分享:
分享到微信朋友圈
X
综述
影像学预测肝切除术后肝衰竭的研究进展
张晓烨 贺业新

Cite this article as: ZHANG X Y, HE Y X. Research process in imaging prediction of post-hepatectomy liver failure[J]. Chin J Magn Reson Imaging, 2024, 15(11): 216-220.本文引用格式:张晓烨, 贺业新. 影像学预测肝切除术后肝衰竭的研究进展[J]. 磁共振成像, 2024, 15(11): 216-220. DOI:10.12015/issn.1674-8034.2024.11.034.


[摘要] 目前肝切除术已成为原发性和转移性肝脏肿瘤的首选治疗方法。尽管外科手术和围手术期护理不断改进,肝切除术后肝衰竭(post-hepatectomy liver failure, PHLF)仍然是术后并发症和死亡最严重的原因。准确预测PHLF的发生至关重要。本文综述了影像学预测PHLF的研究进展,从形态、功能影像学和人工智能角度进行分析,旨在增进对PHLF的理解,力求降低其发生率。
[Abstract] Hepatic resection is a preferred treatment for patients with primary and metastatic liver tumors. Despite improvements in operative techniques and perioperative care, post-hepatectomy liver failure remains the most serious cause of morbidity and mortality after surgery. This article reviews research advances in imaging to predict liver failure after hepatectomy, analyzing it from morphological, functional imaging, and artifactual intelligence perspectives, aiming to improve the understanding of PHLF and seeking to reduce its incidence.
[关键词] 肝切除术;肝衰竭;影像学;人工智能
[Keywords] hepatectomy;liver failure;imaging;artificial intelligence

张晓烨 1   贺业新 2  

1 山西医科大学医学影像学院,太原030012

2 山西医科大学附属山西省人民医院放射科,太原 030012

通信作者:贺业新,E-mail: heyexinty2000@sina.com

作者贡献声明:贺业新设计本研究的方案,对稿件重要内容进行了修改;张晓烨起草和撰写稿件,获取、分析和解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2024-08-07
接受日期:2024-11-08
中图分类号:R445.2  R657.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.11.034
本文引用格式:张晓烨, 贺业新. 影像学预测肝切除术后肝衰竭的研究进展[J]. 磁共振成像, 2024, 15(11): 216-220. DOI:10.12015/issn.1674-8034.2024.11.034.

0 引言

       肝切除术已成为原发性和转移性肝脏肿瘤的安全治疗手段,且被广泛接受[1]。尽管外科手术和围手术期领域取得进展,但是肝切除术后肝衰竭(post-hepatectomy liver failure, PHLF)仍然是术后并发症和死亡最严重的原因[2]。尤其对于接受两阶段肝切除术的患者,避免PHLF至关重要[3]。在接受肝切除术的患者中,PHLF的发生率为8%~12%,据报道其严重程度与术后死亡率和并发症发病率相关[4]

       肝切除的术后结果主要取决于未来残余肝(future liver remnant, FLR)的体积和功能。在残余肝不足的情况下进行肝切除,将不可避免地导致PHLF。对于未患有实质性肝病的患者而言,其FLR体积的阈值为25%[5]。对于肝脏受损的患者,其FLR体积至少为40%[6]。除FLR的体积以外,其功能还会受到肝硬化和脂肪变性等基础疾病影响[7]

       影像学有助于预测PHLF,常用的影像学检查技术有CT、MRI、SPECT/CT等。本文从形态、功能影像学和人工智能预测PHLF的研究进展进行综述,以加强对PHLF的认识,降低其发生率。

1 PHLF的定义

       2011年,国际肝脏外科研究组(The International Study Group of Liver Surgery, ISGLS)提出了关于PHLF的标准化定义[8]。ISGLS定义PHLF为肝切除术后第5天或之后凝血酶原时间国际标准化比值增加,且伴有高胆红素血症。严重程度分三级:A级,肝功能短暂、轻微恶化,无需侵入治疗;B级,结果偏离预期,需要无创治疗;C级,严重肝衰竭及多器官功能衰竭,需要侵入治疗。A、B、C级三级PHLF患者的围手术期死亡率分别为0%、12%和54%[8]。ISGLS所提出的定义得到普遍认可,并广泛用于肝切除术后评估[9, 10]

2 形态影像学预测PHLF

2.1 CT体积测量法

       目前术前评估FLR体积的金标准是CT体积测量法[11]。这项技术首先通过手动追踪每个断层图像中的肝脏轮廓,将所有图像对应的体积相加计算肝脏总体积,然后计算非肿瘤肝脏体积、肿瘤体积和FLR体积。其主要优点是无创性,并且常用于临床随访,但是CT评估也存在一定的局限性。第一,手动追踪肝脏轮廓是耗时的过程;第二,肿瘤特征和肝脏特征的个体差异会导致测量误差[12];第三,FLR体积并不完全反映FLR的功能,FLR功能还会受到纤维化、肝硬化等的影响。

       为了克服CT评估的缺点,VAUTHEY等[13]提出了一种改进的测量方法:估计肝脏总体积(estimated Total Liver Volume, eTLV;单位:mL)=-794.41+1 267.28×体表面积。该公式在估算肝脏总体积方面的有效性已得到证实。传统CT评估测得的FLR体积与eTLV的比值称为标准化FLR体积,代表肝切除术后残留肝脏的百分比。对于接受扩大肝切除术的患者来说,标准化FLR体积的测量是预测术后结果的准确方法。当标准化FLR体积小于eTLV的20%时,术后并发症的发生率上升[14]。根据相关研究[15],对于肝功能正常患者,标准化FLR体积阈值为20%:对于化疗后肝损伤患者,其阈值为30%;对于慢性肝病患者,其阈值为40%;不符合以上标准的患者应考虑门静脉栓塞[14]。然而,这种方法也存在局限性,即对于多次进行肝切除术或FLR体积与eTLV比值接近临界值的患者,这种方法可能并不可靠。

2.2 CT三维重建技术

       CT三维重建技术使用增强CT图像对FLR进行测量[16]。一项研究报告称,利用CT三维重建技术计算的肝段或亚段体积,与实际切除的标本体积高度相关[17]。因此术前对FLR体积的准确评估是不可或缺的。CT三维重建技术为肝脏手术规划提供了辅助,使手术模拟过程更为精确可靠。为了确保肝脏切除的安全性,明确门静脉灌注区和静脉引流区是非常重要的。SAITO等[18]报道,25%的患者门静脉右前段的灌注区会穿过右上肝静脉,引流到肝中静脉。在此类患者进行左肝切除术时,应考虑肝静脉相关残肝缺血或充血的风险。因此使用CT三维重建技术识别右上肝静脉,对于精确估算左肝切除术后的FLR体积具有重大意义。CT三维重建技术也适用于腹腔镜肝脏切除术[19]。三维重建的CT图像有助于医生识别血管和胆管等解剖结构,并准确预测将切除的肝脏体积。

       综上,CT在预估FLR体积方面具有重要价值,但这是基于整个肝脏功能均匀的前提下。因此,需结合其他功能性参数,对PHLF进行综合评估,提高预测PHLF的准确性。

3 功能影像学预测PHLF

3.1 MRI

3.1.1 磁共振弹性成像

       肝纤维化和肝硬化是诱发PHLF的不利因素,而磁共振弹性成像(magnetic resonance elastography, MRE)是一种无创的高精度量化肝纤维化的技术。MRE可无缝融入腹部MRI方案,生成全肝硬度图,与全腹MRI进行综合评估。LEE等[20]研究发现,通过MRE测量144名肝细胞癌患者的肝硬度值,能有效预测PHLF的发生。CHO等[21]研究MRE测得的肝硬度值对PHLF预测的实用性,并开发了基于MRE的风险预测模型,该模型在预测PHLF,特别是B、C级PHLF方面表现出色。

       然而,MRE也存在一些局限性,包括成本高昂、普及率不高等问题。同时对于门静脉高压患者,MRE相关预测研究较少,这可能影响MRE对这类患者PHLF发生的准确预测。

3.1.2 钆塞酸二钠增强MRI

       钆塞酸二钠(gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid, Gd-EOB-DTPA)是一种肝细胞特异性磁共振对比剂。静脉注射后,一半药物通过OATP1转运体被肝细胞摄取并排入胆管[22]。在给药后约20分钟获得的肝胆期图像中,肝实质的摄取可用于评估整体及分段肝功能。肝实质的增强程度会随着肝功能的恶化而降低[22]。WANG等[23]的一项荟萃分析显示,Gd-EOB-DTPA增强MRI能有效预测PHLF,是一种有前途的生物成像标志物。

       使用Gd-EOB-DTPA增强MRI预测PHLF的方法,包括信号强度测量法和磁共振弛豫时间测量法。JIN等[24]研究了121例肝细胞癌肝切除术的患者,发现Gd-EOB-DTPA增强MRI能有效预测PHLF。PHLF患者的肝脏相对增强(relative liver enhancement, RLE)显著低于非PHLF的患者。术前测得的RLE可作为预测肝细胞癌患者术后PHLF的指标。肝细胞摄取指数(hepatocyte uptake index, HUI)是一个半定量的参数,通过肝脏体积和Gd-EOB-DTPA对比剂摄取量来综合评估PHLF[25]。TSUJITA等[26]研究显示,残余肝脏的HUI是严重PHLF的独立预测指标。这表明,监测Gd-EOB-DTPA在肝脏内摄取的变化,能精确评估FLR功能,从而优化手术方案的制订。功能性肝脏成像评分(functional liver imaging score, FLIS)引入了肝脏的增强程度、胆汁对比剂排泄率和门静脉信号强度三个成像特征,是一种简单易行的Gd-EOB-DTPA增强MRI预测PHLF方法。LUO等[27]研究了502例肝细胞癌患者,证实FLIS是PHLF的独立预测指标。一些研究人员提出了磁共振弛豫时间测量法的可行性,LIU等[28]通过Gd-EOB-DTPA增强MRI评估了49例将接受肝切除术患者,发现Gd-EOB-DTPA增强T1 mapping能准确预测肝切除术的安全性。

       Gd-EOB-DTPA增强MRI技术融合了体积与功能评估,可全面预测PHLF。相较于单纯的体积评估,该技术的功能体积测量具有更高的预测准确性。CHUANG等[29]利用Gd-EOB-DTPA增强MRI测得了肝脏总体积、脾脏体积,并发现脾脏体积与FLR的比值升高与PHLF风险相关。根据评估,脾脏体积与肝脏总体积比值偏高的患者,肝切除术后出现门脉高压的风险更高。这是因为尽管门静脉血流保持不变,但肝实质的血管床减少了,可能加剧门脉高压状况,进而增加肝衰竭风险。ARAKI等[30]回顾性地分析了155例多肝段切除的患者,证实使用Gd-EOB-DTPA增强MRI功能体积测量可以精确预测多个肝段的PHLF,对接受过门静脉栓塞的患者也适用。

       Gd-EOB-DTPA增强MRI作为一站式术前检查,可同时进行结构和功能的双重评估,无辐射,具有良好的临床应用价值。它是检测肿瘤、模拟血管和胆管解剖以及评估分段肝功能、残余肝储备最重要的成像方式。但是缺少统一的评估标准,这会影响结果的一致性和可比性。

3.2 超声弹性成像

       超声弹性成像预测PHLF的技术主要包括瞬时弹性成像和剪切波弹性成像。LEI等[31]通过瞬时弹性成像测得了245名接受肝切除术的肝细胞癌患者的肝硬度值,可帮助医生进行治疗方案的决策。瞬时弹性成像对于存在腹水、肋间狭窄及超重的情况并不适用。LONG等[32]的研究得出利用二维剪切波弹性成像测得的肝硬度值能有效预测PHLF。二维剪切波弹性成像是瞬时弹性成像的衍生技术,其在预测肝切除术后的并发症方面优于瞬时弹性成像[33]。此外,该技术还可用于儿童PHLF的预测[34]。但是,二维剪切波弹性成像不能应用于存在肝炎和胆汁淤积的患者。

       但是,超声弹性成像技术在成像过程中仍依赖于人工定位,这难以避免误差的产生。同时,超声探头的面积对整体脏器的评价也存在局限性。

3.3 SPECT/CT

3.3.1 99m锝标记的半乳糖基人血清白蛋白显像

       99m锝标记的半乳糖基人血清白蛋白(99m technetium-galactosyl-serum-albumin, 99mTc-GSA)是一种与肝细胞上的同位糖蛋白受体特异性结合的放射性药物,其吸收情况仅反映功能正常的肝细胞状态[35],因此成为评估功能性肝储备的可靠工具。利用放射性药代动力学模型计算的99mTc-GSA的最大清除率,能精确反映肝功能,尤其适用于评估受损肝脏[35]。MIZUTANI等[36]的研究证明99mTc-GSA显像是ISGLS-PHLF独立且重要的预测因子。KASAI等[37]通过对102名肝切除术后患者的99mTc-GSA显像分析,建立了多变量的风险评分系统。该系统可有效识别PHLF高风险患者,为规划治疗策略提供依据。此外,99mTc-GSA显像还可评估肝切除术前肝纤维化和门静脉栓塞后PHLF的预测[38, 39]。然而,GSA的获取困难成为制约这项技术发展的主要因素。

3.3.2 99m锝标记的甲溴苯宁肝胆显像

       99m锝标记的甲溴苯宁被肝细胞特异性摄取,经胆管排泄,受胆红素影响小,经肾脏排泄少,不会发生生物转化[40]。肝胆显像可直接对肝功能进行量化评估,适用于健康个体及肝脏受损患者[40]。一项多中心队列研究证明肝胆显像可以预测大肝切除术后的PHLF,特别是高风险的胆道肿瘤[41]。DASARI等[42]的研究表明对于接受大肝切除术的患者,肝胆显像能精准预测FLR的体积和功能,是预测PHLF的有效指标。该技术能对需要肝切除的结直肠癌肝转移瘤患者和儿童进行预测[43, 44]。SERENARI[45]等研究得出:肝胆显像还可预测ISLGS定义的PHLF的严重程度。随着PHLF的等级升高,FLR相关函数(FLR function, FLR-F)的临界值减小。但是,目前此类研究相对匮乏,有待进一步挖掘与探索。

       SPECT/CT在预测PHLF方面已展现出显著的临床应用潜力,但目前研究多为回顾性研究,研究人群相对较少,限制了其预测的全面性。因此,开展多中心的前瞻性研究将会是新研究方向。

4 人工智能预测PHLF

       近年来,随着人工智能的发展,它在医学研究中的应用前景日益广阔,特别在医学影像领域,人工智能展现出巨大潜力。KANG等[46]提出利用人工智能预测肝切除术的安全肝切除量,降低了PHLF的风险,改善了肝切除患者的预后。

4.1 机器学习

       机器学习是人工智能领域的重要分支之一,经历飞速发展,被广泛应用于疾病预测领域,并在临床实践中取得显著成效。通过运用计算机算法,机器学习可在短时间内分析大量且多样化的数据。目前,机器学习正应用于临床数据、影像组学和基因组学等多个领域,旨在开发高效准确的预测模型[47]。WANG等[48]利用机器学习对术前Gd-EOB-DTPA增强MRI图像的影像组学特征进行分析,成功识别肝细胞癌不同肝功能的亚组,评估了这些亚组与PHLF风险之间的关联。

       深度学习作为当前机器学习领域的研究焦点,尤其卷积神经网络的深度学习,在医学影像图像分析中具有重要临床意义[49]。XIE等[50]开发的深度学习模型可自动或半自动分割Couinaud肝段和FLR,用于术前体积评估。此外,该模型还具备肝内门静脉的可视化功能,并可依据肝内血管的结构测量肝段体积。XU等[51]利用增强CT图像建立一个深度学习的模型,旨在预测半肝切除术后患者发生PHLF的风险。该模型可以协助医生优化高风险PHLF患者的手术计划。深度学习驱动的MRI图像重建技术缩短了采集时间,并在不牺牲图像对比度的情况下降低了图像噪声,不仅加快了MRI的采集速度,还提升了图像质量[52]。利用深度学习重建的Gd-EOB-DTPA增强MRI图像,能生成更高分辨率的肝胆期图像,提供更详细的解剖信息,并有利于实现精准分割和计算[52]

4.2 智能影像组学

       影像组学可从数字医学影像中提取定量特征,从而利用这些高维数据协助医生进行疾病诊断、治疗策略制订和预后评估[53]。智能影像组学通过人工智能对影像数据进行分析汇总,提高了临床诊断的准确性。CHEN等[54]对144名肝细胞癌患者的MRI图像进行分析,利用智能影像组学构建了一个预测PHLF模型。该模型对PHLF的预测有较高价值,可以帮助医生制订治疗方案。LI等[55]建立基于Gd-EOB-DTPA增强MRI的预测模型,该模型可以识别PHLF高风险患者,并在规划患者手术方案时作为辅助决策。相较于传统影像组学,智能影像组学可以识别肉眼无法识别的多种信息,提高医生的工作效率,对PHLF的预测更为准确。

       目前人工智能领域面临多重挑战:多数研究仍局限于单中心验证性质,缺乏大规模前瞻性探索;在数据采集方面,其完整性和质量管控存在难度,难以确保高标准;此外,模型的普遍适用性尚需优化和提升。

5 局限性与展望

       随着影像技术的进步,影像学在PHLF的术前预测和评估中发挥出日益重要的作用。然而,这些研究中仍存在一些局限性:第一,样本规模的局限性,多数研究局限于小样本单中心研究,缺乏多中心协作的大规模研究,限制了研究的普遍适用性和可靠性;第二,标准化的成像评估标准的缺失,这导致不同研究间的结果出现偏差;第三,预测结果的不稳定性,不同的预测模型对同一影像数据进行评估,会产生不同的预测结果,增加了临床决策的不确定性。

       尽管面临诸多局限性,影像学预测PHLF仍展现巨大潜力。随着影像学的迅速发展,未来的发展将聚焦于以下几个方面:第一,多中心大规模研究。通过广泛的前瞻性探索,将提升预测PHLF的精确度和可靠性;第二,多种成像模式融合。通过综合应用不同影像评估方式,实现对PHLF更为全面、深入的预测;第三,新型影像技术的开发与应用。例如正电子发射断层显像(positron emission tomography, PET)-CT、PET/MRI及4D-FLOW MRI等,尽管这些技术目前尚未涉及PHLF领域,但已有研究表明,4D-FLOW MRI[56]可用于测量门静脉栓塞前和栓塞后3~4天残留门静脉分支的血流变化,从而预测FLR体积。因此,这些技术等在预测PHLF方面具广泛的发展前景。

       综上所述,随着影像技术的不断革新与进步,影像学将在预测PHLF及优化个性化治疗方案方面扮演愈发重要的角色,为临床决策提供更为精准、有力的支持。

[1]
MADOFF D C, ODISIO B C, SCHADDE E, et al. Improving the safety of major resection for hepatobiliary malignancy: portal vein embolization and recent innovations in liver regeneration strategies[J/OL]. Curr Oncol Rep, 2020, 22(6): 59 [2024-10-20]. https://link.springer.com/article/10.1007/s11912-020-00922-x. DOI: 10.1007/s11912-020-00922-x.
[2]
SØREIDE J A, DESHPANDE R. Post hepatectomy liver failure (PHLF) - Recent advances in prevention and clinical management[J]. Eur J Surg Oncol, 2021, 47(2): 216-224. DOI: 10.1016/j.ejso.2020.09.001.
[3]
HABERMAN D M, ANDRIANI O C, SEGARAN N L, et al. Role of CT in two-stage liver surgery[J]. Radiographics, 2022, 42(1): 106-124. DOI: 10.1148/rg.210067.
[4]
BOGACH J, WANG J L, GRIFFITHS C, et al. Simultaneous versus staged resection for synchronous colorectal liver metastases: A population-based cohort study[J]. Int J Surg, 2020, 74: 68-75. DOI: 10.1016/j.ijsu.2019.12.009.
[5]
PICCUS R, JOSHI K, HODSON J, et al. Significance of predicted future liver remnant volume on liver failure risk after major hepatectomy: A case matched comparative study[J/OL]. Front Surg, 2023, 10: 1174024 [2024-10-20]. https://www.frontiersin.org/journals/surgery/articles/10.3389/fsurg.2023.1174024/full. DOI: 10.3389/fsurg.2023.1174024.
[6]
VAN KEULEN A M, OLTHOF P B, BUETTNER S, et al. The influence of hepatic steatosis and fibrosis on postoperative outcomes after major liver resection of perihilar cholangiocarcinoma[J]. Ann Surg Oncol, 2024, 31(1): 133-141. DOI: 10.1245/s10434-023-14419-x.
[7]
ARNTZ P J W, DEROOSE C M, MARCUS C, et al. Joint EANM/SNMMI/IHPBA procedure guideline for [99mTc]Tc-mebrofenin hepatobiliary scintigraphy SPECT/CT in the quantitative assessment of the future liver remnant function[J]. HPB, 2023, 25(10): 1131-1144. DOI: 10.1016/j.hpb.2023.06.001.
[8]
RAHBARI N N, GARDEN O J, PADBURY R, et al. Posthepatectomy liver failure: a definition and grading by the International Study Group of Liver Surgery (ISGLS)[J]. Surgery, 2011, 149(5): 713-724. DOI: 10.1016/j.surg.2010.10.001.
[9]
CALTHORPE L, RASHIDIAN N, CACCIAGUERRA A B, et al. Using the comprehensive complication index to rethink the ISGLS criteria for post-hepatectomy liver failure in an international cohort of major hepatectomies[J/OL]. Ann Surg, 2023, 277(3): e592-e596 [2024-10-20]. https://journals.lww.com/annalsofsurgery/abstract/2023/03000/using_the_comprehensive_complication_index_to.42.aspx. DOI: 10.1097/SLA.0000000000005338.
[10]
BAUMGARTNER R, ENGSTRAND J, RAJALA P, et al. Comparing the accuracy of prediction models to detect clinically relevant post-hepatectomy liver failure early after major hepatectomy[J/OL]. Br J Surg, 2024, 111(1): znad433 [2024-10-20]. https://academic.oup.com/crawlprevention/governor?content=%2fbjs%2farticle-lookup%2fdoi%2f10.1093%2fbjs%2fznad433. DOI: 10.1093/bjs/znad433.
[11]
KALSHABAY Y, ZHOLDYBAY Z, MARTINO M D, et al. CT volume analysis in living donor liver transplantation: accuracy of three different approaches[J/OL]. Insights Imaging, 2023, 14(1): 82 [2024-10-20]. https://insightsimaging.springeropen.com/articles/10.1186/s13244-023-01431-8. DOI: 10.1186/s13244-023-01431-8.
[12]
WU T C, HUANG W H, HE B C, et al. Diagnostic accuracy of 3D imaging combined with intra-operative ultrasound in the prediction of post-hepatectomy liver failure[J]. J Gastrointest Oncol, 2022, 13(3): 1224-1236. DOI: 10.21037/jgo-22-282.
[13]
VAUTHEY J N, ABDALLA E K, DOHERTY D A, et al. Body surface area and body weight predict total liver volume in Western adults[J]. Liver Transpl, 2002, 8(3): 233-240. DOI: 10.1053/jlts.2002.31654.
[14]
HADDAD A, LENDOIRE M, MAKI H, et al. Liver volumetry and liver-regenerative interventions: history, rationale, and emerging tools[J]. J Gastrointest Surg, 2024, 28(5): 766-775. DOI: 10.1016/j.gassur.2024.02.020.
[15]
GERWING M, SCHINDLER P, KATOU, et al. Multi-organ radiomics-based prediction of future remnant liver hypertrophy following portal vein embolization[J]. Ann Surg Oncol, 2023, 30(13): 7976-7985. DOI: 10.1245/s10434-023-14241-5.
[16]
SAITO Y, SHIMADA M, MORINE Y, et al. Essential updates 2020/2021: current topics of simulation and navigation in hepatectomy[J]. Ann Gastroenterol Surg, 2022, 6(2): 190-196. DOI: 10.1002/ags3.12542.
[17]
TAKAMOTO T, HASHIMOTO T, OGATA S, et al. Planning of anatomical liver segmentectomy and subsegmentectomy with 3-dimensional simulation software[J]. Am J Surg, 2013, 206(4): 530-538. DOI: 10.1016/j.amjsurg.2013.01.041.
[18]
SAITO Y, IMURA S, MORINE Y, et al. A hepatectomy based on a hybrid concept of portal perfusion of anterior segment and venous drainage area of superior right hepatic vein[J]. Am Surg, 2022, 88(6): 1077-1083. DOI: 10.1177/0003134820984872.
[19]
郭智辈, 唐文才, 李小华, 等. CT三维重建在原发性肝癌肝脏切除术前肿瘤体积评估中的应用[J]. 肝脏, 2021, 26(9): 1003-1006, 1010. DOI: 10.3969/j.issn.1008-1704.2021.09.016.
GUO Z B, TANG W C, LI X H, et al. Application of three-dimensional CT reconstruction in the evaluation of tumor volume of hepatocellular carcinoma before hepatectomy[J]. Chin Hepatol, 2021, 26(9): 1003-1006, 1010. DOI: 10.3969/j.issn.1008-1704.2021.09.016.
[20]
LEE D H, LEE J M, YI N J, et al. Hepatic stiffness measurement by using MR elastography: prognostic values after hepatic resection for hepatocellular carcinoma[J]. Eur Radiol, 2017, 27(4): 1713-1721. DOI: 10.1007/s00330-016-4499-8.
[21]
CHO H J, AHN Y H, SIM M S, et al. Risk prediction model based on magnetic resonance elastography-assessed liver stiffness for predicting posthepatectomy liver failure in patients with hepatocellular carcinoma[J]. Gut Liver, 2022, 16(2): 277-289. DOI: 10.5009/gnl210130.
[22]
GARCÍA-CRIADO Á, RIMOLA J, SEIJO S, et al. MRI using gadoxetic acid in the work-up of liver nodules not conclusively benign in budd-chiari syndrome: a prospective long-term follow-up[J]. Liver Cancer, 2023, 13(2): 203-214. DOI: 10.1159/000533598.
[23]
WANG Q, WANG A R, SPARRELID E, et al. Predictive value of gadoxetic acid–enhanced MRI for posthepatectomy liver failure: a systematic review[J]. Eur Radiol, 2022, 32(3): 1792-1803. DOI: 10.1007/s00330-021-08297-8.
[24]
JIN Y J, LEE S H, CHO S G, et al. Prediction of postoperative liver failure using gadoxetic acid-enhanced magnetic resonance imaging in patients with hepatocellular carcinoma[J]. J Gastroenterol Hepatol, 2016, 31(7): 1349-1356. DOI: 10.1111/jgh.13327.
[25]
YAMADA A, HARA T, LI F, et al. Quantitative evaluation of liver function with use of gadoxetate disodium-enhanced MR imaging[J]. Radiology, 2011, 260(3): 727-733. DOI: 10.1148/radiol.11100586.
[26]
TSUJITA Y, SOFUE K, KOMATSU S, et al. Prediction of post-hepatectomy liver failure using gadoxetic acid-enhanced magnetic resonance imaging for hepatocellular carcinoma with portal vein invasion[J/OL]. Eur J Radiol, 2020, 130: 109189 [2024-10-20]. https://linkinghub.elsevier.com/retrieve/pii/S0720-048X(20)30378-8. DOI: 10.1016/j.ejrad.2020.109189.
[27]
LUO N B, HUANG X Y, JI Y N, et al. A functional liver imaging score for preoperative prediction of liver failure after hepatocellular carcinoma resection[J]. Eur Radiol, 2022, 32(8): 5623-5632. DOI: 10.1007/s00330-022-08656-z.
[28]
LIU J, LI Q T, SHI N N, et al. Preliminary clinical study of the safety of hepatectomy predicted by gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced T1 mapping magnetic resonance imaging[J]. JGH Open, 2021, 5(3): 382-389. DOI: 10.1002/jgh3.12507.
[29]
CHUANG Y H, OU H Y, LAZO M Z, et al. Predicting post-hepatectomy liver failure by combined volumetric, functional MR image and laboratory analysis[J]. Liver Int, 2018, 38(5): 868-874. DOI: 10.1111/liv.13608.
[30]
ARAKI K, HARIMOTO N, KUBO N, et al. Functional remnant liver volumetry using Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) predicts post-hepatectomy liver failure in resection of more than one segment[J]. HPB, 2020, 22(2): 318-327. DOI: 10.1016/j.hpb.2019.08.002.
[31]
LEI J W, JI X Y, HONG J F, et al. Prediction of posthepatectomy liver failure using transient elastography in patients with hepatitis B related hepatocellular carcinoma[J/OL]. BMC Gastroenterol, 2017, 17(1): 171 [2024-10-20]. https://bmcgastroenterol.biomedcentral.com/articles/10.1186/s12876-017-0732-4. DOI: 10.1186/s12876-017-0732-4.
[32]
LONG H Y, ZHONG X, SU L Y, et al. Liver stiffness measured by two-dimensional shear wave elastography for predicting symptomatic post-hepatectomy liver failure in patients with hepatocellular carcinoma[J]. Ann Surg Oncol, 2022, 29(1): 327-336. DOI: 10.1245/s10434-021-10563-4.
[33]
LEE D H, LEE E S, BAE J S, et al. 2D shear wave elastography is better than transient elastography in predicting post-hepatectomy complication after resection[J]. Eur Radiol, 2021, 31(8): 5802-5811. DOI: 10.1007/s00330-020-07662-3.
[34]
HUANG J Y, LONG H Y, PENG J Y, et al. Predicting post-hepatectomy liver failure preoperatively for child-pugh A5 hepatocellular carcinoma patients by liver stiffness[J]. J Gastrointest Surg, 2023, 27(6): 1177-1187. DOI: 10.1007/s11605-023-05635-7.
[35]
KATO A, NAKAMOTO Y, ISHIMORI T, et al. Predictability of 99mTc-galactosyl human serum albumin scintigraphy for posthepatectomy liver failure[J]. AJR Am J Roentgenol, 2018, 210(1): 158-165. DOI: 10.2214/AJR.17.18411.
[36]
MIZUTANI Y, HIRAI T, NAGAMACHI S, et al. Prediction of posthepatectomy liver failure proposed by the international study group of liver surgery: residual liver function estimation with 99mTc-galactosyl human serum albumin scintigraphy[J]. Clin Nucl Med, 2018, 43(2): 77-81. DOI: 10.1097/RLU.0000000000001913.
[37]
KASAI, HA-KAWA S, AIHARA T, et al. Establishment and internal validation of a prognostic score for post-hepatectomy liver failure based on functional liver parameters estimated via TC-99m GSA[J/OL]. Cureus, 2023, 15(7): e42297 [2024-10-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/37609100/. DOI: 10.7759/cureus.42297.
[38]
NAKAZAWA Y, OKADA M, HYODO T, et al. Comparison between CT volumetry, technetium99m galactosyl-serum-albumin scintigraphy, and gadoxetic-acid-enhanced MRI to estimate the liver fibrosis stage in preoperative patients[J]. Eur Radiol, 2024, 34(4): 2212-2222. DOI: 10.1007/s00330-023-10219-9.
[39]
YAO S Y, TAURA K, YOH T, et al. Nonsuperiority of technetium-99m-galactosyl human serum albumin scintigraphy over conventional volumetry for assessing the future liver remnant in patients undergoing hepatectomy after portal vein embolization[J]. Surgery, 2023, 173(2): 435-441. DOI: 10.1016/j.surg.2022.10.005.
[40]
RASSAM F, ZHANG T, CIESLAK K P, et al. Comparison between dynamic gadoxetate-enhanced MRI and 99mTc-mebrofenin hepatobiliary scintigraphy with SPECT for quantitative assessment of liver function[J]. Eur Radiol, 2019, 29(9): 5063-5072. DOI: 10.1007/s00330-019-06029-7.
[41]
OLTHOF P B, ARNTZ P, TRUANT S, et al. Hepatobiliary scintigraphy to predict postoperative liver failure after major liver resection; a multicenter cohort study in 547 patients[J]. HPB, 2023, 25(4): 417-424. DOI: 10.1016/j.hpb.2022.12.005.
[42]
DASARI B V M, WILSON M, PUFAL K, et al. Variations between the anatomical and functional distribution, based on 99m technetium-mebrofinate SPECT-CT scan, in patients at risk of post hepatectomy liver failure[J]. HPB, 2021, 23(12): 1807-1814. DOI: 10.1016/j.hpb.2021.04.014.
[43]
CUSUMANO C, DESHAYES E, GUIU B, et al. Prevention of post-hepatectomy liver failure after major resection of colorectal liver metastases: is hepato-biliary scintigraphy the optimal tool?[J/OL]. Ann Transl Med, 2023, 11(5): 202 [2024-10-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/37007571/. DOI: 10.21037/atm-22-3665.
[44]
CHAURASIYA K, KIREEVA E, YADGAROV M, et al. Role of preoperative hepatobiliary scintigraphy in children requiring liver resection[J]. Clin Nucl Med, 2023, 48(7): 581-585. DOI: 10.1097/RLU.0000000000004660.
[45]
SERENARI M, BONATTI C, ZANONI L, et al. The role of hepatobiliary scintigraphy combined with spect/ct in predicting severity of liver failure before major hepatectomy: a single-center pilot study[J]. Updates Surg, 2021, 73(1): 197-208. DOI: 10.1007/s13304-020-00907-2.
[46]
KANG C M, KU H J, MOON H H, et al. Predicting safe liver resection volume for major hepatectomy using artificial intelligence[J/OL]. J Clin Med, 2024, 13(2): 381 [2024-10-20]. https://www.mdpi.com/2077-0383/13/2/381. DOI: 10.3390/jcm13020381.
[47]
WANG J T, ZHENG T L, LIAO Y, et al. Machine learning prediction model for post- hepatectomy liver failure in hepatocellular carcinoma: a multicenter study[J/OL]. Front Oncol, 2022, 12: 986867 [2024-10-20]. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.986867/full. DOI: 10.3389/fonc.2022.986867.
[48]
WANG Q, LI C F, CHEN G, et al. Unsupervised machine learning of MRI radiomics features identifies two distinct subgroups with different liver function reserve and risks of post-hepatectomy liver failure in patients with hepatocellular carcinoma[J/OL]. Cancers, 2023, 15(12): 3197 [2024-10-20]. https://www.mdpi.com/2072-6694/15/12/3197. DOI: 10.3390/cancers15123197.
[49]
YE Y F, ZHANG N W, WU D S, et al. Deep learning combined with radiologist's intervention achieves accurate segmentation of hepatocellular carcinoma in dual-phase magnetic resonance images[J]. Biomed Res Int, 2024, 9267554 [2024-10-20]. https://onlinelibrary.wiley.com/doi/10.1155/2024/9267554. DOI: 10.1155/2024/9267554.
[50]
XIE T T, LI Y B, LIN Z Y, et al. Deep learning for fully automated segmentation and volumetry of Couinaud liver segments and future liver remnants shown with CT before major hepatectomy: a validation study of a predictive model[J]. Quant Imaging Med Surg, 2023, 13(5): 3088-3103. DOI: 10.21037/qims-22-1008.
[51]
XU X Q, XING Z J, XU Z Y, et al. A deep learning model for prediction of post hepatectomy liver failure after hemihepatectomy using preoperative contrast-enhanced computed tomography: a retrospective study[J/OL]. Front Med, 2023, 10: 1154314 [2024-10-20]. https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2023.1154314/full. DOI: 10.3389/fmed.2023.1154314.
[52]
NAKAURA T, KOBAYASHI N, YOSHIDA N, et al. Update on the use of artificial intelligence in hepatobiliary MR imaging[J]. Magn Reson Med Sci, 2023, 22(2): 147-156. DOI: 10.2463/mrms.rev.2022-0102.
[53]
MAINO C, VERNUCCIO F, CANNELLA R, et al. Radiomics and liver: where we are and where we are headed?[J/OL]. Eur J Radiol, 2024, 171: 111297 [2024-10-20]. https://www.sciencedirect.com/science/article/pii/S0720048X24000135?via%3Dihub. DOI: 10.1016/j.ejrad.2024.111297.
[54]
CHEN Y Y, LIU Z L, MO Y X, et al. Prediction of post-hepatectomy liver failure in patients with hepatocellular carcinoma based on radiomics using Gd-EOB-DTPA-enhanced MRI: the liver failure model[J/OL]. Front Oncol, 2021, 11: 605296 [2024-10-20]. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2021.605296/full. DOI: 10.3389/fonc.2021.605296.
[55]
LI C F, WANG Q, ZOU M D, et al. A radiomics model based on preoperative gadoxetic acid-enhanced magnetic resonance imaging for predicting post-hepatectomy liver failure in patients with hepatocellular carcinoma[J/OL]. Front Oncol, 2023, 13: 1164739 [2024-10-20]. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2023.1164739/full. DOI: 10.3389/fonc.2023.1164739.
[56]
HYODO R, TAKEHARA Y, MIZUNO T, et al. Four-dimensional flow MRI assessment of portal hemodynamics and hepatic regeneration after portal vein embolization[J/OL]. Radiology, 2023, 308(3): e230709 [2024-10-20]. https://pubs.rsna.org/doi/10.1148/radiol.230709?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed. DOI: 10.1148/radiol.230709.

上一篇 合成MRI在乳腺癌的临床应用及进展
下一篇 子宫内膜异位症恶变为相关卵巢癌的MRI诊断现状及研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2