分享:
分享到微信朋友圈
X
综述
磁共振成像预测HER-2阳性乳腺癌新辅助治疗疗效的研究进展
贺志远 王唯伟 孙占国

Cite this article as: HE Z Y, WANG W W, SUN Z G. Research progress of magnetic resonance imaging to predict the efficacy of neoadjuvant therapy for HER-2 positive breast cancer[J]. Chin J Magn Reson Imaging, 2024, 15(11): 203-208.本文引用格式:贺志远, 王唯伟, 孙占国. 磁共振成像预测HER-2阳性乳腺癌新辅助治疗疗效的研究进展[J]. 磁共振成像, 2024, 15(11): 203-208. DOI:10.12015/issn.1674-8034.2024.11.032.


[摘要] 乳腺癌是女性最常见的恶性肿瘤,其中人表皮生长因子受体-2(human epidermal growth factor receptor-2, HER-2)阳性乳腺癌具有侵袭性强、复发率高、预后差等特点,对内分泌治疗和常规化疗不敏感。新辅助治疗(neoadjuvant therapy, NAT)已被证实是HER-2阳性乳腺癌的有效治疗方法,然而并非所有患者都能从NAT中获益。因此,治疗前或治疗初期预测NAT疗效并尽早调整NAT不敏感患者的治疗方案具有重要临床意义。磁共振成像(magnetic resonance imaging, MRI)具有无创、多序列和多参数成像优势,是目前乳腺癌诊断及NAT疗效评估的常用检查方法。本文就MRI在HER-2阳性乳腺癌NAT疗效预测中的研究进展、局限性及发展前景作一综述,以期为将来的研究与临床应用提供参考。
[Abstract] Breast cancer is the most common malignant tumor in women, among which human epidermal growth factor receptor-2 (HER-2) positive breast cancer is characterized by strong aggressiveness, high recurrence rate and poor prognosis, and is not sensitive to endocrine therapy and conventional chemotherapy. Neoadjuvant therapy (NAT) has been shown to be an effective treatment for HER-2 positive breast cancer. However, not all patients can benefit from NAT. Therefore, it is of great clinical significance to predict the efficacy of NAT before or at the early stage of treatment and then to adjust the treatment regimen for NAT insensitive patients as early as possible. Magnetic resonance imaging (MRI) has the advantages of non-invasive, multi-sequence and multi-parameter acquisition, and is currently a common examination method for the diagnosis of breast cancer diagnosis as well as the evaluation of NAT efficacy. This article reviews the research progresses, limitations and development prospects of MRI in predicting the NAT efficacy of HER-2 positive breast cancer to provide references for future clinical researches and applications.
[关键词] 乳腺癌;新辅助化疗;磁共振成像;影像组学;机器学习
[Keywords] breast cancer;neoadjuvant therapy;magnetic resonance imaging;radiomics;machine learning

贺志远 1   王唯伟 2   孙占国 2*  

1 济宁医学院临床医学院,济宁 272013

2 济宁医学院附属医院医学影像科,济宁 272029

通信作者:孙占国,E-mail: yingxiangszg@163.com

作者贡献声明:孙占国设计本研究的方案,查阅文献,对稿件重要内容进行了修改;贺志远起草和撰写稿件,获取、分析和解释本研究的数据;王唯伟获取、分析和解释本研究的数据,对稿件重要内容进行了修改;孙占国获得了济宁市重点研发计划项目、贺林院士新医学临床转化工作站科研基金项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 济宁市重点研发计划项目 2023YXNS095 贺林院士新医学临床转化工作站科研基金 JYHL2022FMS07
收稿日期:2024-07-11
接受日期:2024-11-10
中图分类号:R445.2  R737.9 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.11.032
本文引用格式:贺志远, 王唯伟, 孙占国. 磁共振成像预测HER-2阳性乳腺癌新辅助治疗疗效的研究进展[J]. 磁共振成像, 2024, 15(11): 203-208. DOI:10.12015/issn.1674-8034.2024.11.032.

0 引言

       乳腺癌在分子水平上具有高度异质性,以基因表达谱为基础的分子分型能够较好地反映肿瘤的生物学行为[1],对不同基因型乳腺癌的精准治疗意义重大。人表皮生长因子受体-2(human epidermal growth factor receptor-2, HER-2)蛋白过表达的患者被定义为HER-2阳性乳腺癌,占全部基因分型的20%~25%[2],具有侵袭性强、预后差等特点,对内分泌治疗及常规化疗不敏感[3, 4]。2021年美国临床肿瘤学会新辅助治疗共识指出,淋巴结阳性或淋巴结阴性伴高危因素的HER-2阳性乳腺癌患者优选新辅助治疗(neoadjuvant therapy, NAT)[5]。针对HER-2靶点的双靶向药物联合化疗药物的NAT可降低HER-2阳性乳腺癌临床分期,缩小肿瘤体积及腋窝淋巴结清扫范围[6, 7]。有研究发现[8],术前接受NAT的HER-2阳性乳腺癌患者较未接受NAT者可获得更低的再切除率(0% vs. 9%,P=0.030)及更低的切缘阳性(0% vs. 5%,P=0.010)。

       评价NAT疗效的“金标准”是手术标本的组织病理学检查,NAT后病理学完全缓解(pathological complete response, pCR)是其治疗目标,但是手术病理具有滞后性且有创。因此,采用可靠的非侵入性影像学方法在治疗前或治疗初期进行HER-2阳性乳腺癌NAT的疗效预测是必要的,这有利于选择或及时调整治疗方案,避免给患者带来沉重的经济负担和治疗相关不良反应[9]。乳腺磁共振成像(magnetic resonance imaging, MRI)被认为是评估乳腺癌NAT反应最准确的方法,优于乳腺X线检查和超声检查,其形态学和功能参数可以作为治疗反应预测指标[10]。目前,NAT作为HER-2阳性乳腺癌的重要治疗手段,已在国内外得到广泛认可。并且随着MRI技术发展,从结构MRI到功能MRI再到多模态MRI组学及深度学习等人工智能技术,不同MRI技术在预测及评估HER-2阳性乳腺癌NAT疗效方面已有相关报道[11, 12, 13]。然而,目前对这些研究的归纳、对比尚缺乏,更鲜有综述性报道。所以本文就MRI技术预测HER-2阳性乳腺癌NAT反应的相关研究进展、局限性及发展前景进行综述,以期为将来的研究与临床应用提供参考。

1 乳腺常规MRI检查对HER-2阳性乳腺癌NAT疗效的预测价值

       在乳腺常规MRI检查中,乳腺癌多为类圆形或不规则形病灶,边缘可见毛刺,T1加权成像多呈等或稍低信号,T2加权成像多呈等或高信号,增强扫描以不均匀强化多见。MICHISHITA等[14]评估NAT前乳腺癌患者MRI形态学特征与pCR的关系,发现圆形和椭圆形的乳腺癌与较高的pCR率相关,MRI形态学特征是乳腺癌NAT反应的独立预测因子,曲线下面积(area under the curve, AUC)为0.620;MALHAIRE等[15]也得出了一致的结论,并且发现单一病灶和肿瘤直径较小的乳腺癌患者NAT后更容易获得pCR。CHOUDHERY等[16]将球形度定义为分割肿瘤体积的表面积与具有相同体积的完美球体的表面积之比,发现球形度高的HER-2阳性乳腺癌更容易获得pCR。尽管常规MRI在一定程度上能够预测pCR,但由于肿瘤具有高度异质性,单纯形态学改变不足以反映其内部微环境变化,因而预测能力仍存在较大局限[17, 18];未来可通过与功能MRI及人工智能技术结合,以此获得更加丰富和全面的病变信息,提高对NAT疗效的预测能力。

2 乳腺动态对比增强磁共振检查对HER-2阳性乳腺癌NAT疗效的预测价值

       动态对比增强磁共振成像(dynamic contrast- enhanced magnetic resonance imaging, DCE-MRI)是评估乳腺癌NAT反应最敏感的方法之一[19],其所得时间-信号强度曲线(time intensity curve, TIC)可分为三型:流入型(Ⅰ型)、平台型(Ⅱ型)及流出型(Ⅲ型)[20]。有研究[21, 22]表明,TIC类型与肿瘤的早期反应密切相关,整个肿瘤体积内Ⅰ型TIC的比例与NAT后非pCR独立相关,并且特异度高达90%。此外,通过TIC获取流入斜率(wash-in slope, WIS)、流出斜率(wash-out slope, WOS)和标准化形态学指标(the standardized index of shape, SIS)等半定量参数能为预测乳腺癌NAT反应提供更多参考。RAMTOHUL等[23]采用半定量DCE-MRI参数早期预测乳腺癌NAT反应,发现WIS>1.6%/秒是HER-2阳性乳腺癌患者pCR的独立预测因素,当WIS>1.6%/秒时,HER-2阳性乳腺癌的pCR率(81%)显著高于WIS≤1.6%/秒的组(17%),敏感度为94%;但在HER-2阴性亚组中,WIS与pCR之间差异无统计学意义。FUSCO等[24]也进行了类似的研究,发现SIS在区分pCR与非pCR患者方面预测性能最佳,较WIS和WOS准确率分别提高了11%和7%。

       DCE-MRI定量参数包括容积转运常数(transfer constant, Ktrans)、速率常数(outflow rate constant, Kep)、血管外细胞外容积分数(extravascular extracellular volume fraction, Ve)等。CHENG等[25]的一项Meta分析对DCE-MRI定量参数预测NAT后反应的准确性进行评估,发现以Ktrans和Kep的诊断效能较高,AUC分别为0.790、0.830,而Ve的诊断效果一般且敏感度较低(AUC为0.710),这可能与Ve值不稳定并易受瘤周水肿影响有关。HE等[26]构建了基于HER-2-Ki-67-Ktrans的列线图模型,其在治疗早期预测NAT后反应的诊断性能较高(AUC为0.833),且pCR组NAT前Ktrans值及2个NAT周期后Ktrans、Kep的变化率(ΔKtrans、ΔKep)均较非pCR组高。

       乳腺背景实质强化(background parenchymal enhancement, BPE)是DCE-MRI中用来衡量乳腺组织血供丰富程度的指标[27]。霍翔等[28]构建了基于BPE和临床病理数据的列线图模型,发现乳腺BPE程度较高及4个NAT周期后BPE明显下降的HER-2阳性乳腺癌患者更易获得pCR。REN等[29]尝试通过测量NAT前双侧乳腺背景实质定量灌注参数的不对称性来预测HER-2阳性乳腺癌患者的pCR,发现30 s内TIC下面积、Ktrans和Ve的同侧/对侧比率是预测HER-2阳性乳腺癌患者pCR的独立预测因子,AUC为0.730、0.790、0.780,敏感度为91.7%、83.3%、75.0%;此外,他们还发现三者的联合模型预测效能最佳,显著优于单一模型,AUC为0.890,敏感度达91.7%。然而,也有研究认为,乳腺癌患者中pCR组和非pCR组在BPE上差异无统计学意义[30]。因此,未来还需进行大样本前瞻性研究来验证乳腺BPE在NAT疗效预测中的价值。

       综上所述,DCE-MRI在预测HER-2阳性乳腺癌NAT后反应方面显示出较大潜力。然而,不同研究中定量或半定量参数提取方法缺乏标准化限制了各研究结果的可比性。此外,DCE-MRI的空间分辨率和时间分辨率也需要进一步改进,以更好地捕捉肿瘤强化的动态变化。因此,今后需要发展更为标准化的扫描协议和分析方法,同时进行技术优化和设备创新,提升DCE-MRI在预测HER-2阳性乳腺癌NAT效果方面的准确性和临床应用价值。

3 扩散加权成像技术对HER-2阳性乳腺癌NAT疗效的预测价值

3.1 单指数扩散加权成像

       单指数扩散加权成像(diffusion weighted imaging, DWI)通过反映水分子在组织中的自由扩散来提供关于组织微观结构和功能的信息,以表观扩散系数(apparent diffusion coefficient, ADC)来表示组织中水分子的扩散受限程度[31]。SUROV等[32]评估ADC值与NAT后不同反应的关系并进行亚组分析,发现ADC值与HER-2阳性乳腺癌pCR具有统计学相关性(P=0.011),并且ADC值较低的患者更易在NAT中受益,而与三阴性乳腺癌的统计学相关性较低(P=0.053)。SUO等[33]分析NAT不同时期ADC值的变化,发现HER-2阳性乳腺癌患者NAT期间ADC值升高越多越有可能获得pCR(P<0.001)。然而,部分研究者认为pCR与非pCR患者间ADC值差异无统计学意义,使用ADC值作为预测NAT反应的生物标志物目前仍有争议[34]。OTA等[35]的研究纳入了133名乳腺癌患者,采用视觉评估评分系统评估DWI对NAT疗效的预测性能,发现DWI评分在HER-2阳性乳腺癌中预测NAT后pCR具有良好的性能(AUC为0.840),优于luminal A、B型乳腺癌(AUC为0.820、0.790)。迄今为止,ADC和DWI对HER-2阳性乳腺癌患者NAT疗效的预测价值尚未达成共识,这可能是因为其以高斯模型为基础,无法真实反映人体内水分子的实际扩散,未来在制订标准化采集方案的同时还需优化后处理方法来克服DWI目前的局限性。

3.2 体素内不相干运动成像

       基于多b值的体素内不相干运动(intravoxel incoherent motion, IVIM)可以将纯水扩散和微循环灌注分离,提供真扩散系数(true diffusion coefficient, D)、灌注分数(perfusion fraction, f)和伪扩散系数(pseudo-diffusion coefficient, D*)等参数[36],反映体内水分子真实扩散状态,弥补了DWI的不足。CHE等[17]评估NAT治疗前或2个NAT周期后IVIM参数对乳腺癌NAT反应的预测价值,发现NAT前高f值及NAT后f值明显降低、NAT后D值明显升高的患者更容易获得pCR。熊发奎等[37]得出相似研究结果且进一步发现2个NAT周期后D值的预测性能优于f值(AUC为0.890)。然而,IVIM参数能否在NAT前预测治疗反应仍然是学术界争论的话题,且针对HER-2阳性乳腺癌患者的预测研究极少,其准确性和实用性需要通过大样本临床研究进一步证实;其次,IVIM参数的获取与所选b值的大小、数量和分布密切相关,至少需要包括0 s/mm2在内的4种不同b值,目前的研究者大多采用从0~1500 s/mm2范围内的6~12个b值[38],但国内外对IVIM的参数设定和应用规范尚不统一,仍需要更多的研究来优化b值的选择;此外,感兴趣区的勾画并非对肿瘤整体进行,所得结果可能存在选择偏倚,未来可通过人工智能方法对肿瘤整体进行研究。

3.3 扩散峰度成像

       扩散峰度成像(diffusion kurtosis imaging, DKI)通过描述水分子扩散行为的非高斯性提供更复杂的水分子扩散信息,常用参数包括平均扩散系数(mean diffusivity, MD)和平均扩散峰度(mean kurtosis, MK)[39]。程龙等[40]比较pCR和非pCR组治疗前后DKI参数的差异并探讨各参数与乳腺癌NAT疗效的关系,发现MD和MK对乳腺癌NAT疗效具有良好的预测性能,pCR组NAT后MD值升高,而MK值降低;这可能是由于治疗后肿瘤细胞坏死和纤维化,肿瘤细胞密度降低,胞外间隙增大,水分子扩散受限程度降低所致。目前,DKI在预测HER-2阳性乳腺癌NAT疗效方面的研究仍较少,主要原因在于DKI的成像序列通常需要较长的扫描时间,这可能限制了其在临床实践中的应用,尤其是对于一些无法耐受较长扫描时间的患者的评估,未来可通过改进MRI设备的硬件和成像序列来解决这一局限性。此外,b值的选择也无统一标准,其在预测HER-2阳性乳腺癌NAT后反应中的应用还需进一步探索。

4 正电子发射断层扫描/MRI检查对HER-2阳性乳腺癌NAT疗效的预测价值

       正电子发射断层扫描/MRI(position emission tomography/MRI, PET/MRI)可同时获取肿瘤的代谢活性和组织结构特征,进而有望更准确地预测乳腺癌NAT后的反应[41]。HATT等[42]通过对乳腺癌NAT2个周期前后的PET参数变化进行分析,发现总糖酵解量(total lesion glycolysis, TLG)是最佳的NAT反应预测指标,敏感度为96%,特异度为92%,准确率为94%,AUC为0.910,准确率优于最大标准摄取值(maximum standardized uptake value, SUVmax)(77%)。SEKINE等[43]评估PET、MRI参数及二者联合对乳腺癌NAT疗效的预测价值,发现PET在SUVmax为30%时测量的TLG预测HER-2阳性乳腺癌患者pCR的特异度为100%,但其敏感度(50%)相对较低,当联合MRI参数信号增强比(signal enhancement ratio, SER)时,联合模型的特异度虽有所降低,但其敏感度可提升为100%。值得注意的是,该研究所采用的NAT方案主要以蒽环类药物为基础,其研究方法及结论缺乏一定的普适性,仍需要进一步大规模的试验数据对该结果进行验证。然而,PET/MRI对HER-2阳性乳腺癌NAT疗效的预测能力目前仍有争议。有研究发现[44],使用NAT前后肿瘤直径大小及SUVmax变化作为生物标志物预测HER-2阳性乳腺癌NAT疗效,PET联合MRI(AUC为0.708)较单独使用MRI(AUC为0.735)未发现有附加价值,但优于单独使用PET(AUC为0.543)。此外,由于PET/MRI普及性差、设备及运行成本高及检查时间长等原因,限制了其在临床实际中的应用,因此当前的研究多为小样本研究且缺乏标准的采集和分析方法,未来可通过多中心合作制订标准化流程等,以提高研究结果的一致性和可重复性。

5 人工智能技术对HER-2阳性乳腺癌NAT疗效的预测价值

5.1 基于乳腺MRI的影像组学

       影像组学具有非侵入性、高通量和自动化的优势[45],是目前最常用的人工智能方法之一。LI等[46]对127名HER-2阳性伴非肿块增强乳腺癌患者的DCE-MRI图像进行回顾性分析,采用LASSO算法获得6个最优特征,并根据其加权系数计算每位患者的影像组学评分(radiomics score, rad-score),发现pCR组与非pCR组之间的rad-score差异具有统计学意义(P<0.010),rad-score对NAT疗效具有优异的预测能力(AUC为0.900)。此前他们还发现,rad-score可以作为评估HER-2阳性乳腺癌在NAT治疗下无病生存率(disease-free survival, DFS)风险的独立生物标志物,而影像组学临床放射学模型可以提高DFS的个体化预测[47]。LIU等[48]基于随机森林的Boruta算法,从常规MRI和DWI中选择8个影像特征构建影像组学模型,并在4个队列中进行严格验证,发现该模型在HER-2阳性乳腺癌患者NAT疗效预测中性能良好(AUC为0.700)。有研究表明,反映病灶内部异质性的峰度系数在pCR组与非pCR组间的差异有统计学意义(P=0.039),当其高于截断值1.861时,预测HER-2阳性乳腺癌患者pCR的性能最佳,敏感度为100.0%;但是,该研究未对NAT方案及治疗周期进行严格控制,研究结果可能存在偏倚[13]。此外,还有研究发现,肿瘤周围特征比肿瘤内特征更能准确区分HER-2亚型肿瘤,且MRI中瘤周和瘤内的联合标记与pCR显著相关[49]。然而,影像组学模型在没有对大型代表性数据集进行训练的情况下往往会过度拟合,并且预测模型的性能在很大程度上取决于建模型时所用数据的质量和数量;针对目前的问题,未来可通过创建和共享大型多中心公共影像组学数据集、开发图像预处理技术以及制订统一的影像采集、处理和分析标准等来解决。

5.2 基于乳腺MRI的机器学习

       机器学习(machine learning, ML)是通过训练模型从数据中学习规律,然后利用这些模型进行预测和决策的方法[50]。一项来自BITENCOURT等[51]的研究利用ML构建了包括2个临床特征(病变类型、大小)和4个影像组学特征(方差、一阶熵、90%分位数、区域长度方差)的预测模型,发现该模型在评估HER-2阳性乳腺癌患者NAT后的反应方面性能良好,敏感度为86.5%,特异度为80.0%。FANIZZI等[52]也得出相似的结果,并进一步发现pCR与HER-2评分相关,HER-2评分为3+的乳腺癌患者对治疗的反应更差,但该研究样本量较小且缺乏独立的验证队列,所得结论有待进一步验证。HUANG等[53]基于纵向多参数的15个放射学特征构建预测HER-2阳性乳腺癌NAT后反应的ML模型,结果显示,基于NAT Pre-、During-和Delta-的联合模型的预测性能(AUC为0.974)优于各单一模型性能。CABALLO等[54]利用DCE-MRI中提取的影像特征开发了一种四维ML模型用于预测乳腺癌NAT疗效,发现针对HER-2阳性亚型训练的多变量ML模型性能最佳(AUC为0.844),优于luminal A、B型及三阴型(AUC为0.824、0.823、0.803);此外,他们还发现肿瘤的高灰度行程强调、短行程低灰度强调及肿瘤、瘤周中等增强簇的流出方差是HER-2阳性乳腺癌的独立预测因子。与传统方法不同,HUANG等[55]建立了一个联合多参数MRI放射组学特征和临床病理特征的ML模型,并采用肿瘤缩小模式代替pCR作为反映NAT疗效的指标,发现该模型在HER-2阳性亚型乳腺癌的测试集中获得最高的AUC、敏感度和准确率(0.940、86.5%、91.2%),而对三阴型乳腺癌的预测性能最低(AUC为0.837,准确率为77.7%)。综上所述,ML已成为预测NAT后pCR的有效工具,是目前相关领域的研究热点。然而,深度学习模型需要大量标注数据进行训练,因此我们应积极推动多中心合作,构建更大规模和多样化的影像数据集,开发和使用智能标注工具,构建更大规模和多样化的影像数据集,并开展模型的跨中心验证。

6 小结与展望

       综上所述,MRI及其衍生技术在预测HER-2阳性乳腺癌NAT反应中展示出巨大潜力,但仍然存在一些局限性。首先,大部分研究为回顾性研究,样本量不足,降低了研究结果的可信度和可重复性;其次,HER-2阳性乳腺癌患者间NAT方案的差异性削弱了研究结果的可比性;此外,不同MRI技术本身的局限性也限制其实际临床应用,例如,DCE-MRI需要静脉注射对比剂,对于肾功能不全患者不宜使用;DWI受限于水分子的高斯运动而对水分子扩散描述不准确,且易受微循环灌注的影响等。因此,未来的研究可以通过更严格的研究设计、开展大规模前瞻性研究和多中心联合研究等途径,利用多模态联合互补的方法以及影像组学和ML等先进技术,更深入地探讨MRI及其衍生技术对HER-2阳性乳腺癌NAT疗效的潜力,以提高预测和评估的准确性和可靠性,并进一步分析对特定NAT药物疗效的预测能力,为乳腺癌患者提供更精准的个性化治疗方案,从而提高治疗效果和生存质量。

[1]
NOLAN E, LINDEMAN G J, VISVADER J E. Deciphering breast cancer: from biology to the clinic[J]. Cell, 2023, 186(8): 1708-1728. DOI: 10.1016/j.cell.2023.01.040.
[2]
SCHLAM I, SWAIN S M. HER2-positive breast cancer and tyrosine kinase inhibitors: the time is now[J/OL]. NPJ Breast Cancer, 2021, 7(1): 56 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/34016991/. DOI: 10.1038/s41523-021-00265-1.
[3]
连欣, 郭东强, 钱丽霞. HER2阳性乳腺癌患者MRI乳腺背景实质强化特征及其对新辅助化疗疗效的评估[J]. 放射学实践, 2022, 37(6): 723-728. DOI: 10.13609/j.cnki.1000-0313.2022.06.009.
LIAN X, GUO D Q, QIAN L X. Characteristics of breast background parenchymal enhancement on MRI before and after neoadjuvant chemotherapy in patients with HER2 positive breast cancer[J]. Radiol Pract, 2022, 37(6): 723-728. DOI: 10.13609/j.cnki.1000-0313.2022.06.009.
[4]
SWAIN S M, SHASTRY M, HAMILTON E. Targeting HER2-positive breast cancer: advances and future directions[J]. Nat Rev Drug Discov, 2023, 22(2): 101-126. DOI: 10.1038/s41573-022-00579-0.
[5]
KORDE L A, SOMERFIELD M R, CAREY L A, et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline[J]. J Clin Oncol, 2021, 39(13): 1485-1505. DOI: 10.1200/JCO.20.03399.
[6]
HUOBER J, HOLMES E, BASELGA J, et al. Survival outcomes of the NeoALTTO study (BIG1-06): updated results of a randomised multicenter phase Ⅲ neoadjuvant clinical trial in patients with HER2-positive primary breast cancer[J/OL]. Eur J Cancer, 2019, 118: 169-177 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/31377477/. DOI: 10.1016/j.ejca.2019.04.038.
[7]
ABDEL-RAZEQ H, KHALIL H, ASSI H I, et al. Treatment Strategies for Residual Disease following Neoadjuvant Chemotherapy in Patients with Early-Stage Breast Cancer[J]. Curr Oncol, 2022, 29(8): 5810-5822. DOI: 10.3390/curroncol29080458.
[8]
WOESTE M R, BHUTIANI N, DONALDSON M, et al. Evaluating the effect of neoadjuvant chemotherapy on surgical outcomes after breast conserving surgery[J]. J Surg Oncol, 2021, 123(2): 439-445. DOI: 10.1002/jso.26301.
[9]
WANG M F, DU S Y, GAO S, et al. MRI-based tumor shrinkage patterns after early neoadjuvant therapy in breast cancer: correlation with molecular subtypes and pathological response after therapy[J/OL]. Breast Cancer Res, 2024, 26(1): 26 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/38347619/. DOI: 10.1186/s13058-024-01781-1.
[10]
SHI Z W, HUANG X M, CHENG Z L, et al. MRI-based quantification of intratumoral heterogeneity for predicting treatment response to neoadjuvant chemotherapy in breast cancer[J/OL]. Radiology, 2023, 308(1): e222830 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/37432083/. DOI: 10.1148/radiol.222830.
[11]
RIBRAG A, LISSAVALID E, FAYARD J, et al. Initial MRI findings predictive of a pathological complete response to neoadjuvant treatments in HER2-positive breast cancers[J/OL]. Eur J Radiol, 2024, 178: 111625 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/39024664/. DOI: 10.1016/j.ejrad.2024.111625.
[12]
KIM S Y, LEE J S, CHO N, et al. Deep-learning based discrimination of pathologic complete response using MRI in HER2-positive and triple-negative breast cancer[J/OL]. Sci Rep, 2024, 14(1): 23065 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/39367159/. DOI: 10.1038/s41598-024-74276-w.
[13]
王晓, 朱丽钰, 查小明, 等. 全容积表观扩散系数直方图定量分析术前预测不同亚型乳腺癌新辅助化疗后病理完全缓解的价值[J]. 中华放射学杂志, 2020, 54(4): 338-344. DOI: 10.3760/cma.j.cn112149-20190522-00439.
WANG X, ZHU L Y, ZHA X M, et al. Whole-lesion histogram analysis of apparent diffusion coefficient for the prediction of pathological complete response to neoadjuvant chemotherapy in different subtypes of breast cancer[J]. Chin J Radiol, 2020, 54(4): 338-344. DOI: 10.3760/cma.j.cn112149-20190522-00439.
[14]
MICHISHITA S, KIM S J, SHIMAZU K, et al. Prediction of pathological complete response to neoadjuvant chemotherapy by magnetic resonance imaging in breast cancer patients[J]. Breast, 2015, 24(2): 159-165. DOI: 10.1016/j.breast.2015.01.001.
[15]
MALHAIRE C, SELHANE F, SAINT-MARTIN M J, et al. Exploring the added value of pretherapeutic MR descriptors in predicting breast cancer pathologic complete response to neoadjuvant chemotherapy[J]. Eur Radiol, 2023, 33(11): 8142-8154. DOI: 10.1007/s00330-023-09797-5.
[16]
CHOUDHERY S, GOMEZ-CARDONA D, FAVAZZA C P, et al. MRI radiomics for assessment of molecular subtype, pathological complete response, and residual cancer burden in breast cancer patients treated with neoadjuvant chemotherapy[J/OL]. Acad Radiol, 2022, 29(Suppl 1): S145-S154 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/33160859/. DOI: 10.1016/j.acra.2020.10.020.
[17]
CHE S N, ZHAO X M, OU Y H, et al. Role of the intravoxel incoherent motion diffusion weighted imaging in the pre-treatment prediction and early response monitoring to neoadjuvant chemotherapy in locally advanced breast cancer[J/OL]. Medicine, 2016, 95(4): e2420 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/26825883/. DOI: 10.1097/MD.0000000000002420.
[18]
章蓉, 刘瑜琳, 刘代洪, 等. 功能磁共振成像技术评估乳腺癌新辅助化疗疗效的研究进展[J]. 磁共振成像, 2019, 10(8): 620-624. DOI: 10.12015/issn.1674-8034.2019.08.013.
ZHANG R, LIU Y L, LIU D H, et al. Research progress of functional magnetic resonance imaging techniques for evaluating the response to neoadjuvant chemotherapy in breast cancer[J]. Chin J Magn Reson Imag, 2019, 10(8): 620-624. DOI: 10.12015/issn.1674-8034.2019.08.013.
[19]
朱雪琳, 伍建林. MRI影像组学预测乳腺癌新辅助化疗疗效及预后研究进展[J]. 磁共振成像, 2022, 13(3): 159-161, 165. DOI: 10.12015/issn.1674-8034.2022.03.038.
ZHU X L, WU J L. Application progress of MRI radiomics in the efficacy and prognosis of neoadjuvant chemotherapy for breast cancer[J]. Chin J Magn Reson Imag, 2022, 13(3): 159-161, 165. DOI: 10.12015/issn.1674-8034.2022.03.038.
[20]
张弛, 许国辉. 基于DCE-MRI评价乳腺癌新辅助化疗疗效的研究进展[J]. 肿瘤预防与治疗, 2023, 36(7): 595-600. DOI: 10.3969/j.issn.1674-0904.2023.07.008.
ZHANG C, XU G H. Progress in evaluating the efficacy of neoadjuvant chemotherapy for breast cancer based on DCE-MRI features[J]. J Cancer Contr Treat, 2023, 36(7): 595-600. DOI: 10.3969/j.issn.1674-0904.2023.07.008.
[21]
LV G J, ZHOU Y M, ZHENG D D, et al. Comparison of model-free and model-based dynamic contrast-enhanced magnetic resonance imaging pharmacokinetic parameters for predicting breast cancers' response to neoadjuvant chemotherapy[J]. J Comput Assist Tomogr, 2020, 44(2): 269-274. DOI: 10.1097/RCT.0000000000001001.
[22]
CHAMMING'S F, UENO Y, ALDIS A, et al. Enhancement of breast cancer on pre-treatment dynamic contrast-enhanced MRI using computer-aided detection is associated with response to neo-adjuvant chemotherapy[J]. Diagn Interv Imaging, 2018, 99(12): 773-781. DOI: 10.1016/j.diii.2018.09.001.
[23]
RAMTOHUL T, TESCHER C, VAFLARD P, et al. Prospective evaluation of ultrafast breast MRI for predicting pathologic response after neoadjuvant therapies[J]. Radiology, 2022, 305(3): 565-574. DOI: 10.1148/radiol.220389.
[24]
FUSCO R, GRANATA V, MAIO F, et al. Textural radiomic features and time-intensity curve data analysis by dynamic contrast-enhanced MRI for early prediction of breast cancer therapy response: preliminary data[J/OL]. Eur Radiol Exp, 2020, 4(1): 8 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/32026095/. DOI: 10.1186/s41747-019-0141-2.
[25]
CHENG Q Q, HUANG J X, LIANG J Y, et al. The diagnostic performance of DCE-MRI in evaluating the pathological response to neoadjuvant chemotherapy in breast cancer: a meta-analysis[J/OL]. Front Oncol, 2020, 10: 93 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/32117747/. DOI: 10.3389/fonc.2020.00093.
[26]
HE M Z, SU J W, RUAN H P, et al. Nomogram based on quantitative dynamic contrast-enhanced magnetic resonance imaging, apparent diffusion coefficient, and clinicopathological features for early prediction of pathologic complete response in breast cancer patients receiving neoadjuvant chemotherapy[J]. Quant Imaging Med Surg, 2023, 13(7): 4089-4102. DOI: 10.21037/qims-22-869.
[27]
RELLA R, BUFI E, BELLI P, et al. Association between contralateral background parenchymal enhancement on MRI and outcome in patients with unilateral invasive breast cancer receiving neoadjuvant chemotherapy[J]. Diagn Interv Imaging, 2022, 103(10): 486-494. DOI: 10.1016/j.diii.2022.04.004.
[28]
霍翔, 吴兵, 方德根, 等. HER2阳性乳腺癌新辅助化疗疗效的影响因素及列线图预测模型建立[J]. 川北医学院学报, 2023, 38(1): 126-129, 136. DOI: 10.3969/j.issn.1005-3697.2023.01.030.
HUO X, WU B, FANG D G, et al. The influencing factors of neoadjuvant chemotherapy for HER2-positive breast cancer and the establishment of the prediction model of line chart[J]. J N Sichuan Med Coll, 2023, 38(1): 126-129, 136. DOI: 10.3969/j.issn.1005-3697.2023.01.030.
[29]
REN Z, PINEDA F D, HOWARD F M, et al. Bilateral asymmetry of quantitative parenchymal kinetics at ultrafast DCE-MRI predict response to neoadjuvant chemotherapy in patients with HER2+ breast cancer[J/OL]. Magn Reson Imaging, 2023, 104: 9-15 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/37611646/. DOI: 10.1016/j.mri.2023.08.003.
[30]
李芷凡, 刘欣然, 王子圆, 等. ADC最大值联合激素受体及人表皮生长因子受体2预测乳腺癌新辅助化疗疗效[J]. 磁共振成像, 2023, 14(10): 71-77. DOI: 10.12015/issn.1674-8034.2023.10.013.
LI Z F, LIU X R, WANG Z Y, et al. Predicting the efficacy of neoadjuvant chemotherapy for breast cancer by combining hormone receptor and human epidermal growth factor receptor 2 with ADC maximum[J]. Chin J Magn Reson Imag, 2023, 14(10): 71-77. DOI: 10.12015/issn.1674-8034.2023.10.013.
[31]
GULLO R L, PARTRIDGE S C, SHIN H J, et al. Update on DWI for breast cancer diagnosis and treatment monitoring[J/OL]. AJR Am J Roentgenol, 2024, 222(1): e2329933 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/37850579/. DOI: 10.2214/AJR.23.29933.
[32]
SUROV A, PECH M, MEYER H J, et al. Evaluation of pretreatment ADC values as predictors of treatment response to neoadjuvant chemotherapy in patients with breast cancer - a multicenter study[J/OL]. Cancer Imaging, 2022, 22(1): 68 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/36494872/. DOI: 10.1186/s40644-022-00501-2.
[33]
SUO S T, YIN Y, GENG X C, et al. Diffusion-weighted MRI for predicting pathologic response to neoadjuvant chemotherapy in breast cancer: evaluation with mono-, Bi-, and stretched-exponential models[J/OL]. J Transl Med, 2021, 19(1): 236 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/34078388/. DOI: 10.1186/s12967-021-02886-3.
[34]
LIANG X H, CHEN X F, YANG Z Q, et al. Early prediction of pathological complete response to neoadjuvant chemotherapy combining DCE-MRI and apparent diffusion coefficient values in breast Cancer[J/OL]. BMC Cancer, 2022, 22(1): 1250 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/36460972/. DOI: 10.1186/s12885-022-10315-x.
[35]
OTA R, KATAOKA M, IIMA M, et al. Evaluation of pathological complete response after neoadjuvant systemic treatment of invasive breast cancer using diffusion-weighted imaging compared with dynamic contrast-enhanced based kinetic analysis[J/OL]. Eur J Radiol, 2022, 154: 110372 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/35667297/. DOI: 10.1016/j.ejrad.2022.110372.
[36]
CHEUNG S M, WU W S, SENN N, et al. Towards detection of early response in neoadjuvant chemotherapy of breast cancer using Bayesian intravoxel incoherent motion[J/OL]. Front Oncol, 2023, 13: 1277556 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/38125950/. DOI: 10.3389/fonc.2023.1277556.
[37]
熊发奎, 崔凤, 龚良庚. IVIM在乳腺癌新辅助化疗后早期反应评估的应用价值[J]. 中国临床医学影像杂志, 2019, 30(2): 102-105. DOI: 10.12117/jccmi.2019.02.007.
XIONG F K, CUI F, GONG L G. The application value of IVIM in the assessment of early reaction after neoadjuvant chemotherapy for breast cancer[J]. J China Clin Med Imag, 2019, 30(2): 102-105. DOI: 10.12117/jccmi.2019.02.007.
[38]
吴佩琪, 刘再毅, 梁艳丽, 等. 体素内不相干运动扩散成像在乳腺癌中的研究进展[J]. 国际医学放射学杂志, 2017, 40(6): 690-694. DOI: 10.19300/j.2017.Z5157.
WU P Q, LIU Z Y, LIANG Y L, et al. Advances in application of intravoxel incoherent motion diffusion weighted imaging in breast cancer[J]. Int J Med Radiol, 2017, 40(6): 690-694. DOI: 10.19300/j.2017.Z5157.
[39]
RAHMAT K, MUMIN N A, HAMID M T R, et al. MRI breast: current imaging trends, clinical applications, and future research directions[J]. Curr Med Imaging, 2022, 18(13): 1347-1361. DOI: 10.2174/1573405618666220415130131.
[40]
程龙, 张义臣, 王成伟. 磁共振体素内不相干运动和扩散峰度成像在乳腺癌新辅助化疗早期疗效的评估[J]. 影像研究与医学应用, 2022, 6(16): 19-21. DOI: 10.3969/j.issn.2096-3807.2022.16.007.
CHENG L, ZHANG Y C, WANG C W. Evaluation of the early effcacy of IVIM and DKI in neoadjuvant chemotherapy for breast cancer[J]. J Imag Res Med Appl, 2022, 6(16): 19-21. DOI: 10.3969/j.issn.2096-3807.2022.16.007.
[41]
FOWLER A M, STRIGEL R M. Clinical advances in PET-MRI for breast cancer[J/OL]. Lancet Oncol, 2022, 23(1): e32-e43 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/34973230/. DOI: 10.1016/S1470-2045(21)00577-5.
[42]
HATT M, GROHEUX D, MARTINEAU A, et al. Comparison between 18F-FDG PET image-derived indices for early prediction of response to neoadjuvant chemotherapy in breast cancer[J]. J Nucl Med, 2013, 54(3): 341-349. DOI: 10.2967/jnumed.112.108837.
[43]
SEKINE C, UCHIYAMA N, WATASE C, et al. Preliminary experiences of PET/MRI in predicting complete response in patients with breast cancer treated with neoadjuvant chemotherapy[J/OL]. Mol Clin Oncol, 2022, 16(2): 50 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/35070299/. DOI: 10.3892/mco.2021.2483.
[44]
SCHMITZ A M T, TEIXEIRA S C, PENGEL K E, et al. Monitoring tumor response to neoadjuvant chemotherapy using MRI and 18F-FDG PET/CT in breast cancer subtypes[J/OL]. PLoS One, 2017, 12(5): e0176782 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/28531188/. DOI: 10.1371/journal.pone.0176782.
[45]
LIU S S, DU S Y, GAO S, et al. A delta-radiomic lymph node model using dynamic contrast enhanced MRI for the early prediction of axillary response after neoadjuvant chemotherapy in breast cancer patients[J/OL]. BMC Cancer, 2023, 23(1): 15 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/36604679/. DOI: 10.1186/s12885-022-10496-5.
[46]
LI Q, HUANG Y, XIAO Q, et al. Value of radiomics based on CE-MRI for predicting the efficacy of neoadjuvant chemotherapy in invasive breast cancer[J/OL]. Br J Radiol, 2022, 95(1139): 20220186 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/36005646/. DOI: 10.1259/bjr.20220186.
[47]
LI Q, XIAO Q, LI J W, et al. MRI-based radiomic signature as a prognostic biomarker for HER2-positive invasive breast cancer treated with NAC[J/OL]. Cancer Manag Res, 2020, 12: 10603-10613 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/33149669/. DOI: 10.2147/CMAR.S271876.
[48]
LIU Z Y, LI Z L, QU J R, et al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a multicenter study[J]. Clin Cancer Res, 2019, 25(12): 3538-3547. DOI: 10.1158/1078-0432.CCR-18-3190.
[49]
BRAMAN N, PRASANNA P, WHITNEY J, et al. Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2 (ERBB2)-positive breast cancer[J/OL]. JAMA Netw Open, 2019, 2(4): e192561 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/31002322/. DOI: 10.1001/jamanetworkopen.2019.2561.
[50]
HATAMIKIA S, GEORGE G, SCHWARZHANS F, et al. Breast MRI radiomics and machine learning-based predictions of response to neoadjuvant chemotherapy - How are they affected by variations in tumor delineation?[J/OL]. Comput Struct Biotechnol J, 2024, 23: 52-63 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/38125296/. DOI: 10.1016/j.csbj.2023.11.016.
[51]
BITENCOURT A G V, GIBBS P, ROSSI SACCARELLI C, et al. MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer[J/OL]. EBioMedicine, 2020, 61: 103042 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/33039708/. DOI: 10.1016/j.ebiom.2020.103042.
[52]
FANIZZI A, LATORRE A, BAVARO D A, et al. Prognostic power assessment of clinical parameters to predict neoadjuvant response therapy in HER2-positive breast cancer patients: a machine learning approach[J]. Cancer Med, 2023, 12(22): 20663-20669. DOI: 10.1002/cam4.6512.
[53]
HUANG Y H, ZHU T, ZHANG X L, et al. Longitudinal MRI-based fusion novel model predicts pathological complete response in breast cancer treated with neoadjuvant chemotherapy: a multicenter, retrospective study[J/OL]. EClinicalMedicine, 2023, 58: 101899 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/37007742/. DOI: 10.1016/j.eclinm.2023.101899.
[54]
CABALLO M, SANDERINK W B G, HAN L Y, et al. Four-dimensional machine learning radiomics for the pretreatment assessment of breast cancer pathologic complete response to neoadjuvant chemotherapy in dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2023, 57(1): 97-110. DOI: 10.1002/jmri.28273.
[55]
HUANG Y H, CHEN W B, ZHANG X L, et al. Prediction of tumor shrinkage pattern to neoadjuvant chemotherapy using a multiparametric MRI-based machine learning model in patients with breast cancer[J/OL]. Front Bioeng Biotechnol, 2021, 9: 662749 [2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/34295877/. DOI: 10.3389/fbioe.2021.662749.

上一篇 T1、T2 mapping技术在急性心肌梗死中的应用进展
下一篇 合成MRI在乳腺癌的临床应用及进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2