分享:
分享到微信朋友圈
X
综述
T1、T2 mapping技术在急性心肌梗死中的应用进展
泥鲁莹 张前 曹赫 姜兴岳

Cite this article as: NI L Y, ZHANG Q, CAO H, et al. Research progress of T1 and T2 mapping techniques in acute myocardial infarction[J]. Chin J Magn Reson Imaging, 2024, 15(11): 198-202, 226.本文引用格式:泥鲁莹, 张前, 曹赫, 等. T1、T2 mapping技术在急性心肌梗死中的应用进展[J]. 磁共振成像, 2024, 15(11): 198-202, 226. DOI:10.12015/issn.1674-8034.2024.11.031.


[摘要] 急性心肌梗死(acute myocardial infarction, AMI)是一种严重威胁人类身体健康的疾病,发病率和死亡率持续上升。随着再灌注治疗和血运重建技术的普及,AMI患者的预后得到了改善,但患者的病死率仍然较高,因此AMI的早期、准确诊断在临床具有重要意义。近年来,提倡使用心脏磁共振定量技术,包括T1、T2 mapping技术,它们可以准确定量评估心肌组织特征,为诊断AMI提供非常有价值的信息。相比于传统心脏磁共振技术,该技术可以直接测量T1、T2值,定量评估心肌梗死的范围和程度。准确评估心肌梗死对于治疗AMI及评估预后具有重要价值。本文对T1、T2 mapping技术的原理及其在AMI的应用进展进行综述,旨在提高临床早期诊断的准确率,为治疗决策和预后评估提供新的思路和依据。
[Abstract] Acute myocardial infarction (AMI) is a serious disease threatening to human health, with morbidity and mortality continue to increase. With the popularization of reperfusion therapy and revascularization technology, the prognosis of AMI has been improved, but the mortality rate of patients is still high. Therefore, the early and accurate diagnosis of AMI is of great clinical significance. In recent years, the use of cardiac magnetic resonance (CMR) quantitative techniques, including T1 and T2 mapping techniques, has been advocated, which can accurately and quantitatively assess myocardial tissue characteristics and provide very valuable information for diagnosis of AMI. Compared with traditional CMR, these techniques can directly measure T1 and T2 values, and quantitatively evaluate the extent and degree of myocardial infarction. Accurate assessment of myocardial infarction is of great value for the treatment of AMI and the evaluation of prognosis. This article reviews the principle of T1 and T2 mapping techniques and its research progress in AMI, aiming to improve the accuracy of early clinical diagnosis and provide new ideas and basis for treatment decision-making and prognosis assessment.
[关键词] 急性心肌梗死;T1 mapping;T2 mapping;心脏磁共振;磁共振成像
[Keywords] acute myocardial infarction;T1 mapping;T2 mapping;cardiac magnetic resonance;magnetic resonance imaging

泥鲁莹 1   张前 1   曹赫 1   姜兴岳 2*  

1 滨州医学院医学影像学院,烟台 264003

2 滨州医学院附属医院放射科,滨州 256603

通信作者:姜兴岳,E-mail: xyjiang188@sina.com

作者贡献声明:姜兴岳设计本研究的方案,对稿件重要内容进行了修改;泥鲁莹起草和撰写稿件,获取、分析和解释本研究文献;张前、曹赫获取、分析和解释本研究的文献,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2024-08-01
接受日期:2024-11-04
中图分类号:R445.2  R541.7 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.11.031
本文引用格式:泥鲁莹, 张前, 曹赫, 等. T1、T2 mapping技术在急性心肌梗死中的应用进展[J]. 磁共振成像, 2024, 15(11): 198-202, 226. DOI:10.12015/issn.1674-8034.2024.11.031.

0 引言

       急性心肌梗死(acute myocardial infarction, AMI)是指一支或多支冠状动脉血管狭窄或闭塞后,由于缺血缺氧引起的严重心肌损伤,发病率和死亡率逐年上升[1, 2]。随着再灌注治疗和血运重建技术的发展,AMI患者预后得到改善,但心肌梗死后心力衰竭的发生率持续较高[3]。因此,如何精准定量患者受损心肌,以便及时治疗和改善预后,越来越受到临床的重视[4, 5]。心脏磁共振(cardiac magnetic resonance, CMR)具有无创、多参数及高组织分辨率等优点,可以对心脏结构、功能和组织特征进行“一站式”评估,被认为是评估心肌梗死后心肌损伤的金标准[6]。随着CMR新技术的不断发展,其中T1、T2 mapping技术,可以通过快速测量T1、T2值,直接反映心肌组织的特征变化,从而定量地评估AMI的程度,使AMI的诊断结果趋于客观精确化,对于治疗AMI及改善预后有重要意义[7]。虽然已有学者对T1、T2 mapping技术在AMI的应用进行了相关研究[8, 9, 10],并且表现出巨大的临床应用价值,但是仍然存在一些问题需要解决,比如目前T1、T2值参考范围尚未标准化,缺乏多中心大样本研究以及关于T1、T2 mapping技术用于AMI的前瞻性研究相对较少。因此,本文阐述T1、T2 mapping技术的原理,且就近年来T1、T2 mapping技术在AMI中的早期诊断、危险分层及预后评估的应用进展进行综述,旨在提高临床早期诊断的准确率,有助于早期开展临床治疗,从而改善患者预后。

1 T1、T2 mapping技术的基本原理

       T1 mapping技术是在纵向磁化矢量恢复过程中的不同时间点采集信号,用于拟合形成T1衰减曲线,获得一个定量图,其中每个像素的颜色表示体素内的平均T1弛豫时间[11]。随着T1 mapping技术的不断发展与改进,在保证准确性和可靠性的同时,将采集时间尽量缩短。T1 mapping常用序列是由原始的Look-Locker反转恢复序列演变而来,该序列通过获取多个具有不同T1时间的纵向矢量信号,然后施加射频脉冲产生梯度回波,进而读出MR信号[12]。由于Look-Locker反转恢复序列采集时间长,对患者要求高,目前T1 mapping主要采用改良Look-Locker反转恢复(modified Look-Locker inversion recovery, MOLLI)序列,在缩短采集时间的同时更精准量化心肌。MOLLI序列是基于初始反转脉冲后在多个心动周期同一时相的不同反转时间点创建T1弛豫曲线[13]。之后FERREIRA等[14]又提出了缩短MOLLI(shortened modified Look-Locker inversion recovery, ShMOLLI)序列,允许在9次心跳单次屏气内进行连续的反转恢复测量,在MOLLI的基础上减少了心率敏感性,进一步缩短了采集时间。T1值因水肿和细胞间质增加而延长,因脂肪和铁沉积而缩短,注射钆对比剂会缩短T1弛豫,在梗死心肌中钆对比剂聚集,因此增强后T1值会降低[15]。通过平扫T1值、增强后T1值和血细胞比容计算得出细胞外容积分数(extracellular volume fraction, ECV),计算公式为ECV=(1-血细胞比容)×(1/增强后心肌T1-1/平扫心肌T1)/(1/增强后血池T1-1/平扫T1),其基本原理是细胞外对比剂使T1时间缩短与组织浓度直接相关[16]。ECV值通过结合对比增强前后T1值和血细胞比容矫正获得,有效避免不同机型、对比剂剂量、血细胞比容等因素影响,是更加稳定的指标。在1.5 T MRI上,ECV的正常参考值为(25.3±3.5)%[17]。ECV值在水肿、纤维化和浸润性疾病的情况下增加[18, 19, 20]。因此,T1 mapping可以用于检测心肌水肿、梗死、纤维化和心肌淀粉样变等各类心肌疾病[9, 21]

       T2 mapping以不同的回波时间进行图像采集,再对T2衰减曲线进行逐像素拟合后生成参数图像。然后将生成的图像进行后处理,创建出一个伪彩图,并且以不同的颜色来显示T2值大小[22]。主要采用T2准备的稳态自由进动(T2‐prepared steady-state free precession, T2p-SSFP)序列进行扫描,即在不同的T2准备时间采集不同的T2图像,将图像拟合形成T2衰减曲线,计算得出T2值[23]。这种采集方式对流动不敏感,并且可以在1次屏气内完成,缩短了采集时间,因此适合常规临床使用[24]。近年来,通过K空间欠采样、图像重建和信号共享进一步缩短了T2 mapping采集时间[25]。T2 mapping技术采用的是亮血序列,不容易出现已知会影响T2WI伪影的现象,例如血液抑制不完全和信号丢失。T2 mapping对水分子变化非常敏感,用于检测体内心肌含水量的增加。目前T2 mapping已成为检测ST段抬高型心肌梗死(ST-elevation myocardial infarction, STEMI)患者心肌水肿的首选方法[26, 27]。因此,T2 mapping以其准确、快速高效的成像特点,被应用于各种病理生理过程,包括心肌水肿、梗死、心肌炎、结节病以及心脏移植排斥反应[28, 29, 30]

2 T1 mapping技术在AMI中的应用

2.1 T1 mapping技术在AMI诊断中的应用

       AMI发生后,心肌细胞膜破坏,水分渗透,并沉积在组织间质中,引起心肌水肿,导致平扫T1值和ECV值增加,增强后T1值降低[31, 32]。利用T1 mapping技术诊断AMI主要关注水肿心肌和梗死心肌。T2WI是检测心肌水肿的标准化方法,可以敏感地检出心肌水肿区域,T1 mapping具有与T2WI同样的价值,并且克服了T2WI易受到因血池抑制不完全、屏气不良和长T1液体图像重影等伪影的影响以及阅片者主观性的限制[33]。孙峥等[34]研究发现,T1 mapping可以准确量化水肿心肌,并且与常规T2WI显示水肿心肌保持较高的一致性。TAHIR等[35]研究表明,平扫T1 mapping在区分急、慢性心肌水肿的诊断准确性优于T2WI成像。因此,使用T1 mapping可以准确识别AMI心肌损伤区域,定量评估水肿的存在,是T2WI的一种重要的替代方法。目前,晚期钆增强(late gadolinium enhancement, LGE)是临床检测心肌梗死最常用的方法,T1 mapping也可以作为LGE的重要补充或替代方法。首先,LGE需要正常心肌作为对照,不能定量评估病变,而T1 mapping直接测量心肌T1值,可以定量评估梗死心肌[36]。赵细辉等[37]研究发现,以LGE为参考标准,平扫T1值、增强后T1值和ECV值诊断AMI的受试者工作特征(receiver operating characteristic, ROC)曲线下面积分别为0.812、0.840和0.875,均具有较高的敏感度和特异度,与LGE相当。有研究证明,经组织学验证,T1 mapping在检测AMI方面表现优异[4]。因此,T1 mapping有潜力代替LGE的作用,未来可能只通过T1 mapping技术实现评估AMI严重程度的需求。此外,平扫T1 mapping通过优势可以对对比剂禁忌和严重肾功能不全患者进行安全检查[38]。PAMBIANCHI等[39]研究发现,平扫T1 mapping和非对比纵向应变联合应用,可以有效地检测出心肌梗死的乳头肌受累,有助于改善AMI患者的预后分层和治疗决策。因此,T1 mapping可以在不需要外源性对比剂的情况下,提高CMR的诊断能力,缩短检查时间,增加了患者耐受性,对合并肾功能不全的患者更具优势。

2.2 T1 mapping技术在AMI预后中的应用

       早期确定和干预挽救心肌对于指导AMI患者临床治疗和改善风险分层具有重要意义。CHEN等[40]研究发现,STEMI患者直接经皮冠状动脉介入治疗后,通过平扫T1和ECV可以有效区分可逆性和不可逆性损伤心肌,并且梗死后愈合阶段心肌组织发生的动态变化,也导致T1值和ECV值的变化。WAMIL等[41]研究结合平扫T1 mapping和应变分析,在不使用对比剂的情况下,可提高对心肌梗死后不可逆损伤的分辨能力。因此,T1 mapping技术在AMI患者早期风险分层中具有重要临床意义,有助于及早干预治疗,减少不良心脏事件发生。心肌梗死也会使相应的远端心肌发生改变,T1 mapping技术也可用于研究远端心肌,远端心肌对于左心室重构和主要不良心脏事件(major adverse cardiac event, MACE)具有重要影响。URBAŃCZYK-ZAWADZKA等[31]研究发现,不可逆性心肌损伤、可逆性心肌损伤和远端心肌的平扫T1值存在明显差异[(1 564.1±146.5)、(1 257.4±56.1)、(1 209.5±76.3)ms],并且在急性期和随访期也存在差异。有研究证明远端心肌的平扫T1值超过1271 ms,随访期间发生MACE的风险越高[42]。测量远端心肌T1值的可进一步改善临床评价,以评估和改善患者的预后风险分层。但是对于不同的机器和序列,区分心肌损伤程度的阈值会不同,研究人员需要根据实际情况确定合适阈值。微循环阻塞(microvascular obstruction, MVO)是AMI预后不良的重要预测指标[8]。ALKHALIL等[43]研究发现,在AMI患者再灌注治疗后2 h内测得的超急性T1值越高,预测了更大程度的MVO和梗死面积,最佳的阈值为1396 ms。因此,在急性期测量平扫T1值对后期判断梗死特征方面具有重要价值。并且,SHIN等[44]研究发现在T1 mapping图上可以准确测量出MVO面积,其结果与在LGE图像上测量的面积高度一致。MA等[45]研究结合平扫T1 mapping和影像组学,发现进一步提高了诊断MVO区域的准确性。T1 mapping除了量化心肌损伤的程度外,其中ECV值还可以敏感地判断心肌梗死后左心室重构的程度,提高了预测左心室功能恢复的准确性[46]。综上所述,T1 mapping中的T1值和ECV值准确定量评估水肿心肌和梗死心肌,可以作为传统CMR序列的补充与替代,并且对预后预测能力优于传统序列,在AMI方面增加了CMR的价值。然而,T1值的改变受到多种因素的影响,如水肿、纤维化、脂肪沉积等,因此需要使用T1 mapping技术联合其他CMR技术来确定心肌损伤的情况。同时,目前T1 mapping检测AMI的研究都是单中心研究,样本较小,因此需要多中心大样本的研究进一步验证,以证明该技术对患者诊断和预后有着更加广泛的应用价值。

3 T2 mapping技术在AMI中的应用

3.1 T2 mapping技术在AMI诊断中的应用

       AMI后,缺血心肌再灌注破坏了Na+/K+泵的平衡,水分子内流,引起细胞内水含量增加,导致T2值增加[47]。在急性缺血性心肌损伤的检查中,T2值增高可能在肌钙蛋白升高和LGE出现高信号之前就发现,表明T2 mapping技术可以在不可逆损伤发生之前进行早期诊断和迅速干预[48]。与传统的T2WI序列相比,T2 mapping提高了对比噪声比,减轻了呼吸运动伪影,在诊断AMI方面具有较大的诊断价值[49]。TAHIR等[35]研究表明,急性期心肌T2值在梗死区显著升高[(84±10)ms],再灌注后6个月,梗死区T2值降至接近正常[(58±4)ms],因此T2 mapping可以区分急性和慢性心肌梗死(chronic myocardial infarction, CMI)的诊断,并且ROC曲线显示准确性高于T2WI方法。由于定量性质、可重复性和高稳定性,T2 mapping技术具有很大的潜力成为T2WI的替代[50]。心肌梗死的危险区域(area at risk, AAR)在确定AMI后可挽救心肌的数量方面非常重要。T2WI曾被认为是描述AAR良好的方法,然而最近有研究发现由于T2WI存在许多问题,不能准确描述AAR[51]。THOMAS等[10]研究表明T2 mapping识别的AAR比心肌灌注区域定义的实际AAR更具有临床相关性,因为T2 mapping识别了可挽救心肌,因此T2 mapping在鉴别梗死心肌、可挽救心肌和正常心肌方面具有潜在意义。

3.2 T2 mapping技术在AMI预后中的应用

       AMI后的缺血再灌注有助于挽救心肌,但常常引起负面作用,造成受损心肌进一步恶化,引起再灌注损伤,T2 mapping技术也可用于AMI患者的再灌注损伤研究中[52]。有研究显示[53],在缺血再灌注损伤中,水肿在再灌注后2 h达到峰值,24 h内恢复正常,然后在第7天再次达到峰值,T2值因心肌含水量而变化,表明T2 mapping可以有效监测心肌梗死患者早期缺血再灌注损伤的动态变化,对指导临床治疗和评估术后疗效具有重大的临床价值。再灌注损伤后导致毛细血管结构受损,红细胞进入组织间隙,引起心肌内出血(intramyocardial hemorrhage, IMH),IMH与左心室重构和MACE密切相关,而不良重构是心肌梗死后发生心力衰竭的病理基础,因此AMI患者再灌注治疗后IMH的检测至关重要[54, 55]。T2 mapping有助于检测IMH,该并发症在T2 mapping上显示低信号核心,且具有良好的敏感度和特异度,为IMH的防治提供了参考[56]。由此可见,T2 mapping技术是评估AMI患者早期缺血再灌注损伤的有效成像方法。此外,崔倩等[57]采用T2 mapping发现STEMI患者6个月后梗死区仍存在T2高信号,并且与不良左室重构和梗死严重程度相关。EYYUPKOCA等[58]研究发现,AMI急性期远端心肌测量的T2值>38 ms,可以预测6个月后的不良左室重构。因此T2 mapping评估梗死和远端心肌的T2值改变可以检测患者的治疗反应,对评估患者预后非常有价值。近期发现,T1、T2 mapping联合应用可以更加全面评价心肌损伤程度及预后情况。有研究使用T1 mapping和T2 mapping并结合ECV,可以有效区分AMI和CMI,并可以监测心肌损伤的进展情况,有助于患者治疗和随访[59]。LI等[60]联合应用T1 mapping和T2 mapping评估心肌挽救指数(myocardial salvage index, MSI),发现MSI增加了心肌梗死患者MACE发生率的预测价值。T1、T2 mapping联合应用具有较高的临床应用价值,提高了诊断的准确性,有助于评估治疗疗效和预后。综上所述,对于AMI患者来说,T2 mapping值不仅是一个早期诊断的重要工具,也是一个进行预后分层的重要参数指标,为AMI患者的预后提供了影像支持。然而,目前关于T2 mapping检测AMI的研究大多数是与其他CMR技术进行比较,组织病理学证据较少,因此还需进一步研究T2 mapping技术在评估AMI方面的准确性。此外,由于T2值受到不同地区、不同机器、不同场强的影响,因此未来应该制订统一的参考标准,促使在AMI患者的早期诊断和危险分级发挥更为重要的作用,从而明确治疗策略,改善预后评估。

4 小结与展望

       AMI是冠心病中较严重的一种类型,死亡率持续升高,因此患者需要早期进行诊断并且接受相应治疗。CMR具有多参数、多序列等特点,被推荐为AMI患者的重要诊断工具。随着CMR技术的进步,T1、T2 mapping技术变得可行并融入到临床实践中,为CMR增加了定量评估的补充信息,提高了评估AMI的准确性,为AMI患者治疗的决策和预后的评估提供了可靠的信息。但T1、T2 mapping仍有一定的局限性,如后处理操作复杂,参考范围的一致性较差,而且T1、T2值测量易受不同厂家、不同机器及不同场强的影响。未来随着标准化扫描的统一、后处理方案的优化和CMR设备的提升,促使T1、T2 mapping在临床上广泛应用,从而为AMI患者的诊断提供新的见解,有望在优化治疗方案和改善患者预后方面发挥关键作用。

[1]
RALAPANAWA U, SIVAKANESAN R. Epidemiology and the Magnitude of Coronary Artery Disease and Acute Coronary Syndrome: A Narrative Review[J]. J Epidemiol Glob Health, 2021, 11(2): 169-177. DOI: 10.2991/jegh.k.201217.001.
[2]
中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2022概要[J]. 中国循环杂志, 2023, 38(6): 583-612. DOI: 10.3969/j.issn.1000-3614.2023.06.001.
Chinese Cardiovascular Health and Disease Report Compilation Group. Report on cardiovascular health and diseases in China 2022: an updated summary[J]. Chin Circ J, 2023, 38(6): 583-612. DOI: 10.3969/j.issn.1000-3614.2023.06.001.
[3]
UPADHYAYA V D, WONG C, ZAKIR R M, et al. Management of myocardial infarction: emerging paradigms for the future[J]. Methodist Debakey Cardiovasc J, 2024, 20(4): 54-63. DOI: 10.14797/mdcvj.1393.
[4]
ZHANG L, YANG Z G, XU H, et al. Histological Validation of Cardiovascular Magnetic Resonance T1 Mapping for Assessing the Evolution of Myocardial Injury in Myocardial Infarction: An Experimental Study[J]. Korean J Radiol, 2020, 21(12): 1294-1304. DOI: 10.3348/kjr.2020.0107.
[5]
KURISU S, FUJIWARA H. Assessing a Myocardial Area at Risk in Non-ST Elevation Acute Myocardial Infarction Without Wall Motion Abnormalities Using Cardiac Magnetic Resonance and Radionuclide Imaging[J/OL]. Cureus, 2024, 16(2): e55125 [2024-07-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979518/. DOI: 10.7759/cureus.55125.
[6]
WANG X, PU J. Recent Advances in Cardiac Magnetic Resonance for Imaging of Acute Myocardial Infarction[J/OL]. Small Methods, 2024, 8(3): 2301170 [2024-07-31]. https://onlinelibrary.wiley.com/doi/abs/10.1002/smtd.202301170. DOI: 10.1002/smtd.202301170.
[7]
KARAMITSOS T D, ARVANITAKI A, KARVOUNIS H, et al. Myocardial Tissue Characterization and Fibrosis by Imaging[J]. JACC Cardiovasc Imaging, 2020, 13(5): 1221-1234. DOI: 10.1016/j.jcmg.2019.06.030.
[8]
YANG M X, HE Y, MA M, et al. Characterization of infarcted myocardium by T1-mapping and its association with left ventricular remodeling[J/OL]. Eur J Radiol, 2021, 137: 109590 [2024-07-31]. https://linkinghub.elsevier.com/retrieve/pii/S0720048X2100070X. DOI: 10.1016/j.ejrad.2021.109590.
[9]
XIANG C L, ZHANG H Y, LI H J, et al. The value of cardiac magnetic resonance post-contrast T1 mapping in improving the evaluation of myocardial infarction[J/OL]. Front Cardiovasc Med, 2023, 10: 1238451 [2024-07-31]. https://doi.org/10.3389/fcvm.2023.1238451. DOI: 10.3389/fcvm.2023.1238451.
[10]
THOMAS R, THAI K, BARRY J, et al. T2-based area-at-risk and edema are influenced by ischemic duration in acute myocardial infarction[J/OL]. J Magn Reson Imaging, 2021, 79: 1-4[2024-07-31]. https://www.sciencedirect.com/science/article/pii/S0730725X21000230. DOI: 10.1016/j.mri.2021.02.011.
[11]
贾韬宇, 秦培鑫, 扈锋, 等. T1 mapping技术原理及其在心肌定量的研究进展[J]. 磁共振成像, 2022, 13(3): 151-158. DOI: 10.12015/issn.1674-8034.2022.03.037.
JIA T Y, QIN P X, HU F, et al. Principle of T1 mapping technique and its research progress in myocardial quantification[J]. Chin J Magn Reson Imag, 2022, 13(3): 151-158. DOI: 10.12015/issn.1674-8034.2022.03.037.
[12]
袁碧营, 李波, 刘建华, 等. T1-mapping在急性和慢性心肌梗死中的应用及研究进展[J]. 中国实验诊断学, 2022, 26(7): 1088-1090. DOI: 10.3969/j.issn.1007-4287.2022.07.038.
YUAN B Y, LI B, LIU J H, et al. Application and research progress of T1-mapping in acute and chronic myocardial infarction[J]. Chin J Lab Diagn, 2022, 26(7): 1088-1090. DOI: 10.3969/j.issn.1007-4287.2022.07.038.
[13]
SHEAGREN C D, CAO T, PATEL J H, et al. Motion-compensated T1 mapping in cardiovascular magnetic resonance imaging: a technical review[J/OL]. Front Cardiovasc Med, 2023, 10: 1160183 [2024-07-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542904/. DOI: 10.3389/fcvm.2023.1160183.
[14]
FERREIRA V M, WIJESURENDRA R S, LIU A, et al. Systolic ShMOLLI myocardial T1-mapping for improved robustness to partial-volume effects and applications in tachyarrhythmias[J/OL]. J Cardiovasc Magn Reson, 2015, 17(1): 77 [2024-07-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4552368/. DOI: 10.1186/s12968-015-0182-5.
[15]
RAJIAH P S, FRANÇOIS C J, LEINER T. Cardiac MRI: State of the Art[J/OL]. Radiology, 2023 [2024-03-17]. https://pubs.rsna.org/doi/10.1148/radiol.223008. DOI: 10.1148/radiol.223008.
[16]
顿雨桐, 康立清. 急性心肌梗死后远程心肌MRI研究进展[J]. 国际医学放射学杂志, 2024, 47(1): 60-65. DOI: 10.19300/j.2024.Z20888.
DUN Y T, KANG L Q. Progress of MRI in assessing remote myocardium after acute myocardial infarction[J]. Int J Med Radiol, 2024, 47(1): 60-65. DOI: 10.19300/j.2024.Z20888.
[17]
SADO D M, FLETT A S, BANYPERSAD S M, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease[J]. Heart, 2012, 98(19): 1436-1441. DOI: 10.1136/heartjnl-2012-302346.
[18]
PAN J A, KERWIN M J, SALERNO M. Native T1 Mapping, Extracellular Volume Mapping, and Late Gadolinium Enhancement in Cardiac Amyloidosis: A Meta-analysis[J]. JACC Cardiovasc Imaging, 2020, 13(6): 1299-1310. DOI: 10.1016/j.jcmg.2020.03.010.
[19]
CADOUR F, QUEMENEUR M, BIERE L, et al. Prognostic value of cardiovascular magnetic resonance T1 mapping and extracellular volume fraction in nonischemic dilated cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2023, 25: 7 [2024-07-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900939/. DOI: 10.1186/s12968-023-00919-y.
[20]
RAAFS A G, ADRIAANS B P, HENKENS M T H M, et al. Myocardial fibrosis assessment using T1 and ECV mapping with histologic validation in chronic dilated cardiomyopathy[J]. JACC Cardiovasc Imaging, 2022, 15(10): 1828-1830. DOI: 10.1016/j.jcmg.2022.05.002.
[21]
AQUARO G D, MONASTERO S, TODIERE G, et al. Diagnostic role of native T1 mapping compared to conventional magnetic resonance techniques in cardiac disease in a real-life cohort[J/OL]. Diagnostics, 2023, 13(14): 2461 [2024-07-31]. https://pubmed.ncbi.nlm.nih.gov/37510205/. DOI: 10.3390/diagnostics13142461.
[22]
EMRICH T, HALFMANN M, SCHOEPF U J, et al. CMR for myocardial characterization in ischemic heart disease: state-of-the-art and future developments[J/OL]. Eur Radiol Exp, 2021, 5(1): 14 [2024-07-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990980/. DOI: 10.1186/s41747-021-00208-2.
[23]
向春林, 李浩杰, 黄璐, 等. 心脏磁共振成像在心肌梗死中的应用进展[J]. 临床放射学杂志, 2022, 41(4): 779-785. DOI: 10.13437/j.cnki.jcr.2022.04.024.
XIANG C L, LI H J, HUANG L, et al. Progress in the use of cardiac magnetic resonance imaging in myocardial infarction [J]. J Clin Radiol, 2022, 41(4): 779-785. DOI: 10.13437/j.cnki.jcr.2022.04.024.
[24]
徐晶, 赵世华, 陆敏杰. 心脏T 2定量成像技术及其临床应用研究进展[J]. 中华放射学杂志, 2020, 54(11): 1132-1136. DOI: 10.3760/cma.j.cn112149-20191104-00885.
XU J, ZHAO S H, LU M J. Research advances in imaging techniques and clinical applications of myocardial T\n 2 mapping\n[J]. Chin J Radiol, 2020, 54(11): 1132-1136. DOI: 10.3760/cma.j.cn112149-20191104-00885.
[25]
BUSTIN A, MILOTTA G, ISMAIL T F, et al. Accelerated free-breathing whole-heart 3D T2 mapping with high isotropic resolution[J]. Magn Reson Med, 2020, 83(3): 988-1002. DOI: 10.1002/mrm.27989.
[26]
TOPRICEANU C C, PIERCE I, MOON J C, et al. T2 and T2 mapping and weighted imaging in cardiac MRI[J/OL]. Magn Reson Imaging, 2022, 93: 15-32 [2024-07-31]. https://pubmed.ncbi.nlm.nih.gov/35914654/. DOI: 10.1016/j.mri.2022.07.012.
[27]
BEIJNINK C W H, VAN DER HOEVEN N W, KONIJNENBERG L S F, et al. Cardiac MRI to visualize myocardial damage after ST-segment elevation myocardial infarction: a review of its histologic validation[J]. Radiology, 2021, 301(1): 4-18. DOI: 10.1148/radiol.2021204265.
[28]
OGIER A C, BUSTIN A, COCHET H, et al. The Road Toward Reproducibility of Parametric Mapping of the Heart: A Technical Review[J/OL]. Front Cardiovasc Med, 2022, 9: 876475 [2024-07-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120534/. DOI: 10.3389/fcvm.2022.876475.
[29]
BUSTIN A, HUA A, MILOTTA G, et al. High-Spatial-Resolution 3D Whole-Heart MRI T2 Mapping for Assessment of Myocarditis[J]. Radiology, 2021, 298(3): 578-586. DOI: 10.1148/radiol.2021201630.
[30]
KHACHATOORIAN Y, FUISZ A, FRISHMAN W H, et al. The significance of parametric mapping in advanced cardiac imaging[J/OL]. Cardiol Rev, 2024 [2024-07-31]. https://pubmed.ncbi.nlm.nih.gov/38595125/. DOI: 10.1097/CRD.0000000000000695.
[31]
URBAŃCZYK-ZAWADZKA M, BANYŚ R, KWIECIEŃ E, et al. The role of cardiac magnetic resonance non-contrast T1 mapping in differentiation between injured and salvaged myocardium in acute and chronic myocardial infarction[J]. Postepy Kardiol Interwencyjnej, 2022, 18(4): 472-475. DOI: 10.5114/aic.2022.121032.
[32]
NAKOU E, PATEL R K, FONTANA M, et al. Cardiovascular magnetic resonance parametric mapping techniques: clinical applications and limitations[J/OL]. Curr Cardiol Rep, 2021, 23(12): 185 [2024-07-31]. https://pubmed.ncbi.nlm.nih.gov/34762189/. DOI: 10.1007/s11886-021-01607-y.
[33]
AHERNE E, CHOW K, CARR J. Cardiac T1 mapping: Techniques and applications[J]. J Magn Reson Imaging, 2020, 51(5): 1336-1356. DOI: 10.1002/jmri.26866.
[34]
孙峥, 胡莹莹, 赵丽, 等. T1 mapping "一站式" 评估AMI患者再灌后不同心肌组织的技术探索[J]. 临床放射学杂志, 2022, 41(12): 2295-2300. DOI: 10.13437/j.cnki.jcr.2022.12.031.
SUN Z, HU Y Y, ZHAO L, et al. The exploration of T1 mapping "one-stop" evaluation of different myocardial tissues in reperfused AMI patients[J]. J Clin Radiol, 2022, 41(12): 2295-2300. DOI: 10.13437/j.cnki.jcr.2022.12.031.
[35]
TAHIR E, SINN M, BOHNEN S, et al. Acute versus chronic myocardial infarction: diagnostic accuracy of quantitative native T1 and T2 mapping versus assessment of edema on standard T2-weighted cardiovascular MR images for differentiation[J]. Radiology, 2017, 285(1): 83-91. DOI: 10.1148/radiol.2017162338.
[36]
JEROSCH-HEROLD M, COELHO-FILHO O. Cardiac MRI T1 and T2 mapping: a new crystal ball?[J]. Radiology, 2022, 305(2): 327-328. DOI: 10.1148/radiol.221395.
[37]
赵细辉, 刘新峰, 马海彦, 等. 心肌T1、T2mapping技术和细胞外容积分数对急性心肌梗死的诊断价值[J]. 实用医学杂志, 2021, 37(10): 1337-1341. DOI: 10.3969/j.issn.1006-5725.2021.10.021.
ZHAO X H, LIU X F, MA H Y, et al. T1, T2 mapping and extracellular volume diagnostic value in patients with acute myocardial infarction[J]. J Pract Med, 2021, 37(10): 1337-1341. DOI: 10.3969/j.issn.1006-5725.2021.10.021.
[38]
CARRABBA N, AMICO M A, GUARICCI A I, et al. CMR Mapping: The 4th-Era Revolution in Cardiac Imaging[J/OL]. J Clin Med, 2024, 13(2): 337 [2024-07-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10816333/. DOI: 10.3390/jcm13020337.
[39]
PAMBIANCHI G, GIANNETTI M, MARCHITELLI L, et al. Papillary Muscle Involvement during Acute Myocardial Infarction: Detection by Cardiovascular Magnetic Resonance Using T1 Mapping Technique and Papillary Longitudinal Strain[J/OL]. J Clin Med, 2023, 12(4): 1497 [2024-07-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963367/. DOI: 10.3390/jcm12041497.
[40]
CHEN B H, AN D A, HE J, et al. Myocardial extracellular volume fraction allows differentiation of reversible versus irreversible myocardial damage and prediction of adverse left ventricular remodeling of ST-elevation myocardial infarction[J]. J Magn Reson Imaging, 2020, 52(2): 476-487. DOI: 10.1002/jmri.27047.
[41]
WAMIL M, BORLOTTI A, LIU D, et al. Combined T1-mapping and tissue tracking analysis predicts severity of ischemic injury following acute STEMI-an Oxford Acute Myocardial Infarction (OxAMI) study[J]. Int J Cardiovasc Imaging, 2019, 35(7): 1297-1308. DOI: 10.1007/s10554-019-01542-8.
[42]
CHEN B H, AN D A, WU C W, et al. Prognostic significance of non-infarcted myocardium correlated with microvascular impairment evaluated dynamically by native T1 mapping[J/OL]. Insights Imaging, 2023, 14: 50 [2024-07-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027971/. DOI: 10.1186/s13244-022-01360-y.
[43]
ALKHALIL M, BORLOTTI A, DE MARIA G L, et al. Hyper-acute cardiovascular magnetic resonance T1 mapping predicts infarct characteristics in patients with ST elevation myocardial infarction[J]. J Cardiovasc Magn Reson, 2020, 22(1): 3 [2024-07-31]. https://pubmed.ncbi.nlm.nih.gov/31915031/. DOI: 10.1186/s12968-019-0593-9.
[44]
SHIN J M, CHOI E Y, PARK C H, et al. Quantitative T1 mapping for detecting microvascular obstruction in reperfused acute myocardial infarction: comparison with late gadolinium enhancement imaging[J]. Korean J Radiol, 2020, 21(8): 978-986. DOI: 10.3348/kjr.2019.0736.
[45]
MA Q M, MA Y, YU T T, et al. Radiomics of non-contrast-enhanced T1 mapping: diagnostic and predictive performance for myocardial injury in acute ST-segment-elevation myocardial infarction[J]. Korean J Radiol, 2021, 22(4): 535-546. DOI: 10.3348/kjr.2019.0969.
[46]
CHEN B H, WU C W, AN D A, et al. Myocardial extracellular volume quantified by cardiac magnetic resonance predicts left ventricular aneurysm following acute myocardial infarction[J]. Eur Radiol, 2023, 33(1): 283-293. DOI: 10.1007/s00330-022-08995-x.
[47]
FERREIRA V M, PIECHNIK S K. CMR Parametric Mapping as a Tool for Myocardial Tissue Characterization[J]. Korean Circ J, 2020, 50(8): 658-676. DOI: 10.4070/kcj.2020.0157.
[48]
贾斯齐, 颜春龙, 金宇华, 等. 磁共振T2 mapping技术在心脏疾病中的应用研究进展[J]. 磁共振成像, 2023, 14(6): 145-150. DOI: 10.12015/issn.1674-8034.2023.06.026.
JIA S Q, YAN C L, JIN Y H, et al. Research progress on the application of magnetic resonance T2 mapping technology in heart disease[J]. Chin J Magn Reson Imag, 2023, 14(6): 145-150. DOI: 10.12015/issn.1674-8034.2023.06.026.
[49]
刘新峰, 韩燕, 王荣品, 等. T2 mapping技术在鉴别急性心肌炎与急性心肌梗死中的应用价值[J]. 实用医学杂志, 2019, 35(8): 1326-1330. DOI: 10.3969/j.issn.1006-5725.2019.08.029.
LIU X F, HAN Y, WANG R P, et al. Application value of T2 mapping technologyin the differential diagnosis of acute myocarditis and acute myocardial infarction[J]. J Pract Med, 2019, 35(8): 1326-1330. DOI: 10.3969/j.issn.1006-5725.2019.08.029.
[50]
ALKHALIL M, DE MARIA G L, AKBAR N, et al. Prospects for Precision Medicine in Acute Myocardial Infarction: Patient-Level Insights into Myocardial Injury and Repair[J/OL]. J Clin Med, 2023, 12(14): 4668 [2024-07-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380764/. DOI: 10.3390/jcm12144668.
[51]
KIM H W, VAN ASSCHE L, JENNINGS R B, et al. Relationship of T2-weighted MRI myocardial hyperintensity and the ischemic area-at-risk[J]. Circ Res, 2015, 117(3): 254-265. DOI: 10.1161/CIRCRESAHA.117.305771.
[52]
O'BRIEN A T, GIL K E, VARGHESE J, et al. T2 mapping in myocardial disease: a comprehensive review[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 33 [2024-07-31]. https://pubmed.ncbi.nlm.nih.gov/35659266/. DOI: 10.1186/s12968-022-00866-0.
[53]
GÓMEZ-TALAVERA S, FERNÁNDEZ-JIMÉNEZ R, GALÁN-ARRIOLA C, et al. Variations in T2-mapping-assessed area at risk after experimental ischemia/reperfusion[J]. J Cardiovasc Transl Res, 2021, 14(6): 1040-1042. DOI: 10.1007/s12265-021-10120-0.
[54]
ASSIMOPOULOS S, SHIE N, RAMANAN V, et al. Hemorrhage promotes chronic adverse remodeling in acute myocardial infarction: a T1, T2 and BOLD study[J/OL]. NMR Biomed, 2021, 34(1): e4404 [2024-07-31]. https://pubmed.ncbi.nlm.nih.gov/32875632/. DOI: 10.1002/nbm.4404.
[55]
FERRÉ-VALLVERDÚ M, SÁNCHEZ-LACUESTA E, PLAZA-LÓPEZ D, et al. Prognostic value and clinical predictors of intramyocardial hemorrhage measured by CMR T2* sequences in STEMI[J]. Int J Cardiovasc Imaging, 2021, 37(5): 1735-1744. DOI: 10.1007/s10554-020-02142-7.
[56]
WEN J, QIAO J, TANG Y, et al. Cardiac magnetic resonance imaging detection of intramyocardial hemorrhage in patients with ST-elevated myocardial infarction: comparison between susceptibility-weighted imaging and T1/T2 mapping techniques[J]. Quant Imaging Med Surg, 2024, 14(1): 476-488. DOI: 10.21037/qims-23-591.
[57]
崔倩, 何强, 葛夕洪, 等. T2 mapping评估ST段抬高心肌梗死患者心肌改变的预后意义[J]. 中华危重病急救医学, 2023, 35(12): 1304-1308. DOI: 10.3760/cma.j.cn121430-20230914-00779.
CUI Q, HE Q, GE X H, et al. Prognostic significance of T2 mapping in evaluating myocardium alterations in patients with ST segment elevation myocardial infarction[J]. Chin Crit Care Med, 2023, 35(12): 1304-1308. DOI: 10.3760/cma.j.cn121430-20230914-00779.
[58]
EYYUPKOCA F, KARAKUS G, GOK M, et al. Association of changes in the infarct and remote zone myocardial tissue with cardiac remodeling after myocardial infarction: a T1 and T2 mapping study[J]. Int J Cardiovasc Imaging, 2022, 38(2): 363-373. DOI: 10.1007/s10554-021-02490-y.
[59]
崔倩, 于静, 葛夕洪, 等. 缺血性心肌病变即急性心肌梗死的定量成像诊断价值[J]. 中华危重病急救医学, 2022, 34(2): 178-182. DOI: 10.3760/cma.j.cn121430-20210825-01272.
CUI Q, YU J, GE X H, et al. Ischemic cardiomyopathy is the quantitative imaging diagnostic value of acute myocardial infarction[J]. Chin Crit Care Med, 2022, 34(2): 178-182. DOI: 10.3760/cma.J.cn121430-20210825-01272.
[60]
LI Y, WANG G, WANG X, et al. Prognostic significance of myocardial salvage assessed by cardiac magnetic resonance in reperfused ST-segment elevation myocardial infarction[J/OL]. Front Cardiovasc Med, 2022, 9: 924428 [2024-07-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9468362/. DOI: 10.3389/fcvm.2022.924428.

上一篇 基于深度学习的磁共振成像在冠心病诊疗中的应用进展
下一篇 磁共振成像预测HER-2阳性乳腺癌新辅助治疗疗效的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2