, et al. Alterations in brain morphology and functional connectivity mediate cognitive decline in carotid atherosclerotic stenosis[J/OL]. Front Aging Neurosci, 2024, 16: 1395911 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/38974904/. DOI: 10.3389/fnagi.2024.1395911.
[25]
CHANG T Y, HUANG K L, HO M Y, et al. Graph theoretical analysis of functional networks and its relationship to cognitive decline in patients with carotid stenosis[J]. J Cereb Blood Flow Metab, 2016, 36(4): 808-818. DOI: 10.1177/0271678X15608390.
[26]
SPINELLI E G, GHIRELLI A, BASAIA S, et al. Structural MRI signatures in genetic presentations of the frontotemporal dementia/motor neuron disease spectrum[J/OL]. Neurology, 2021, 97(16): e1594-e1607 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/34544819/. DOI: 10.1212/WNL.0000000000012702.
[27]
LOMBARDI G, CRESCIOLI G, CAVEDO E, et al. Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer's disease in people with mild cognitive impairment[J/OL]. Cochrane Database Syst Rev, 2020, 3(3): CD009628 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/32119112/. DOI: 10.1002/14651858.CD009628.pub2.
[28]
MAYER A R, MEIER T B, DODD A B, et al. Prospective study of gray matter atrophy following pediatric mild traumatic brain injury[J/OL]. Neurology, 2023, 100(5): e516-e527 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/36522161/. DOI: 10.1212/WNL.0000000000201470.
[29]
YOON E J, LEE J Y, KWAK S, et al. Mild behavioral impairment linked to progression to Alzheimer's disease and cortical thinning in amnestic mild cognitive impairment[J/OL]. Front Aging Neurosci, 2022, 14: 1051621 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/36688162/. DOI: 10.3389/fnagi.2022.1051621.
[30]
ONG J L, JAMALUDDIN S A, TANDI J, et al. Cortical thinning and sleep slow wave activity reductions mediate age-related improvements in cognition during mid-late adolescence[J/OL]. Sleep, 2022, 45(1): zsab206 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/34379782/. DOI: 10.1093/sleep/zsab206.
[31]
SOBCZYK O, SAM K, MANDELL D M, et al. Cerebrovascular reactivity assays collateral function in carotid stenosis[J/OL]. Front Physiol, 2020, 11: 1031 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/33041841/. DOI: 10.3389/fphys.2020.01031.
[32]
LIU X T, XU D, ZHONG X L, et al. Altered callosal morphology and connectivity in asymptomatic carotid stenosis[J]. J Magn Reson Imaging, 2024, 59(3): 998-1007. DOI: 10.1002/jmri.28872.
[33]
SCHMITZER L, KACZMARZ S, GÖTTLER J, et al. Macro- and microvascular contributions to cerebral structural alterations in patients with asymptomatic carotid artery stenosis[J]. J Cereb Blood Flow Metab, 2024, 44(9): 1629-1642. DOI: 10.1177/0271678X241238935.
[34]
SHERIFF A B, SCARAPICCHIA V, MAZEROLLE E L, et al. A comparison of white matter microstructure and correlates with neuropsychological measures in younger and older adults[J/OL]. PLoS One, 2024, 19(6): e0305818 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/38913655/. DOI: 10.1371/journal.pone.0305818.
[35]
STAMMEN C, FRAENZ C, GRAZIOPLENE R G, et al. Robust associations between white matter microstructure and general intelligence[J]. Cereb Cortex, 2023, 33(11): 6723-6741. DOI: 10.1093/cercor/bhac538.
[36]
LIN C J, CHANG F C, LIN C J, et al. Long-term cognitive and multimodal imaging outcomes after carotid artery stenting vs intensive medication alone for severe asymptomatic carotid stenosis[J]. J Formos Med Assoc, 2022, 121(1Pt 1): 134-143. DOI: 10.1016/j.jfma.2021.02.007.
[37]
LIU L H, HUANG Q, YANG S, et al. Micro-structural white matter abnormalities and cognitive impairment in asymptomatic carotid plaque patients: a DTI study using TBSS analysis[J/OL]. Clin Neurol Neurosurg, 2020, 197: 106096 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/32717561/. DOI: 10.1016/j.clineuro.2020.106096.
[38]
GAO L, WANG T, QIAN T Y, et al. Severe asymptomatic carotid stenosis is associated with robust reductions in homotopic functional connectivity[J/OL]. Neuroimage Clin, 2019, 24: 102101 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/31835289/. DOI: 10.1016/j.nicl.2019.102101.
[39]
CAI W D, RYALI S, PASUMARTHY R, et al. Dynamic causal brain circuits during working memory and their functional controllability[J/OL]. Nat Commun, 2021, 12(1): 3314 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/34188024/. DOI: 10.1038/s41467-021-23509-x.
[40]
PANIKRATOVA Y R, VLASOVA R M, AKHUTINA T V, et al. Functional connectivity of the dorsolateral prefrontal cortex contributes to different components of executive functions[J/OL]. Int J Psychophysiol, 2020, 151: 70-79 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/32109499/. DOI: 10.1016/j.ijpsycho.2020.02.013.
[41]
CHEN M L, HE Y, HAO L, et al. Default mode network scaffolds immature frontoparietal network in cognitive development[J]. Cereb Cortex, 2023, 33(9): 5251-5263. DOI: 10.1093/cercor/bhac414.
[42]
HE S H, LIU Z Q, XU Z S, et al. Brain functional network in chronic asymptomatic carotid artery stenosis and occlusion: changes and compensation[J/OL]. Neural Plast, 2020, 2020: 9345602 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/33029129/. DOI: 10.1155/2020/9345602.
[43]
BOOT E M, LEIJSEN E M V, BERGKAMP M I, et al. Structural network efficiency predicts cognitive decline in cerebral small vessel disease[J/OL]. Neuroimage Clin, 2020, 27: 102325 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/32622317/. DOI: 10.1016/j.nicl.2020.102325.
[44]
HE S H, DUAN R, LIU Z Q, et al. Altered functional connectivity is related to impaired cognition in left unilateral asymptomatic carotid artery stenosis patients[J/OL]. BMC Neurol, 2021, 21(1): 350 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/34517833/. DOI: 10.1186/s12883-021-02385-4.
[45]
TUO J, HE W, YANG S, et al. Disrupted topological organization of functional networks in asymptomatic carotid plaque without significant carotid stenosis: a resting-state fMRI study[J/OL]. Front Hum Neurosci, 2021, 15: 685763 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/34421560/. DOI: 10.3389/fnhum.2021.685763.
[46]
XIAO F, WANG T, GAO L, et al. Frequency-dependent changes of the resting BOLD signals predicts cognitive deficits in asymptomatic carotid artery stenosis[J/OL]. Front Neurosci, 2018, 12: 416 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/29977187/. DOI: 10.3389/fnins.2018.00416.
[47]
FAN C H, XU D, MEI H, et al. Hemispheric coupling between structural and functional asymmetries in clinically asymptomatic carotid stenosis with cognitive impairment[J]. Brain Imaging Behav, 2024, 18(1): 192-206. DOI: 10.1007/s11682-023-00823-0.
[48]
PORCU M, COCCO L, CAU R, et al. The mid-term effects of carotid endarterectomy on cognition and regional neural activity analyzed with the amplitude of low frequency fluctuations technique[J]. Neuroradiology, 2022, 64(3): 531-541. DOI: 10.1007/s00234-021-02815-7.
[49]
PORCU M, COCCO L, CAU R, et al. Mid-term effects of carotid endarterectomy on cognition and white matter status evaluated by whole brain diffusion tensor imaging metrics: a preliminary analysis[J/OL]. Eur J Radiol, 2022, 151: 110314 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/35452954/. DOI: 10.1016/j.ejrad.2022.110314.
[50]
WANG Q, XING W, OUYANG L R, et al. Brain alterations of regional homogeneity, degree centrality, and functional connectivity in vulnerable carotid plaque patients with neither clinical symptoms nor routine MRI lesions: a resting-state fMRI study[J/OL]. Front Neurosci, 2022, 16: 937245 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/35992918/. DOI: 10.3389/fnins.2022.937245.
[51]
LIU H Q, GAO W J, CAO W F, et al. Immediate visual reproduction negatively correlates with brain entropy of parahippocampal gyrus and inferior occipital gyrus in bipolar Ⅱ disorder adolescents[J/OL]. BMC Psychiatry, 2023, 23(1): 515 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/37464363/. DOI: 10.1186/s12888-023-05012-3.
[52]
HUANG Y Y, WANG W Y, HEI G R, et al. Altered regional homogeneity and cognitive impairments in first-episode schizophrenia: a resting-state fMRI study[J/OL]. Asian J Psychiatr, 2022, 71: 103055 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/35303593/. DOI: 10.1016/j.ajp.2022.103055.
[53]
FONSECA E, SARRIA-ESTRADA S, PARETO D, et al. Relationship between visuoperceptual functions and parietal structural abnormalities in temporal lobe epilepsy[J]. Brain Imaging Behav, 2023, 17(1): 35-43. DOI: 10.1007/s11682-022-00738-2.
[54]
FRAGA E, MEDINA V, CUARTERO M I, et al. Defective hippocampal neurogenesis underlies cognitive impairment by carotid stenosis-induced cerebral hypoperfusion in mice[J/OL]. Front Cell Neurosci, 2023, 17: 1219847 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/37636586/. DOI: 10.3389/fncel.2023.1219847.
[55]
LINDNER T, CHENG B, HEINZE M, et al. A comparative study of multi and single post labeling delay pseudocontinuous arterial spin labeling in patients with carotid artery stenosis[J/OL]. Magn Reson Imaging, 2024, 106: 18-23 [2024-07-20]. https://pubmed.ncbi.nlm.nih.gov/38042453/. DOI: 10.1016/j.mri.2023.11.011.

上一篇 磁共振成像技术在人脑胶质淋巴系统研究的现状与挑战
下一篇 基于深度学习的磁共振成像在冠心病诊疗中的应用进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2