分享:
分享到微信朋友圈
X
特别关注
7.0 T MR HR-VWI对大脑中动脉粥样硬化性狭窄的评估:与DSA的一致性分析
何敏 邓亚利 黎川 甄志铭 左朦 王健 陈伟 陈炜 陈家飞

Cite this article as: HE M, DENG Y L, LI C, et al. Assessment of middle cerebral artery atherosclerotic stenosis by 7.0 T MR HR-VWI: A consistency analysis with DSA[J]. Chin J Magn Reson Imaging, 2024, 15(12): 42-47.本文引用格式:何敏, 邓亚利, 黎川, 等. 7.0 T MR HR-VWI对大脑中动脉粥样硬化性狭窄的评估:与DSA的一致性分析[J]. 磁共振成像, 2024, 15(12): 42-47. DOI:10.12015/issn.1674-8034.2024.12.006.


[摘要] 目的 分析7.0 T 高分辨血管壁成像(high resolution vessel wall imaging, HR-VWI)对缺血性脑卒中患者大脑中动脉(middle cerebral artery, MCA)粥样硬化性狭窄程度评估的准确性和可重复性。材料与方法 回顾性纳入我院2022年9月至2023年11月期间于我院确诊为MCA粥样硬化性狭窄的患者47例,2周内分别完成7.0 T HR-VWI和数字减影血管造影成像(digital subtraction angiography, DSA)检查。两名高年资医师对所有患者MCA粥样硬化斑块处的最狭窄直径、狭窄长度、最狭窄处内外壁面积以及其近端正常血管直径、内外壁面积分别进行独立测量,利用组内相关系数(intraclass correlation coefficient, ICC)分析组内、组间测量一致性;由一名高年资神经介入医师在DSA图中测量MCA粥样硬化斑块处最大狭窄率和狭窄长度,并与HR-VWI测量均值进行Bland-Atman和相关性分析。结果 两名观察者分别独自测量了47名患者69处最狭窄处,其管腔直径均值为(1.19±0.49)mm、斑块长度均值为(6.12±3.06)mm、内外壁面积均值分别为(1.88±1.11)mm2、(8.99±2.49)mm2,斑块近端正常管腔直径均值为(2.31±0.35)mm、内外壁面积均值为(4.74±1.31)mm2、(10.54±2.44)mm2,所有测量结果一致性分析结果ICC均大于0.8,P≤0.001;在DSA与HR-VWI测量最大狭窄率和狭窄长度的Bland-Altman一致性分析中,94.74%(54/57)和96.49%(55/57)的差异值位于差异均值±1.96标准差之间,ICC分别为0.944和0.897,两种方法在狭窄率和狭窄长度方面具有很强的相关性(狭窄率:r=0.955,P<0.001;狭窄长度:r=0.890,P<0.001)。结论 7.0 T HR-VWI在缺血性脑卒中患者MCA粥样硬化性狭窄程度评估中具有较好的准确性和可重复性。
[Abstract] Objective To analyze the accuracy and reproducibility of 7.0 T high resolution vessel wall imaging (HR-VWI) in assessing the degree of atherosclerotic stenosis in the middle cerebral artery (MCA) patients with ischemic stroke.Materials and Methods The present study retrospectively collected data from a total of 47 patients diagnosed with atherosclerosis in the middle cerebral artery at our hospital from September 2022 to November 2023. All patients underwent 7.0 T HR-VWI and digital subtraction angiography (DSA) examinations within 2 weeks. Two senior physicians independently measured the stenosis diameter, stenosis length, inner and outer wall areas at the site of the atherosclerotic plaques in the MCA patients, and the intra-observer and inter-observer consistency was assessed using intra-class correlation coefficient (ICC). The stenotic rate and length of the MCA vessel affected by atherosclerotic plaque are measured by an experienced interventional neurologist, followed by conducting Bland-Altman analysis and correlation analysis to compare these measurements with the mean value obtained through HR-VWI.Results The mean lumen diameter at the most stenotic site was independently measured by two observers for all 47 patients [(1.19±0.49) mm]. Additionally, measurements were also taken for mean plaque length (6.12±3.06 mm), mean inner wall area [(1.88±1.11) mm2], mean outer wall area [(8.99±2.49) mm2], mean normal lumen diameter [(2.31±0.35) mm], and mean inner wall area [(4.74±1.31) mm2] as well as mean outer wall area [(10.54±2.44) mm2]. The ICC values for all measurement was greater than 0.8, and the P value was less than 0.001. In the Bland-Altman analysis of consistency between DSA and HR-VWI in measuring stenotic rate and stenotic length, a high percentage of difference values fell within the mean difference ±1.96 standard deviations: 94.74% (54/57) for stenotic rate and 96.49% (55/57) for stenotic length, with ICC values of 0.944 and 0.897, respectively. Furthermore, strong correlations were observed between the two methods regarding both stenotic rate and stenotic length (r=0.955, P<0.001; r=0.890, P<0.001).Conclusions The 7.0 T HR-VWI demonstrates excellent reproducibility and accuracy in evaluating the degree of atherosclerotic stenosis in the MCA among patients with ischemic stroke.
[关键词] 大脑中动脉;粥样硬化性狭窄;缺血性脑卒中;高分辨血管壁成像;磁共振成像;7.0 T;数字减影血管造影成像
[Keywords] middle cerebral artery;atherosclerotic stenosis;cerebral arterial thrombosis;high resolution vessel wall imaging;magnetic resonance imaging;7.0 T;digital subtraction angiography

何敏 1   邓亚利 1   黎川 1   甄志铭 1   左朦 2   王健 1   陈伟 1   陈炜 3   陈家飞 1*  

1 陆军军医大学第一附属医院7 T磁共振转化医学研究中心/放射科,重庆 400038

2 陆军军医大学第一附属医院神经内科,重庆 400038

3 西门子医疗磁共振科研合作团队,广州 510620

通信作者:陈家飞,E-mail: t2mu.singular@163.com

作者贡献声明:陈家飞设计本研究的方案,对稿件重要内容方面进行修改;何敏、邓亚利、甄志铭、左朦收集整理数据,撰写原始稿件,分析解释本研究数据;陈炜、黎川、王健、陈伟分析和解释本研究数据,并对稿件全文重要智力内容进行了修改;陈伟获得了2017年重庆市社会事业与民生保障科技创新专项重点研发项目的资助,陈家飞、甄志铭、何敏、陈伟获得了陆军军医大学第一附属医院7T磁共振专项基金项目的资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 重庆市社会事业与民生保障科技创新专项重点研发项目 cstc2017shms-zdyfX0015 陆军军医大学第一附属医院7T磁共振专项基金项目 20247TZD01
收稿日期:2024-03-30
接受日期:2024-07-12
中图分类号:R445.2  R743.1 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.12.006
本文引用格式:何敏, 邓亚利, 黎川, 等. 7.0 T MR HR-VWI对大脑中动脉粥样硬化性狭窄的评估:与DSA的一致性分析[J]. 磁共振成像, 2024, 15(12): 42-47. DOI:10.12015/issn.1674-8034.2024.12.006.

0 引言

       大脑中动脉(middle cerebral artery, MCA)区域的动脉粥样硬化性狭窄是亚洲人群缺血性卒中的常见原因[1, 2],其发生发展机制和影像学斑块特征是缺血性脑卒中患者临床诊疗方案选择的重要依据。报道称严重的MCA狭窄为症状性、复发性缺血脑卒中的独立危险因素[3, 4],具有阻断脑血流危及生命的风险。此外,可靠和准确的动脉管腔、管壁评估被证明对治疗药物的选择具有重要的指导意义[4, 5, 6]

       近年来,高分辨血管壁成像(high resolution vessel wall imaging, HR-VWI)在神经血管方面的应用优势显著,具有分辨率高、采集快、覆盖范围广等优点,不仅可以无创性准确评估管腔狭窄程度,还可从血管壁斑块形态、成分结构等方面进行定性定量分析[7, 8, 9, 10],被认为是颅内动脉疾病最佳的无创评估方法[11]。颅内血管壁斑块的结构细微,对其形态和结构的清晰观察,需要保证图像具有较高的信噪比(signal-to-noise ratio, SNR)和对比噪声比(contrast-to-noise ratio, CNR)。超高场强7.0 T MR是目前临床获批应用于人体MRI的最高场强,在理论上具备有更强的HR-VWI应用优势:首先,超高场强下,其SNR更高[12, 13],这样可以保证更高分辨率成像的同时对微小结构进行准确识别;其次,在高场强下,组织的纵向弛豫时间T1变长,可以更佳地抑制血流、脑积液信号[9, 10, 14],从而进一步提高颅内动脉血管壁的成像显示。目前国内利用7.0 T MRI进行颅内动脉粥样硬化性狭窄方面的研究相对较少。因此,本研究主要从临床应用效果出发,结合金标准数字减影血管造影(digital subtraction angiography, DSA)成像技术对7.0 T MR HR-VWI在MCA粥样硬化性狭窄的准确性和可重复性进行评估。

1 材料与方法

1.1 研究对象

       回顾性纳入2022年9月至2023年11月于我院确诊为MCA动脉粥样硬化斑块导致的非心源性急性脑卒中患者47例。纳入标准:(1)年龄≥18岁;(2)2周内成功完成头颅DSA和7.0 T HR-VWI检查;(3)头颅扩散加权成像(diffusion weighted image, DWI)结果显示一侧MCA对应区域急性脑梗死合并对侧肢体症状性改变;(4)经心电图和超声心动图检查确认为非心源性;(5)至少含一种缺血性卒中危险因素[15],如高血压、高血脂、糖尿病、高同型半胱氨酸、吸烟史等。排除标准:(1)双侧MCA均闭塞;(2)其他导致MCA狭窄的病因,如血管炎、烟雾病或动脉夹层;(3)患者运动伪影、异物伪影干扰严重。本研究遵守《赫尔辛基宣言》,经陆军军医大学第一附属医院伦理委员会批准,免除受试者知情同意,批准文号:KY2023167。

1.2 影像学检查

       使用我院7.0 T核磁共振仪(Magnetom Terra, Siemens Healthineers)和32通道头颅线圈完成所有患者包含DWI和HR-VWI成像序列在内的颅脑MRI,扫描参数如下:(1)DWI序列,TR 4000 ms,TE 59 ms,层厚2 mm,矩阵158×158,FOV 220 mm×220 mm,扫描时间139 s;(2)T1加权的最优化采集可变翻转角3D快速自旋回波(sampling perfection with application optimized contrasts using different flip angle evolutions, SPACE)序列:TR 1280 ms,TE 8.4 ms,层厚0.5 mm,矩阵310×368,FOV 150 mm×180 mm,扫描时间494 s。

       使用德国西门子Axiom-AritsZ型号的神经血管造影机完成DSA检查/治疗,所有患者均采用常规右侧股动脉穿刺技术,经右侧股动脉置入导管动脉鞘(RSA60K10SQ,日本泰尔茂,220108VA)建立造影导管通道,导管末端分别行进至颈总动脉段时,使用总量为12 mL和速率5 mL/s的对比剂碘海醇(欧乃派克,美国GE公司)进行颅内段前循环造影,采集包含有标准汤氏位和侧位颅内动脉显影图。

1.3 图像处理和测量

       所有患者DSA和HR-VWI图像经PACS系统收集后进行去信息化匿名处理。

       HR-VWI图像分别由两名具有10年和15年工作经验的高级职称放射医师单独进行双盲法测量,每名医师分别于第1次测量完毕后间隔3个月时间重复测量第2次,以评估组内测量可重复性。测量步骤:选取患者平扫T1加权SPACE序列扫描图导入西门子后处理工作站中进行多平面重建(multi planar reconstruction, MPR),获取MCA段三平面重建图。独立观察并确定双侧MCA最狭窄位置,分别获得平行MCA管腔狭窄位置长轴的斜冠状MPR图以及垂直于长轴最狭窄处的短轴位MPR图,同时利用曲面重建(curve planar reformation, CPR)技术使形态弯曲MCA管腔中心于同一平面图中呈现。使用Viewing模板中标尺工具分别在MPR或CPR图中测量狭窄长度,在MPR图中测量最狭窄处管腔直径、血管内外壁面积以及近端正常管腔直径和血管内外壁面积。当对侧MCA无狭窄时,选取对侧MCA相对应的正常位置测量正常管腔直径和管壁面积。其中狭窄长度的测量中,在确认狭窄起始位置后使用标尺工具于MPR或CPR图中沿MCA狭窄管腔中心执行测量任务,走形弯曲且较长狭窄距离时采用分段折线式进行,各段数值相加作为最终狭窄长度值。

       DSA图像由1名具有9年工作经验的高级职称神经介入医师进行测量评估:在头颅汤氏位MCA段最大充盈时相图中测量充盈缺损的狭窄长度、最狭窄处管腔直径以及近端正常管腔直径。其中长度测量方法遇走形弯曲且较长狭窄距离时同HR-VWI方法,采用分段折线式测量后相加作为最终狭窄长度值。

       根据华法林症状性颅内动脉阿司匹林WASID临床试验诊断标准[16]:狭窄率(%)=(1-狭窄层面最小管腔直径/狭窄处近端正常血管直径)×100%,将狭窄率分为轻度(<49.9%)、中度(50.0%~69.9%)、重度(≥70.0%)。两种评估方案见图1所示。

图1  女,56 岁,右侧MCA 粥样硬化性狭窄。1A为HR-VWI 序列双侧MCA 曲面重建图,1B~1D 分别为MCA 斑块处的多平面重建图,其中橙色三角形所示为动脉粥样硬化斑块;1E 为MCA管径短轴切面斑块处呈现图,1、2 橙蓝色兴趣区分别为内壁、外壁测量示意图;1F 为该患者DSA检查图,1、2、3 分别为最狭窄处管径、近端管径、狭窄长度测量示意图。MCA:大脑中动脉;HR-VWI:高分辨血管壁成像;DSA:数字减影血管造影。
Fig. 1  Female, 56 years old, atherosclerotic stenosis in the right MCA. 1A: Curved planar reformation images of bilateral MCA in HR-VWI sequence; 1B-1D represent the multiplanar reformatted images at the site of the MCA plaque, where the atherosclerotic plaque is indicated by the orange triangle; 1E: The short-axis cross-sectional view of the MCA lumen at the site of the plaque, where the orange and blue regions of interest (ROIs) 1 and 2 are schematic diagrams for the measurement of the inner and outer walls, respectively; 1F: The DSA image of the patient, where 1, 2, and 3 represent the schematic diagrams for the measurement of the most constricted lumen diameter, the proximal lumen diameter, and the length of the stenosis, respectively. MCA: middle cerebral artery; HR-VWI: high resolution vessel wall imaging; DSA: digital subtraction angiography.

1.4 统计学分析

       采用SPSS 25.0统计学软件进行统计学分析。计量资料采用(x¯±s)的形式表示。所有数据进行正态分布检验。采用组内相关系数(intraclass correlation coefficient, ICC)对两名观察者组间、组内测量值进行一致性、可重复性分析。对DSA和HR-VWI测得的狭窄率和狭窄长度进行Bland-Atman和一致性分析,并根据正态分布结果采用Pearson或Spearman进行相关性分析,P<0.05为差异具有统计学意义。

2 结果

2.1 一般资料

       47名患者中男性36例(76.60%),年龄(54.38±10.72)岁,BMI值(23.77±3.11)kg/m2,其中高血压33例(70.21%),糖尿病18例(38.30%),高血脂23例(48.94%),高同型半胱氨酸23例(48.94%),有症状者30例(63.83%)。所有患者双侧MCA段总共69处粥样硬化性斑块,其中29名患者双侧MCA管腔均有斑块存在,7名患者一侧MCA闭塞性改变。在所有狭窄处包含9处重度狭窄,29处中度狭窄,31例轻度狭窄。

2.2 测量可重复性分析

       47名患者中,两名观察者分别独自测量了69处粥样硬化斑块最狭窄处管腔直径[均值(1.19±0.49)mm]、斑块长度[均值(6.12±3.06)mm]、内外壁面积[均值(1.88±1.11)mm2、(8.99±2.49)mm2],86处斑块近端和对侧相同位置的正常管腔直径[均值(2.31±0.35)mm]、内外壁面积[均值(4.74±1.31)mm2、(10.54±2.44)mm2]。所有测量结果一致性和可重复性分析结果:ICC均大于0.8,P值≤0.001,见表12所示。

表1  两名观察者组间测量一致性分析结果
Tab. 1  The inter-rater consistency between two observers
表2  两名观察者组内测量一致性分析结果
Tab. 2  The intra-observer consistency of two observers

2.3 两种测量方法一致性比较

       两种方法在MCA管腔狭窄率和狭窄长度测量方面具有较好的一致性(表3)。狭窄率与狭窄长度之间具有相关性(r=0.411,P=0.001;r=0.423,P=0.001);在DSA与HR-VWI测量狭窄率和狭窄长度的Bland-Altman分析中,94.74%(54/57)和96.49%(55/57)的差异值位于平均差±1.96标准差之间,两种方法在狭窄率和狭窄长度方面具有很强的相关性(r=0.955、P<0.001,r=0.890,P<0.001),见图2所示。

图2  Bland-Altman和相关性分析图。2A~2D分别为HR-VWI、DSA两种测量方法在MCA狭窄率和狭窄长度的Bland-Altman和相关性分析。HR-VWI:高分辨血管壁成像;DSA:数字减影血管造影;MCA:大脑中动脉。
Fig. 2  Bland-Altman and correlation analysis graph. A, B and C, D: The Bland-Altman and correlation analyses of the measurement results of MCA stenosis rate and length by HR-VWI and DSA methods. HR-VWI: high resolution vessel wall imaging; DSA: digital subtraction angiography; MCA: middle cerebral artery.
表3  HR-VWI和DSA两种测量方法的一致性分析结果
Tab. 3  The consistency of HR-VWI and DSA in stenotic measurements

3 讨论

       据我们目前的研究所知,本研究是首次在国内应用7.0 T MR HR-VWI技术对MCA粥样硬化性狭窄测量的可重复性进行评估,并以颅内血管狭窄评估金标准DSA进行了一致性分析,研究结果证实了7.0 T HR-VWI在测量MCA粥样硬化性狭窄程度方面具有出色的可重复性和准确性。这不仅为颅内动脉粥样硬化性狭窄所致缺血性脑卒中患者的临床诊治决策提供了更加可靠的循证依据,而且为超高场强MRI技术在脑血管病诊疗过程提供了新的科学基础和临床应用前景。

3.1 可重复性结果分析

       在本研究中,我们测量了因粥样硬化斑块引起MCA管腔和管壁在形态学方面的改变参数,包括狭窄长度、最狭窄处管腔直径以及内外壁面积,同时对狭窄近端和对侧正常血管也进行了评估,两名观察者组间、组内所有测量结果均具有较好的可重复性。既往研究中,YANG等[17]利用3.0 T MRI在MCA管腔、管壁的可重复性ICC达到0.95~0.98,但采用较小覆盖范围的2D成像序列。WAN等[18]利用3.0 T MRI在全脑颅内段斑块体积可重复性测量ICC达到0.88~0.96之间。在颅内动脉粥样硬化斑块处管壁面积的可重复性测量方面,ZHANG等[19]利用7.0 T MRI中的结果与本研究基本一致(0.980 vs. 0.982)。报道称,尽管2D序列在局部范围的HR-VWI具有更佳成像质量,但3D序列能实现颅内多动脉段任意弯曲形态的血管三维重建短轴位展现,其各向同性特点还能避免容积效应干扰[20, 21, 22],应用优势明显。此外,一项研究[23]利用3.0 T MRI在对82名健康受试者颅内血管壁评估研究中得出正常颅内管径测量一致性ICC为0.83~0.94,明显小于我们研究结果(ICC=0.962),同时发现颅内管壁厚度伴随年龄增长轻度增厚[24, 25]。TAKESHIGE等[26]通过5年随访研究发现40.8%患者增厚内膜会缓慢进展为动脉粥样硬化病变。更多报道称传统3.0 T MRI方法在健康人群的颅内血管壁评估中具有较大的挑战[27, 28],对7.0 T超高场在颅内动脉粥样硬化早期血管壁增厚阶段研究寄予厚望[29]。以往的组织病理学研究显示,在MCA近心端的管腔直径仅2~3 mm,管壁厚0.2~0.3 mm[30]。在我们的研究结果中,最狭窄处MCA管腔直径为(1.19±0.49)mm,正常直径为(2.31±0.35)mm,管壁最小厚度为0.3 mm, 最大厚度为3.3 mm,符合病理学证实的结果。在斑块长度评估方面,平均值为(6.12±3.06)mm,具有ICC为0.953的高可重复性结果。动脉粥样硬化病变范围包括轻微的管壁增厚、管腔非狭窄性和严重狭窄性斑块[31],动脉重塑下的正负性重构等影像学特征在7.0 T超高场强下将具有更加可靠的评估效果,并有机会准确发现早期管壁增厚改变。

3.2 与DSA比较的一致性结果分析

       颅内动脉粥样硬化性狭窄是症状性卒中发生与复发的重要危险因素[2, 13, 31]。尽管CT、MR等无创血管造影成像方式已被大量研究证实具有较好的狭窄程度评估效果[32],联合使用可以避免不必要的DSA检查,但DSA仍然是准确定量狭窄程度和治疗的必要手段[31]。在本研究中,我们以目前诊断狭窄程度金标准DSA为参考,评估了7.0 T HR-VWI在狭窄方面(狭窄率、狭窄长度)的测量评估效果,Bland-Altman分析具有较好的诊断一致性,两者的相关性分析结果达到0.955、0.890。GONG等[33]利用3.0 T HR-VWI评估 55处MCA狭窄率,对比DSA一致性评估低于我们的结果(0.916 vs. 0.944)。在狭窄长度一致性评估中,显著高于以往此类研究[34]。相比DSA,HR-VWI测得狭窄程度偏长,这与以往研究结果一致[34, 35],原因在于正性重构斑块会降低DSA的狭窄识别度。此外,HR-VWI在狭窄率方面略大于DSA,可能是由粥样硬化斑块分布位置造成:位于动脉管径靠背腹侧局部区域的斑块会形成短轴切面中背腹方向的管腔狭窄,而DSA狭窄程度测量在MCA长轴投影的二维图中进行,有低估狭窄程度的可能;另一方面有报道称MCA具有直线、U型、S型不同形态[36],弯曲MCA长轴位在DSA二维投影图中的测量结果也可能造成一定误差。因此,HR-VWI的MPR、CPR分段测量方法在颅内血管狭窄程度评估中将具有一定优势。

3.3 局限性

       本研究的不足之处:(1)样本量相对较少,且是一项单中心执行的横断面研究;(2)仅从测量方法方面进行分析,未对7.0 T HR-VWI的图像质量进行再次评估,出于过往的研究已有过证实[37];(3)仅分析颅内前循环 MCA粥样硬化性狭窄程度方面,未进行狭窄斑块的形态、强化、负荷等更多影像学特征的相关性研究,主要受限于目前成功完成7.0 T MRI缺血性脑卒中的样本量较少。伴随我院7.0 T MRI成功完成更多缺血性脑卒中患者的检查,将进一步对颅内动脉血管壁在7.0 T超高场下的影像学特征进行全面评估。

4 结论

       综上所述,7.0 T颅内HR-VWI在评估MCA粥样硬化性狭窄导致的缺血性脑卒中患者中具有较高的测量可重复性和准确性,为7.0 T MR临床医学转化提供了更重要的信心。

[1]
BAI X, FAN P, LI Z, et al. Evaluating middle cerebral artery plaque characteristics and lenticulostriate artery morphology associated with subcortical infarctions at 7T MRI[J]. J Magn Reson Imaging, 2024, 59(3): 1045-1055. DOI: 10.1002/jmri.28839.
[2]
WOO H G, KIM H G, LEE K M, et al. Wall shear stress associated with stroke occurrence and mechanisms in middle cerebral artery atherosclerosis[J]. J Stroke, 2023, 25(1): 132-140. DOI: 10.5853/jos.2022.02754.
[3]
LENG X, HURFORD R, FENG X, et al. Intracranial arterial stenosis in Caucasian versus Chinese patients with TIA and minor stroke: two contemporaneous cohorts and a systematic review[J]. J Neurol Neurosurg Psychiatry, 2021, 92: 590-597. DOI: 10.1136/jnnp-2020-325630.
[4]
孙瑄, 杨明, 余泽权, 等. 症状性颅内动脉粥样硬化性狭窄血管内治疗中国专家共识2022[J]. 中国卒中杂志, 2022, 17(8): 863-888. DOI: 10.3969/j.ssn.1673-5765.2022.08.013.
SUN X, YANG M, YU Z Q, et al. Chinese experts consensus on endovascular treatment for symptomatic intracranial atherosclerotic stenosis 2022[J]. Chin J Stroke, 2022, 17(8): 863-888. DOI: 10.3969/j.ssn.1673-5765.2022.08.013.
[5]
HURFORD R, WOLTERS F J, LI L, et al. Prevalence, predictors, and prognosis of symptomatic intracranial stenosis in patients with transient ischaemic attack or minor stroke: a population-based cohort study[J]. Lancet Neurol, 2020, 19(5): 413-421. DOI: 10.1016/S1474-4422(20)30079-X.
[6]
TEKLE W G, HASSAN A E. Intracranial atherosclerotic disease: Current concepts in medical and surgical management[J/OL]. Neurology, 2021, 97: S145-S157 [2024-03-30]. https://pubmed.ncbi.nlm.nih.gov/34785613/. DOI: 10.1212/WNL.0000000000012805.
[7]
FAKIH R, VARON MILLER A, RAGHURAM A, et al. High resolution 7T MR imaging in characterizing culprit intracranial atherosclerotic plaques[J/OL]. Interv Neuroradiol, 2022, 26: 15910199221145760 [2024-03-30]. https://pubmed.ncbi.nlm.nih.gov/36573263/. DOI: 10.1177/15910199221145760.
[8]
HUANG L X, WU X B, LIU Y A, et al. High-resolution magnetic resonance vessel wall imaging in ischemic stroke and carotid artery atherosclerotic stenosis: A review[J/OL]. Heliyon, 2024, 10(7): e27948 [2024-03-30]. https://doi.org/10.1016/j.heliyon.2024.e27948. DOI: 10.1016/j.heliyon.2024.e27948.
[9]
ARSLAN S, KORKMAZER B, KIZILKILIC O. Intracranial vessel wall imaging[J]. Curr Opin Rheumatol, 2021, 33(1): 41-48. DOI: 10.1097/BOR.0000000000000759.
[10]
SHEN M, GAO P, CHEN S, et al. Differences in distribution and features of carotid and middle cerebral artery plaque in patients with pial infarction and perforating artery infarction: A 3D vessel wall imaging study[J/OL]. Eur J Radiol, 2023, 167: 111045 [2024-03-30]. https://pubmed.ncbi.nlm.nih.gov/37586303/. DOI: 10.1016/j.ejrad.2023.111045.
[11]
赵锡海, 李澄, 严福华, 等. 颅内MR血管壁成像技术与应用中国专家共识[J]. 中华放射学杂志, 2019, 53(12): 1045-1059. DOI: 10.3760/cma.j.issn.1005-1201.2019.12.006.
ZHAO X H, LI C, YAN F H, et al. Expert consensus on techniques and application of intracranial MR vessel wall imaging in China[J]. Chin J Radiol, 2019, 53(12): 1045-1059. DOI: 10.3760/cma.j.issn.1005-1201.2019.12.006.
[12]
ZHANG C, SHI J. 7T MRI for intracranial vessel wall lesions and its associated neurological disorders: A systematic review[J/OL]. Brain Sci, 2022, 12(5): 528 [2024-03-30]. https://pubmed.ncbi.nlm.nih.gov/35624915/. DOI: 10.3390/brainsci12050528.
[13]
WU F, YU H, YANG Q. Imaging of intracranial atherosclerotic plaques using 3.0 T and 7.0 T magnetic resonance imaging-current trends and future perspectives[J]. Cardiovasc Diagn Ther, 2020, 10(4): 994-1004. DOI: 10.21037/cdt.2020.02.03.
[14]
LINDENHOLZ A, VAN DER KOLK A G, ZWANENBURG J J M, et al. The use and pitfalls of intracranial vessel wall imaging: How we do it[J]. Radiology, 2018, 286(1): 12-28. DOI: 10.1148/radiol.2017162096.
[15]
王拥军, 曾进胜, 李子孝, 等. 中国缺血性卒中和短暂性脑缺血发作二级预防指南2022[J].中华神经科杂志, 2022, 55(10): 1071-1110. DOI: 10.3760/cma.j.cn113694-20220714-00548.
WANG Y J, ZENG J S, LI Z X, et al. Chinese guideline for the secondary prevention of ischemic stroke and transient ischemic attack 2022[J]. Chin J Neurol, 2022, 55(10): 1071-1110. DOI: 10.3760/cma.j.cn113694-20220714-00548.
[16]
YOU S H, KIM B, YANG K S, et al. Development and validation of visual grading system for stenosis in intracranial atherosclerotic disease on time-of-flight magnetic resonance angiography[J]. Eur Radiol, 2022, 32(4): 2781-2790. DOI: 10.1007/s00330-021-08319-5.
[17]
YANG W Q, HUANG B, LIU X T, et al. Reproducibility of high-resolution MRI for the middle cerebral artery plaque at 3T[J]. Eur J Radiol, 2014, 83(1): 49-55. DOI: 10.1016/j.ejrad.2013.10.003.
[18]
WAN L, ZHANG N, ZHANG L, et al. Reproducibility of simultaneous imaging of intracranial and extracranial arterial vessel walls using an improved T1-weighted DANTE-SPACE sequence on a 3 T MR system[J]. Magn Reson Imaging, 2019, 62: 152-158. DOI: 10.1016/j.mri.2019.04.016.
[19]
ZHANG X, ZHU C, PENG W, et al. Scan-rescan reproducibility of high resolution magnetic resonance imaging of atherosclerotic plaque in the middle cerebral artery[J/OL]. PLoS One, 2015, 10(8): e0134913 [2024-03-30]. https://doi.org/10.1371/journal.pone.0134913. DOI: 10.1371/journal.pone.0134913.
[20]
SONG J W, WASSERMAN B A. Vessel wall MR imaging of intracranial atherosclerosis[J]. Cardiovasc Diagn Ther, 2020, 10(4): 982-993. DOI: 10.21037/cdt-20-470.
[21]
SANNANANJA B, ZHU C, MOSSA-BASHA M. Vessel wall imaging in cryptogenic stroke[J]. Radiol Clin North Am, 2023, 61(3): 491-500. DOI: 10.1016/j.rcl.2023.01.006.
[22]
GUGGENBERGER K, KRAFFT A J, LUDWIG U, et al. Intracranial vessel wall imaging framework - Data acquisition, processing, and visualization[J]. Magn Reson Imaging, 2021, 83: 114-124. DOI: 10.1016/j.mri.2021.08.004.
[23]
COGSWELL P M, LANTS S K, DAVIS L T, et al. Vessel wall and lumen characteristics with age in healthy participants using 3T intracranial vessel wall magnetic resonance imaging[J]. J Magn Reson Imaging, 2019, 50(5): 1452-1460. DOI: 10.1002/jmri.26750.
[24]
HARTEVELD A A, VAN DER KOLK A G, VAN DER WORP H B, et al. High-resolution intracranial vessel wall MRI in an elderly asymptomatic population: comparison of 3T and 7T[J]. Eur Radiol, 2017, 27(4): 1585-1595. DOI: 10.1007/s00330-016-4483-3.
[25]
GOMYO M, TSUCHIYA K, YOKOYAMA K. Vessel wall imaging of intracranial arteries: Fundamentals and clinical applications[J]. Magn Reson Med Sci, 2023, 22(4): 447-458. DOI: 10.2463/mrms.rev.2021-0140.
[26]
TAKESHIGE R, OTAKE H, KAWAMORI H, et al. Progression from normal vessel wall to atherosclerotic plaque: lessons from an optical coherence tomography study with follow-up of over 5 years[J]. Heart Vessels, 2022, 37(1): 1-11. DOI: 10.1007/s00380-021-01889-w.
[27]
ZHANG N, ZHANG F, DENG Z, et al. 3D whole-brain vessel wall cardiovascular magnetic resonance imaging: a study on the reliability in the quantification of intracranial vessel dimensions[J/OL]. J Cardiovasc Magn Reson, 2018, 20(1): 39 [2024-03-30]. https://pubmed.ncbi.nlm.nih.gov/29898736/. DOI: 10.1186/s12968-018-0453-z.
[28]
EISENMENGER L B, SPAHIC A, MCNALLY J S, et al. MR imaging for intracranial vessel wall imaging: Pearls and pitfalls[J]. Magn Reson Imaging Clin N Am, 2023, 31(3): 461-474. DOI: 10.1016/j.mric.2023.04.006.
[29]
ZWARTBOL M, VAN DER KOLK A G, GHAZNAWI R, et al. Intracranial vessel wall lesions on 7 T MRI (magnetic resonance imaging)[J]. Stroke, 2019, 50(1): 88-94. DOI: 10.1161/STROKEAHA.118.022-509.
[30]
GUTIERREZ J, ELKIND M S, PETITO C, et al. The contribution of HIV infection to intracranial arterial remodeling: a pilot study[J]. Neuropathology, 2013, 33(3): 256-263. DOI: 10.1111/j.1440-1789.2012.01358.x.
[31]
QURESHI A I, CAPLAN L R. Intracranial atherosclerosis[J]. Lancet, 2014, 383(9921): 984-998. DOI: 10.1016/S0140-6736(13)61088-0.
[32]
CHARLES J H, DESAI S, JEAN PAUL A, et al. Multimodal imaging approach for the diagnosis of intracranial atherosclerotic disease (ICAD): Basic principles, current and future perspectives[J]. Interv Neuroradiol, 2024, 30(1): 105-119. DOI: 10.1177/15910199221133170.
[33]
GONG Y, CAO C, GUO Y, et al. Quantification of intracranial arterial stenotic degree evaluated by high-resolution vessel wall imaging and time-of-flight MR angiography: reproducibility, and diagnostic agreement with DSA[J]. Eur Radiol, 2021, 31(8): 5479-5489. DOI: 10.1007/s00330-021-07719-x.
[34]
陈士跃, 田霞, 王振, 等. 3D IVWI与DSA评价颅内动脉粥样硬化狭窄对比研究[J]. 中国医学计算机成像杂志, 2021, 27(4): 275-279. DOI: 10.19627/j.cnki.cn31-1700/th.2021.04.001.
CHEN S Y, TIAN X, WANG Z, et al. 3D IVWI versus DSA in evaluating atherosclerotic stenosis of intracranial artery:A comparative study[J]. Chinese Computed Medical Imaging, 2021, 27(4): 275-279. DOI: 10.19627/j.cnki.cn31-1700/th.2021.04.001.
[35]
ZHAO H, WANG J, LIU X, et al. Assessment of carotid artery atherosclerotic disease by using three-dimensional fast black-blood MR imaging: comparison with DSA[J]. Radiology, 2015, 274: 508-516. DOI: 10.1148/radiol.14132687.
[36]
SHARMA U, VERMA S, ADITHAN S. Morphology of middle cerebral artery using computed tomography angiographic study in a tertiary care hospital[J]. Anat Cell Biol, 2023, 56(3): 360-366. DOI: 10.5115/acb.22.242.
[37]
SPINCEMAILLE P, ANDERSON J, WU G, et al. Quantitative susceptibility mapping: MRI at 7T versus 3T[J]. J Neuroimaging, 2020, 30(1): 65-75. DOI: 10.1111/jon.12669.

上一篇 7 T磁共振成像的临床应用优势、挑战及未来展望
下一篇 基于U-HRCT评估7.0 T磁共振SWI序列对膝关节骨微结构的显示能力
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2