分享:
分享到微信朋友圈
X
临床研究
联合酰胺质子转移成像与定量磁敏感图成像技术在不同分期帕金森病患者中的初步探究
杨晨 廖琪 琚超 王红 郝璐

Cite this article as: YANG C, LIAO Q, JU C, et al. Preliminary study on different stages of Parkinson's Disease combined with amide proton transfer imaging and quantitative susceptibility mapping[J]. Chin J Magn Reson Imaging, 2024, 15(12): 79-86.本文引用格式:杨晨, 廖琪, 琚超, 等. 联合酰胺质子转移成像与定量磁敏感图成像技术在不同分期帕金森病患者中的初步探究[J]. 磁共振成像, 2024, 15(12): 79-86. DOI:10.12015/issn.1674-8034.2024.12.012.


[摘要] 目的 利用酰胺质子转移(amid proton transfer, APT)成像与定量磁敏感图(quantitative susceptibility mapping, QSM)成像技术分析不同分期帕金森病(Parkinson's disease, PD)患者黑质(substantia nigra, SN)、红核(red nucleus, RN)、齿状核(dentate nucleus, DN)的APT加权(APT-weighted, APTw)成像值、磁化率值(magnetic susceptibility value, MSV)的差异,并与健康对照(healthy control, HC)组进行比较。探讨各核团APTw值与MSV能否作为判断PD不同分期的影像学指标。材料与方法 收集来自新疆医科大学第二附属医院的35例PD患者以及24例性别、年龄与之相匹配的HC组,PD组根据Hoehn-Yahr分级分为早期PD(early-stage PD, ESPD)组22例(Hoehn-Yahr≤2)和中晚期PD(advanced-stage PD, ASPD)组13例(Hoehn-Yahr≥2.5)。对比各组不同部位核团APTw值与MSV差异。然后采用受试者工作特征(receiver operating characteristic, ROC)曲线分析APT、QSM及两者联合使用的诊断性能。最后观察各核团APTw值、MSV与临床量表的相关性。结果 APTw值在ESPD组与HC组、ESPD组与ASPD组、ASPD组与HC组的SN间,ASPD组与HC组的RN间,ESPD组与HC组、ASPD组与HC组的DN间,差异具有统计学意义(P<0.05)。MSV在ESPD组与HC组、ESPD组与ASPD组、ASPD组与HC组的SN间,ASPD组与HC组、ASPD组与ESPD组的RN间,ASPD组与HC组、ASPD组与ESPD组的DN间,差异具有统计学意义(P<0.05)。APT、QSM及两者联合鉴别ESPD组与HC组的ROC曲线下面积(area under the curve, AUC)分别为0.886、0.792、0.926,差异具有统计学意义(P<0.05);在鉴别ESPD组与ASPD组的AUC分别为0.787、0.885、0.939,差异具有统计学意义(P<0.05)。SN的APTw值与MoCA评分呈正相关,SN、RN的MSV与MoCA评分呈负相关;SN、RN的APTw值与MMSE评分呈正相关,差异均具有统计学意义(P<0.05)。结论 APT和QSM可作为评估PD分期的影像学指标,APT与QSM联合应用可显著提高诊断效能。
[Abstract] Objective To analyze the differences of amid proton transfer weighted (APTw) value and magnetic susceptibility value (MSV) of the substantia nigra dentate system between different stages of Parkinson's disease (PD) and healthy control (HC) by amid proton transfer (APT) and quantitative susceptibility mapping (QSM). To evaluate whether the APTw value or MSV in substantia nigra (SN), red nucleus (RN) and dentate nucleus (DN) could serve as imaging findings for determining different stages of Parkinson's disease.Materials and Methods A total of 35 patients with PD and 25 HCs (age and sex matched) were recruited from the Second Affiliated Hospital of Xinjiang Medical University. The PD group was divided into an early-stage PD (ESPD) group of 22 cases and an advanced-stage PD (ASPD) group of 13 cases based on Hoehn-Yahr grading, then, comparing the differences between APTw values and MSV among different regions of nuclei in each group. Finally, the receiver operating characteristic (ROC) curves were used to analyze the diagnostic performance of APT, QSM, and their combined use. The receiver operating characteristic (ROC) curves and DeLong test were used to evaluate the efficiency of APT, QSM and combined parameters. Finally, the correlation of clinical scales with APTw values and MSV were analyzed.Results The APTw values between the ESPD group and the HC group, the ESPD group and the ASPD group, the ASPD group and the HC group in the SN, between the ASPD group and the HC group in the RN, and between the ESPD group and the HC group, the ASPD group and the HC group in the DN show statistically significant differences (P<0.05). The MSV values between the ESPD group and the HC group, the ESPD group and the ASPD group, the ASPD group and the HC group in the SN, between the ASPD group and the HC group, the ASPD group and the ESPD group in the RN, and between the ASPD group and the HC group, the ASPD group and the ESPD group in the DN show statistically significant differences (P<0.05). The area under the curve (AUC) of APT, QSM, and their combination in distinguishing the ESPD group from the HC group are 0.886, 0.792, and 0.926, respectively, with statistically significant differences (P<0.05); in distinguishing the ESPD group from the ASPD group, the AUC are 0.787, 0.885, and 0.939, respectively, with statistically significant differences (P<0.05). There is a positive correlation between the APTw values in the SN and MoCA scores, and a negative correlation between the MSV in the SN, RN and MoCA scores; there is a positive correlation between the APTw values in the SN, RN and MMSE scores, all showing significant differences (P<0.05).Conclusions APT and QSM could be used as imaging indicators for evaluating the stages of PD, and the combined application of APT and QSM can significantly improve diagnostic efficiency.
[关键词] 帕金森病;酰胺质子转移成像;定量磁敏感图;磁共振成像;分期
[Keywords] Parkinson's disease;amide proton transfer imaging;quantitative susceptibility mapping;magnetic resonance imaging;staging

杨晨 1, 2   廖琪 1, 2   琚超 1, 2   王红 1   郝璐 1*  

1 新疆医科大学第二附属医院影像中心,乌鲁木齐 830063

2 新疆医科大学,乌鲁木齐 830063

通信作者:郝璐,E-mail: 362314559@qq.com

作者贡献声明:郝璐设计本研究的方案,对稿件重要内容进行了修改,获得了省部共建中亚高发病成因与防治国家重点实验室开放课题项目的资助;杨晨起草和撰写稿件,获取、分析和解释本研究的数据;廖琪、琚超、王红获取、分析或解释本研究数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 省部共建中亚高发病成因与防治国家重点实验室开放课题项目 SKL-HIDCA-2022-NKX7
收稿日期:2024-07-16
接受日期:2024-11-22
中图分类号:R445.2  R742.5 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.12.012
本文引用格式:杨晨, 廖琪, 琚超, 等. 联合酰胺质子转移成像与定量磁敏感图成像技术在不同分期帕金森病患者中的初步探究[J]. 磁共振成像, 2024, 15(12): 79-86. DOI:10.12015/issn.1674-8034.2024.12.012.

0 引言

       帕金森病(Parkinson's disease, PD)是一种神经退行性疾病,全球大约有1000万人确诊[1]。目前对PD的诊断主要依靠其运动症状(包括运动迟缓、僵直和静止性震颤)[2],而典型的运动症状只有在疾病的晚期才会出现。同时,PD具有不断进展的特点,早期多为单侧病变,但不及时采取干预晚期可能累及双侧[3]。为此,早期发现和诊断PD有利于患者的治疗及康复。PD主要病理改变是黑质(substantia nigra, SN)致密部多巴胺神经的丢失、路易小体聚集及铁过载[4]。酰胺质子转移(amid proton transfer, APT)成像能通过探测游离蛋白质及多肽链上的酰胺质子与水中氢离子的交换速率,从而评估细胞内蛋白质和酸碱度的变化[5]。定量磁敏感图(quantitative susceptibility mapping, QSM)成像技术基于磁共振信号的磁化率值(magnetic susceptibility value, MSV)变化,能够准确地测量组织内的铁含量[6]。目前APT技术主要应用在肿瘤方面[7, 8, 9, 10],在神经退行性疾病方面虽有应用,但大多并未对疾病不同分期进行描述[11]或者感兴趣区(regions of interests, ROI)仅局限于某单一核团[12],QSM技术已广泛应用于神经退行性疾病[13, 14, 15],此外,目前尚不清楚联合APT与QSM两种成像技术在评估不同分期PD上的价值。因此,本研究应用APT与QSM定量参数来评估不同分期PD脑核团特征,探讨单指标及联合指标对于PD分期的应用价值。

1 材料与方法

1.1 研究对象

       本研究为回顾性研究,遵守《赫尔辛基宣言》,并经新疆医科大学第二附属医院伦理审查委员会批准,免除受试者知情同意,伦理批号:KY2024032028。收集2023年1月至2024年6月新疆医科大学第二附属医院就诊,且经神经内科临床专家根据PD的诊断标准诊断的PD患者35例,根据Hoehn-Yahr分级[16],1~2级分为早期PD(early-stage PD, ESPD),2.5~5级分为中晚期PD(advanced-stage PD, ASPD)。最终得到ESPD患者22例(Hoehn-Yahr≤2),ASPD患者13例(Hoehn-Yahr≥2.5)。收集同时间段招募的24名健康受试者作为健康对照(healthy control, HC)。对所有受试者进行头部常规核磁序列扫描以及APT、QSM扫描。

       PD组纳入标准:(1)符合国际运动障碍学会(the Movement Disorder Society, MDS)PD临床诊断标准;(2)患者接受了APT和QSM扫描;(3)患者未接受脑深部电刺激(Deep Brain Stimulation, DBS)手术,并要求停用多巴胺药物6~8小时。排除标准:(1)诊断为不典型帕金森综合征或继发性帕金森综合征;(2)合并感染、外伤、畸形等脑损伤或其他神经系统疾病;(3)图像伪影、临床或影像学资料不全;(4)近期服用铁制品、精神药物。HC组纳入标准:(1)无颅脑外伤、肿瘤、卒中、神经精神疾病史;(2)一级亲属无PD或特发性震颤等相关病史;(3)性别、年龄和受教育程度与患者组匹配。

       此外,所有PD受试者均进行了临床量表评估,包括蒙特利尔认知评估量表(Montreal Cognitive Assessment Scale, MoCA)、简易精神状态评价(Mini-mental Status Examination, MMSE)量表、汉密顿抑郁量表(Hamilton Depression Scale, HAMD)、汉密顿焦虑量表(Hamilton Anxiety Scale, HAMA)。人口统计学信息总结见表2。MoCA量表测量包括注意、视觉空间与执行能力、延迟记忆、语言、抽象思维、计算力和定向力8个认知领域[17],总分为30分,≥26分属于正常,分值越低说明认知缺陷越大[18]。MMSE量表是一项包含30个问题的认知功能评估量表,包括定向力、记忆力、注意力和计算力、回忆力、语言和绘制复杂多边形的能力[19],总分为30分,≥24分表明认知正常[20]。HAMA量表具有14个条目,每个条目0~4分,总分为56分,≤7分为无焦虑症状[21]。HAMD量表共有24个条目[22],总分为96分,≤7分无抑郁症状,分值越高代表抑郁症状越重。

表1  各MRI序列主要参数
Tab. 1  Main parameters of each MRI sequence
表2  三组受试者临床资料比较
Tab. 2  Comparison of clinical data among the three groups

1.2 磁共振检查方法

       所有受试者均在飞利浦3.0 T磁共振扫描仪(Ingenia 3.0 CX;Philips公司,荷兰)上进行扫描,采用32通道头颈线圈。行常规轴位T1WI、T2WI、T2液体衰减反转恢复(T2-fluid attenuated inversion recover, T2-FLAIR)成像,以筛查其他脑部疾病。扫描基线选择前-后联合水平线,扫描范围从枕骨大孔至颅顶。功能序列APT、QSM磁共振成像扫描采用横断位扫描,扫描范围同前。各序列扫描参数详见表1

1.3 图像分析

       根据APT序列扫描方案直接生成APT加权(APT-weighted, APTw)伪彩图并自动上传至Intelli Space Portal(ISP v8, Philips)工作站。将APTw伪彩图与轴位T2WI图像融合后得到APTw/T2WI融合图像(图1),由2名具有10年以上工作经验的神经系统MRI诊断医师运用双盲法,选取显示双侧SN、红核(red nucleus, RN)、齿状核(dentate nucleus, DN)最大的层面,于融合的轴位图像上勾画ROI,测量双侧SN、RN、DN的APTw值,ROI面积约10~30 mm2,取两侧的均值作为平均值,每位医生连续测量3次取平均值。

       QSM图像处理使用MATLAB(version R2016b; Mathworks)软件,导入STISuite工具箱(version 3.0,https://www.dropbox.com生成QSM Result图像(图1)。将生成的图像导入ITK-Snap(version 3.60, http://www.itksnap.org/pmwiki/pmwiki.php)软件,手动勾画ROI:双侧SN、RN、DN,得到MSV。ROI勾画方法同上。ROI勾画位置与APTw/T2WI融合图像尽可能保持相近。

图1  帕金森病组与健康对照组的APT、QSM图像比较图。1A~1D:女,67岁,帕金森病患者。QSM图像显示双侧SN(1A,黄箭)、RN(1A,红箭)、DN(1B,白箭)信号增强,提示铁沉积增多;APT图像显示双侧SN(1C,黄箭)、RN(1C,红箭)、DN(1D,白箭)信号减低,提示蛋白含量减少。1E~1H:女,68岁,健康对照。QSM图像显示正常人双侧SN(1E,黄箭)、RN(1E,红箭)、DN(1F,白箭)无明显异常信号改变;APT图像显示双侧SN(1G,黄箭)、RN(1G,红箭)、DN(1H,白箭)无明显异常信号改变。APT:酰胺质子转移;QSM:定量磁敏感图;SN:黑质;RN:红核;DN:齿状核。
Fig. 1  Comparison of APT and QSM images of patients with PD and HC groups. 1A-1D: A 67-year-old female patient with PD. QSM images of a patient with PD showing the increased signal in the bilateral SN (1A, yellow arrow), RN (1A, red arrow) and DN (1B, white arrow), suggesting increased iron deposition; APT images of a patient with PD showing the decreased signal in the bilateral SN (1C, yellow arrow), RN (1C, red arrow) and DN (1D, white arrow), suggesting decreased protein content. 1E-1H: A 68-year-old healthy woman. QSM images of a healthy person showing no obvious abnormal signal changes in the bilateral SN (1E, yellow arrow), RN (1E, red arrow) and DN (1F, white arrow); APT images of a healthy person showing no obvious abnormal signal changes in the bilateral SN (1G, yellow arrow), RN (1G, red arrow) and DN (1H, white arrow). APT: amid proton transfer; QSM: quantitative susceptibility mapping; SN: substantia nigra; RN: red nucleus; DN: dentate nucleus.

1.4 统计分析

       采用标准统计软件SPSS(version, 26.0)进行统计分析,采用组内相关系数(intra-class correlation coefficients, ICC)对两名观察者采用双盲法多次测量获取的参数值进行一致性分析。符合正态分布的计量资料以均数±标准差表示,不符合正态分布的数据以中位数(四分位数间距)表示,计数资料以构成比或率(%)表示。两独立样本之间比较若同时满足正态性及方差齐性,则使用t检验;否则使用非参数检验。三组数据间进行比较先对三组数据进行正态性检验,当三组数据均为正态分布时选择单因素方差(one-way ANOVA)分析,组间两两比较采用LSD法(方差齐)或Tamhane法(方差不齐)。非正态分布数据采用Kruskal-Wallis H检验,两两之间比较采用Mann-Whitney U检验。行logistic回归分析,建立联合模型(APT、QSM);绘制受试者工作特征(receiver operating characteristic, ROC)曲线,以DeLong检验比较曲线下面积(area under the curve, AUC)。P<0.05为差异有统计学意义。临床量表与各个核团APTw值、MSV的相关性:若两组指标均符合正态分布采用Pearson相关分析,若不符合正态分布则采用Spearman相关分析。

2 结果

2.1 临床特征

       三组受试者在年龄、性别差异上差异均无统计学意义(P>0.05)。ESPD组与ASPD组在病程上差异无统计学意义(P>0.05)。HAMA评分、HAMD评分方面差异无统计学意义(P>0.05),而在MMSE和MoCA评分方面差异有统计学意义(P<0.05)(表2)。

2.2 一致性分析

       本研究中所有参数值均符合正态分布。两位医师测量的SN各参数值的ICC分别为:APT 0.973(95% CI:0.956~0.984);MSV 0.893(95% CI:0.827~0.935);RN各参数值的ICC分别为:APT 0.869(95% CI:0.789~0.920);MSV 0.940(95% CI:0.901~0.964);DN各参数值的ICC分别为:APT 0.926(95% CI:0.879~0.956);MSV 0.916(95% CI:0.863~0.949);ICC均>0.75,表明结果一致性良好。

2.3 HC、ESPD、ASPD三组之间APTw值和MSV比较

       三组受试者SN、RN、DN的APTw值、MSV差异有统计学意义(P<0.05)。其中HC组SN、DN的APTw值显著高于ESPD组(P<0.05),ESPD组的MSV显著高于HC组(P<0.05)。HC组SN、RN、DN的APTw值显著高于ASPD组(P<0.05),ASPD组SN、RN、DN的MSV显著高于HC组(P<0.05)。ESPD组SN的APTw值显著高于ESPD组(P<0.05),ASPD组SN、RN、DN的MSV显著高于ESPD组(P<0.05)(表3图2)。

图2  三组受试者的APTw值、MSV。2A:三组受试者SN的APTw值;2B:三组受试者RN的APTw值;2C:三组受试者DN的APTw值;2D:三组受试者SN的MSV;2E:三组受试者RN的MSV;2F:三组受试者DN的MSV。*表示P<0.05,**表示P<0.01,***表示P<0.001。APTw:酰胺质子转移加权;MSV:磁化率值;HC:健康对照;ESPD:早期帕金森病;ASPD:中晚期帕金森病;SN:黑质;RN:红核;DN:齿状核。
Fig. 2  APTw value and MSV in three groups. 2A: APTw value in SN in three group; 2B: APTw value in RN in three group; 2C: APTw value in DN in three group; 2D: MSV in SN in three group; 2E: MSV in RN in three group; 2F: MSV in DN in three group. *: P<0.05, **: P<0.01, ***: P<0.001. APTw: amid proton transfer weight; MSV: magnetic susceptibility value; HC: healthy control; ESPD: early-stage PD; ASPD: advanced-stage PD; SN: substantia nigra; RN: red nucleus; DN: dentate nucleus.
表3  三组受试者APTw值、MSV比较
Tab. 3  Comparison of APTw values and MSV among the three groups

2.4 APTw值和MSV评估PD分期的效能

       APT、QSM以及APT联合QSM在鉴别HC组与ESPD组的判别能力分别为0.886(95% CI:0.794~0.979)、0.792(95% CI:0.651~0.933)、0.926(95% CI:0.845~1.000);在鉴别ESPD组与ASPD组的判别能力分别为0.787(95% CI:0.614~0.960)、0.885(95% CI:0.749~1.000)、0.939(95% CI:0.824~1.000)(表4图3)。

图3  APT、QSM以及APT联合QSM诊断帕金森病分期的ROC曲线。3A:APT、QSM以及APT联合QSM在诊断ESPD组与HC组的ROC曲线,AUC值分别为0.886、0.792、0.926。3B:APT、QSM以及APT联合QSM在诊断ESPD组和ASPD组的ROC曲线,AUC值分别为0.787、0.885、0.939。APT:酰胺质子转移;QSM:定量磁敏感图;ROC:受试者工作特征;HC:健康对照;ESPD:早期帕金森病;ASPD:中晚期帕金森病。
Fig. 3  The ROC curves of APT, QSM and APT combined with QSM to differentiate different stages of Parkinson's disease. 3A: The ROC curves of APT, QSM and APT combined with QSM to differentiate ESPD group and HC group, and AUC values are 0.886, 0.792, 0.926, respectively. 3B: The ROC curves of APT, QSM and APT combined with QSM to differentiate ESPD group and ASPD group, and AUC values are 0.787, 0.885, 0.939, respectively. APT: amid proton transfer; QSM: quantitative susceptibility mapping; ROC: receiver operating characteristic; HC: healthy control; ESPD: early-stage PD; ASPD: advanced-stage PD.
表4  不同序列诊断帕金森病的效能
Tab. 4  Efficacy of different sequence in diagnosing Parkinson's disease

2.5 不同核团APTw值、MSV与临床量表的相关性分析

       PD患者SN、RN、DN的APTw值以及MSV均符合正态分布,MoCA评分、MMSE评分、HAMA评分以及HAMD评分也均符合正态分布,故采用Pearson相关分析。SN(r=0.420,P<0.001)的APTw值与MoCA评分呈显著正相关,SN(r=-0.536,P<0.001)、RN(r=-0.427,P<0.001)的MSV与MoCA评分呈显著负相关。SN(r=0.425,P<0.001)、RN(r=0.764,P<0.001)的APTw值与MMSE评分呈显著正相关(图4)。

图4  不同核团APTw值、MSV与临床量表的相关性分析。4A:SN的APTw值与MoCA评分呈正相关;4B:SN的MSV与MoCA评分呈负相关;4C:RN的MSV与MoCA评分呈负相关;4D:SN的APTw值与MMSE评分呈正相关;4E:RN的APTw值与MMSE评分呈正相关。APTw:酰胺质子转移加权;MSV:磁化率值;SN:黑质;RN:红核;DN:齿状核;MoCA:蒙特利尔认知评估量表;MMSE:简易精神状态评价量表。
Fig. 4  Correlation analysis between APTw values, MSV and scale scores in different brain nuclei. 4A: the APTw values of SN showed significantly positive correlations with MoCA scores; 4B: the MSV of SN showed significantly negative correlations with MoCA scores; 4C: the MSV of RN showed significantly negative correlations with MoCA scores; 4D: the APTw values of SN showed significantly positive correlations with MMSE scores; 4E: the APTw values of RN showed significantly positive correlations with MMSE scores. APTw: amid proton transfer weight; MSV: magnetic susceptibility value; SN: substantia nigra; RN: red nucleus; DN: dentate nucleus; MoCA: Montreal Cognitive Assessment Scale; MMSE: Mini-mental Status Examination.

3 讨论

       本研究探讨了联合应用APT与QSM两种技术在PD早期诊断的价值。结果显示,APT与QSM在PD分期中具有良好的诊断价值,且联合诊断方法显著提高了诊断早期PD的效能。

3.1 APT技术在PD分期中的应用

       在本研究中我们采用Hoehn-Yahr分期将PD患者分为ESPD组和ASPD组,结果显示从HC组到ESPD组,再到ASPD组,SN、RN、DN的APTw值呈现降低趋势,尽管一些变化没有达到显著性。本研究结果显示HC组SN的APTw值显著高于ESPD组和ASPD组,且ESPD组的APTw值显著高于ASPD组,这与先前的研究一致[12]。APT技术原理为酰胺质子与自由水质子发生化学交换,通过探测水信号的变化,可以间接获知蛋白质分子信息[23],已成功用于酰胺质子浓度和pH的成像[24]。但发现在RN区域,ESPD组APTw值与HC组无显著性差异,笔者推测可能与部分早期患者,他们RN的APTw值会轻度升高有关,最终影响到了所测得RN区域APTw值,这一点在之前的研究[25]中也有提及。除了以上两个与PD相关的区域外,我们还测量了DN区域,DN是位于小脑的一个核团[26, 27],且是小脑病理变化的主要部位。先前研究[28]显示SN、RN与DN间存在功能网络连接,DN的背侧区域与小脑和大脑皮层运动区相连接,腹侧区域与小脑后叶及大脑联合皮层相互作用[29],而且有研究[30, 31]也证实了小脑参与了PD的病理生理过程。本研究结果显示HC组DN的APTw值显著高于ESPD组和ASPD组,说明DN参与了PD的病理生理。在相关性分析中,我们发现SN的APTw值与MoCA评分、MMSE评分呈正相关,提示随着PD病程的延长,PD患者更易出现认知能力下降。

3.2 QSM技术在PD分期中的价值

       PD的另一个病理生理过程则是铁沉积[32],但过量铁沉积会导致疾病进展,PD患者黑质中铁沉积明显高于HC[33]。黑质区域比其他大脑区域更容易受到铁积累的影响,且该区域的铁含量与疾病的严重程度显著相关[34]。本研究中,我们发现ASPD组RN、SN、DN的QSM值显著高于HC组和ESPD组,ESPD组SN的QSM值显著高于HC组。ZHANG等[35]研究显示,PD组中SN、RN、DN的MSV明显高于HC组,与本研究结果类似,反映了PD患者SN、RN、DN的铁积累。LI等[36]研究显示与HC组相比,早期、中晚期患者SN的MSV显著增高。而MURAKAMI等[37]研究发现SN的MSV在PD与HC之间并不存在统计学差异。结合本研究结果,笔者推测原因,多巴胺细胞主要来自黑质,而PD主要特征是黑质致密部(substantia nigra compacta, SNC)多巴胺细胞的丢失[38],我们并没有将黑质的致密部与网状部(substantia nigra reticulata, SNR)分开测量,而是将黑质作为一个整体进行测量。有研究[39]发现在早期、中期和晚期帕金森病患者的纵向队列中,SNC和SNR中存在不同的铁沉积模式,过量的铁沉积在早期只发生在PD患者的SNC中,而在晚期PD患者中,SNR、RN受影响更大,SNC是第一个因神经元丢失而受影响的区域,也是整个疾病中受影响最严重的区域[40]。因此,SNR的变化可能是相对于SNC发生变化出现的继发性或代偿性过程。而我们这种测量方式可能会掩盖SNC在PD病理变化中的主导作用。有研究[41]发现PD患者的SN中神经元丢失的模式是随着时间的推移从后向前进展,即从位于SN后部的SNC开始,逐渐向SN前部的SNR进展。本研究中,早期组RN、DN与HC之间未观察到显著性差异,推测由于SN是PD的主要受损结构,PD早期由于患者RN、DN铁沉积量还不太明显,仅是表现为SN区域铁沉积增加,但后期随着病情进展,RN、DN均会出现异常铁水平的升高。同时由于红核仅含有少量的多巴胺神经元,所以在疾病早期不太容易得到显著性结果。

3.3 APT联合QSM在PD分期中的价值

       由于单一序列可能受到多方面因素影响,不能全面准确反映PD病变特征,本研究将APT技术与QSM技术联合应用于PD早期诊断中。发现在鉴别ESPD与HC时,APT、QSM以及二者联合应用的AUC值分别为0.886、0.792、0.926;在鉴别ESPD与ASPD时,AUC分别为0.787、0.885、0.939。APT能反映细胞蛋白质浓度的变化[42],反映组织内部代谢变化。在PD患者中,随着疾病进展多巴胺神经元会进行性丢失,最终会出现组织中与水进行交换的酰胺质子浓度减少,在PD患者疾病过程中出现APTw值呈现降低的趋势。Lewy病理学是PD的病理生理学标志,它能以朊病毒样的方式在脑内进行传播[43],而这一过程早在PD出现运动症状之前便存在,这使得Lewy小体的主要成分α-突触核蛋白成为PD早期诊断的一个重要生物标志物[11]。QSM则能反映细胞内铁含量[44],细胞内铁沉积与α-突触核蛋白密切相关,过量铁沉积促使α-突触核蛋白聚集[45],因此QSM技术可以用于早期诊断PD。二者联合预测代表了对PD中蛋白质浓度和铁含量的综合分析,其诊断效能优于各单一参数,说明多序列MRI的联合应用对能够对PD分期评价更为全面,可在一定程度上克服单一方法的局限性。

3.4 本研究的局限性

       我们的研究也有一些局限性。首先,这是一项单中心研究,样本量相对较少。今后需要更大的样本量来验证和完善本工作。其次,因为PD患者越到病程后期其不自主震颤的表现就越明显,很难坚持完成整个核磁扫描过程,因此本研究所选择的中晚期患者大多都是能够坚持完整个核磁扫描的患者,这可能使结果存在选择偏倚。正如前面所说,本研究并未对各核团细微结构进行测量,往后研究可以将核团细微结构划分开来进行分析,得到更为精确的结果。最后,本研究未对PD患者患侧与健侧所测得的参数进行对比,而是将各核团左右两侧当成一个整体进行测量,可能结果会因此受到影响,未来可以将患者与健侧的参数进行对比研究。

4 结论

       综上所述,APT及QSM可对PD分期进行评估,且两者联合后诊断效能较单一序列显著提升,可为临床提供有价值的信息,进而指导临床采取合理治疗决策。

[1]
DE GROOTE C, DUJARDIN K, DEFEBVRE L, et al. Development of a screening tool for assessing sexual difficulties among patients with Parkinson's disease: The PD-SDS[J]. J Parkinsons Dis, 2024: 1-11. DOI: 10.3233/jpd-240063.
[2]
KWON E H, TENNAGELS S, GOLD R, et al. Update on CSF biomarkers in Parkinson's disease[J/OL]. Biomolecules, 2022, 12(2): 329 [2024-07-16]. https://pubmed.ncbi.nlm.nih.gov/35204829/. DOI: 10.3390/biom12020329.
[3]
KIM M J, KIM J, KHO H S. Comparison of clinical characteristics between burning mouth syndrome patients with bilateral and unilateral symptoms[J]. Int J Oral Maxillofac Surg, 2020, 49(1): 38-43. DOI: 10.1016/j.ijom.2019.06.013.
[4]
王敏, 王建伟, 张克忠, 等. 基于静息态功能MRI对不同运动亚型帕金森病患者脑功能局部一致性改变的研究[J]. 中华放射学杂志, 2019, 53(9): 748-754. DOI: 10.3760/cma.j.issn.1005-1201.2019.09.007.
WANG M, WANG J W, ZHANG K Z, et al. Alterations of brain activity in different motor subtypes of Parkinson disease based on regional homogeneity analysis[J]. China J Radiol, 2019, 53(9): 748-754. DOI: 10.3760/cma.j.issn.1005-1201.2019.09.007.
[5]
ZHOU J, ZAISS M, KNUTSSON L, et al. Review and consensus recommendations on clinical APT‐weighted imaging approaches at 3T: Application to brain tumors[J]. Magn Reson Med, 2022, 88(2): 546-574. DOI: 10.1002/mrm.29241.
[6]
XIAO B, HE N, WANG Q, et al. Quantitative susceptibility mapping based hybrid feature extraction for diagnosis of Parkinson's disease[J/OL]. Neuroimage Clin, 2019, 24: 102070 [2024-07-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861598. DOI: 10.1016/j.nicl.2019.102070.
[7]
SOTIRIOS B, DEMETRIOU E, TOPRICEANU C C, et al. The role of APT imaging in gliomas grading: A systematic review and meta-analysis[J/OL]. Eur J Radiol, 2020, 133: 109353 [2024-07-16]. https://www.pubmed.ncbi.nlm.nih.gov/33120241. DOI: 10.1016/j.ejrad.2020.109353.
[8]
MENG N, WANG X, SUN J, et al. Evaluation of amide proton transfer-weighted imaging for endometrial carcinoma histological features: a comparative study with diffusion kurtosis imaging[J]. Eur Radiol, 2021, 31(11): 8388-8398. DOI: 10.1007/s00330-021-07966-y.
[9]
KOIKE H, MORIKAWA M, ISHIMARU H, et al. Quantitative chemical exchange saturation transfer imaging of amide proton transfer differentiates between cerebellopontine angle schwannoma and meningioma: Preliminary results[J/OL]. Int J Mol Sci, 2022, 23(17): 10187 [2024-07-16]. https://pubmed.ncbi.nlm.nih.gov/36077581/. DOI: 10.3390/ijms231710187.
[10]
WU M, JIANG T, GUO M, et al. Amide proton transfer-weighted imaging and derived radiomics in the classification of adult-type diffuse gliomas[J]. Eur Radiol, 2023, 34(5): 2986-2996. DOI: 10.1007/s00330-023-10343-6.
[11]
TIAN Y T, LI X Y, WANG X N, et al. CEST 2022-three-dimensional amide proton transfer (APT) imaging can identify the changes of cerebral cortex in Parkinson's disease[J]. Magn Reson Imaging, 2023, 102: 235-241. DOI: 10.1016/j.mri.2023.06.006.
[12]
LI C, CHEN M, ZHAO X, et al. Chemical exchange saturation transfer MRI signal loss of the substantia nigra as an imaging biomarker to evaluate the diagnosis and severity of Parkinson's disease[J/OL]. Front Neurosci, 2017, 11: 489 [2024-07-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5583514. DOI: 10.3389/fnins.2017.00489.
[13]
GUAN X, LANCIONE M, AYTON S, et al. Neuroimaging of Parkinson's disease by quantitative susceptibility mapping[J/OL]. Neuroimage, 2024, 289: 120547 [2024-07-16]. https://linkinghub.elsevier.com/retrieve/pii/S1053-8119(24)00042-9. DOI: 10.1016/j.neuroimage.2024.120547.
[14]
MOHAMMADI S, GHADERI S, FATEHI F. Putamen iron quantification in diseases with neurodegeneration: a meta-analysis of the quantitative susceptibility mapping technique[J]. Brain Imaging Behav, 2024, 18(5): 1239-1255. DOI: 10.1007/s11682-024-00895-6.
[15]
VOON C C, WILTGEN T, WIESTLER B, et al. Quantitative susceptibility mapping in multiple sclerosis: A systematic review and meta-analysis[J/OL]. Neuroimage Clin, 2024, 42: 103598 [2024-07-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11002889. DOI: 10.1016/j.nicl.2024.103598.
[16]
MENG Y, TANG T, WANG J, et al. The correlation of orthostatic hypotension in Parkinson disease with the disease course and severity and its impact on quality of life[J/OL]. Medicine (Baltimore), 2024, 103(19): e38169 [2024-07-28]. https://journals.lww.com/md-journal/fulltext/2024/05100/the_correlation_of_orthostatic_hypotension_in.6.aspx. DOI: 10.1097/MD.0000000000038169.
[17]
NASREDDINE Z S, PHILLIPS N A, BÉDIRIAN V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment[J]. J Am Geriatr Soc, 2005, 53(4): 695-699. DOI: 10.1111/j.1532-5415.2005.53221.x.
[18]
LU L Y, LI F F, MA Y H, et al. Functional connectivity disruption of the substantia nigra associated with cognitive impairment in acute mild traumatic brain injury[J]. Eur J Radiol, 2019, 114: 69-75. DOI: 10.1016/j.ejrad.2019.03.002.
[19]
AREVALO-RODRIGUEZ I, SMAILAGIC N, ROQUÉ-FIGULS M, et al. Mini-Mental State Examination (MMSE) for the early detection of dementia in people with mild cognitive impairment (MCI)[J/OL]. Cochrane Database Syst Rev, 2021, 7(7): CD010783 [2024-07-28]. https://pubmed.ncbi.nlm.nih.gov/34313331/. DOI: 10.1002/14651858.CD010783.pub3.
[20]
BIKBOV M M, KAZAKBAEVA G M, IAKUPOVA E M, et al. Cognitive impairment in the population-based ural very old study[J/OL]. Front Aging Neurosci, 2022, 14: 912755 [2024-07-28]. https://pubmed.ncbi.nlm.nih.gov/35928990/. DOI: 10.3389/fnagi.2022.912755.
[21]
蒋莹, 房进平, 冯涛, 等. 帕金森病患者不同焦虑程度在汉密尔顿焦虑量表的结构差异[J]. 中国康复理论与实践, 2021, 27(3): 325-328. DOI: 10.3969/j.issn.1006-9771.2021.03.013.DOI:10.3969/j.issn.1006-9771.2021.03.013.
JIANG Y, FANG J P, FENG T, et al. Structural differences in series scores of Hamilton Anxiety Scale in Parkinson's disease patients[J]. Chin J Rehabil Theory Pract, 2021, 27(3): 325-328. DOI: 10.3969/j.issn.1006-9771.2021.03.013.
[22]
WEBSTER G D, HOWELL J L, SHEPPERD J A. Self-Esteem in 60 Seconds: The Six-Item State Self-Esteem Scale (SSES-6)[J]. Assessment, 2022, 29(2): 152-168. DOI: 10.1177/1073191120958059.
[23]
FANG T, MENG N, FENG P, et al. A Comparative study of amide proton transfer weighted imaging and intravoxel incoherent motion MRI techniques versus (18) F‐FDG PET to distinguish solitary pulmonary lesions and their subtypes[J]. J Magn Reson Imaging, 2022, 55(5): 1376-1390. DOI: 10.1002/jmri.27977.
[24]
ZHOU J, HEO H Y, KNUTSSON L, et al. APT-weighted MRI: Techniques, current neuro applications, and challenging issues[J]. J Magn Reson Imaging, 2019, 50(2): 347-364. DOI: 10.1002/jmri.26645.
[25]
LI C, PENG S, WANG R, et al. Chemical exchange saturation transfer MR imaging of Parkinson's disease at 3 Tesla[J]. Eur Radiol, 2014, 24(10): 2631-2639. DOI: 10.1007/s00330-014-3241-7.
[26]
MCAFEE S S, ROBINSON G, GAJJAR A, et al. Secondary cerebro-cerebellar and intra-cerebellar dysfunction in cerebellar mutism syndrome[J/OL]. Neuro Oncol, 2024: noae070 [2024-07-27]. https://academic.oup.com/neuro-oncology/advance-article-abstract/doi/10.1093/neuonc/noae070/7641653?redirectedFrom=fulltext&login=false. DOI: 10.1093/neuonc/noae070.
[27]
HARDING I H, KARIM M I NUR, SELVADURAI L P, et al. Localized changes in dentate nucleus shape and magnetic susceptibility in friedreich ataxia[J]. Mov Disord, 2024, 39(7): 1109-1118. DOI: 10.1002/mds.29816.
[28]
ZHANG H Y, TANG H, CHEN W X, et al. Mapping the functional connectivity of the substantia nigra, red nucleus and dentate nucleus: A network analysis hypothesis associated with the extrapyramidal system[J]. Neurosci Lett, 2015, 606: 36-41. DOI: 10.1016/j.neulet.2015.08.029.
[29]
KULKARNI M, KENT J S, PARK K, et al. Resting-state functional connectivity-based parcellation of the human dentate nucleus: new findings and clinical relevance[J]. Brain Struct Funct, 2023, 228(7): 1799-1810. DOI: 10.1007/s00429-023-02665-4.
[30]
SOLSTRAND DAHLBERG L, LUNGU O, DOYON J. Cerebellar contribution to motor and non-motor functions in Parkinson's disease: A meta-analysis of fMRI findings[J/OL]. Front Neurol, 2020, 11: 127 [2024-07-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7056869. DOI: 10.3389/fneur.2020.00127.
[31]
YOSHIDA J, OÑATE M, KHATAMI L, et al. Cerebellar contributions to the basal ganglia influence motor coordination, reward processing, and movement vigor[J]. J Neurosci, 2022, 42(45): 8406-8415. DOI: 10.1523/JNEUROSCI.1535-22.2022.
[32]
NATHOO N, GEE M, NELLES K, et al. Quantitative susceptibility mapping changes relate to gait issues in Parkinson's disease[J]. Can J Neurol Sci, 2023, 50(6): 853-860. DOI: 10.1017/cjn.2022.316.
[33]
AN H, ZENG X, NIU T, et al. Quantifying iron deposition within the substantia nigra of Parkinson's disease by quantitative susceptibility mapping[J]. J Neurol Sci, 2018, 386: 46-52. DOI: 10.1016/j.jns.2018.01.008.
[34]
GUAN X, XUAN M, GU Q, et al. Regionally progressive accumulation of iron in Parkinson's disease as measured by quantitative susceptibility mapping[J/OL]. NMR Biomed, 2017, 30(4): e3489 [2024-07-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977211. DOI: 10.1002/nbm.3489.
[35]
ZHANG Y, YANG M, WANG F, et al. Histogram analysis of quantitative susceptibility mapping for the diagnosis of Parkinson's disease[J]. Acad Radiol, 2022, 29Suppl 3: S71-S79. DOI: 10.1016/j.acra.2020.10.027.
[36]
LI K R, AVECILLAS-CHASIN J, NGUYEN T D, et al. Quantitative evaluation of brain iron accumulation in different stages of Parkinson's disease[J]. J Neuroimaging, 2022, 32(2): 363-371. DOI: 10.1111/jon.12957.
[37]
MURAKAMI Y, KAKEDA S, WATANABE K, et al. Usefulness of quantitative susceptibility mapping for the diagnosis of Parkinson disease[J]. AJNR Am J Neuroradiol, 2015, 36(6): 1102-1108. DOI: 10.3174/ajnr.A4260.
[38]
HOLDEN H, VENKATESH S, BUDROW C, et al. The effects of L-DOPA on gait abnormalities in a unilateral 6-OHDA rat model of Parkinson's disease[J/OL]. Physiol Behav, 2024, 281: 114563 [2024-07-16]. https://linkinghub.elsevier.com/retrieve/pii/S0031-9384(24)00108-2. DOI: 10.1016/j.physbeh.2024.114563.
[39]
DU G, LEWIS M M, SICA C, et al. Distinct progression pattern of susceptibility MRI in the substantia nigra of Parkinson's patients[J]. Mov Disord, 2018, 33(9): 1423-1431. DOI: 10.1002/mds.27318.
[40]
GRIMALDI S, LE TROTER A, MENDILI M M EL, et al. Energetic dysfunction and iron overload in early Parkinson's disease: Two distinct mechanisms?[J/OL]. Parkinsonism Relat Disord, 2024, 124: 106996 [2024-07-28]. https://www.sciencedirect.com/science/article/pii/S1353802024010083?via%3Dihub. DOI: 10.1016/j.parkreldis.2024.106996.
[41]
CHEN M, WANG Y, ZHANG C, et al. Free water and iron content in the substantia nigra at different stages of Parkinson's disease[J/OL]. Eur J Radiol, 2023, 167: 111030. [2024-07-28]. https://www.sciencedirect.com/science/article/pii/S0720048X23003443?via%3Dihub. DOI: 10.1016/j.ejrad.2023.111030.
[42]
ZHANG Y, YONG X, LIU R, et al. Whole‐brain chemical exchange saturation transfer imaging with optimized turbo spin echo readout[J]. Magn Reson Med, 2020, 84(3): 1161-1172. DOI: 10.1002/mrm.28184.
[43]
BARBA L, PAOLINI PAOLETTI F, BELLOMO G, et al. Alpha and beta synucleins: from pathophysiology to clinical application as biomarkers[J]. Mov Disord, 2022, 37(4):669-683. DOI: 10.1002/mds.28941.
[44]
JIN J, SU D, ZHANG J, et al. Iron deposition in subcortical nuclei of Parkinson's disease: A meta-analysis of quantitative iron-sensitive magnetic resonance imaging studies[J/OL]. Chin Med J (Engl), 2024 [2024-07-16]. https://journals.lww.com/cmj/fulltext/9900/iron_deposition_in_subcortical_nuclei_of.1086.aspx. DOI: 10.1097/CM9.0000000000003167.
[45]
ZHAO Q Y, TAO Y Q, ZHAO K, et al. Structural insights of Fe3+ induced α-synuclein fibrillation in Parkinson's disease[J/OL]. J Mol Biol, 2023, 435(1): 167680 [2024-07-16]. https://pubmed.ncbi.nlm.nih.gov/35690099/. DOI: 10.1016/j.jmb.2022.167680.

上一篇 合并重度抑郁症的非自杀性自伤青少年大脑灰质结构改变的研究
下一篇 妊娠期糖尿病孕妇婴儿脑发育异常的MRI半定量研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2