分享:
分享到微信朋友圈
X
临床研究
妊娠期糖尿病孕妇婴儿脑发育异常的MRI半定量研究
孙菲 于金红 罗贺丹 苗延巍

Cite this article as: SUN F, YU J H, LUO H D, et al. A semi-quantitative MRI study on brain developmental abnormalities in infants of gestational diabetic mothers[J]. Chin J Magn Reson Imaging, 2024, 15(12): 87-93.本文引用格式:孙菲, 于金红, 罗贺丹, 等. 妊娠期糖尿病孕妇婴儿脑发育异常的MRI半定量研究[J]. 磁共振成像, 2024, 15(12): 87-93. DOI:10.12015/issn.1674-8034.2024.12.013.


[摘要] 目的 探讨基于T1WI、T2WI、T2液体衰减反转恢复(fluid attenuated inversion recovery, FLAIR)、扩散加权成像(diffusion-weighted imaging, DWI)序列半定量分析探究妊娠期糖尿病婴儿(infant of gestational diabetic mothers, IDMs)脑发育异常改变的价值。材料与方法 回顾性纳入54例IDMs为观察组(IDMs组),同期无高危围产因素孕妇分娩的70例婴儿作为健康对照(healthy control, HC)组。根据出生胎龄是否小于37周,将IDMs组及HC组分别分为早产儿IDMs A组(27例)、HC A组(33例)和足月儿IDMs B组(27例)、HC B组(37例)。行1.5 T MRI颅脑T1WI、T2WI、T2 FLAIR及 DWI序列扫描,选取小脑半球、杏仁核、海马、颞叶白质、豆状核、尾状核、丘脑腹外侧核、内囊后肢、胼胝体压部、额叶白质、枕叶白质、顶叶白质、半卵圆中心及咬肌的最大层面手动绘制设置感兴趣区(region of interest, ROI),测量各ROI的信号强度及表观扩散系数(apparent diffusion coefficient, ADC)值,计算出各个区域/咬肌的T1、T2平均信号强度比值(signal intensity ratio, SIR)(SIRT1、SIRT2、SIRT2 FLAIR)。比较各比值及ADC值的组间差异,通过受试者工作特征(receiver operating characteristic, ROC)曲线评价诊断效能,采用DeLong检验比较各曲线下面积(area under the curve, AUC)的差异性。观察MR强度比值与母亲75 g口服葡萄糖耐量试验(Oral Glucose Tolerance Test, OGTT)的血糖水平之间的关联性。结果 与HC组相比,IDMs组枕叶、豆状核、尾状核、内囊后肢、丘脑腹外侧核、顶叶、额叶、半卵圆中心的SIRT1、所有区域SIRT2、除枕叶及内囊后肢其他区域的SIRT2 FLAIR、颞叶的ADC值均降低(P<0.05)。分层分析后发现,IDMs A组小脑半球、内囊后肢、丘脑腹外侧核、半卵圆中心的SIRT1、所有区域的SIRT2、除枕叶及胼胝体压部外其他部位SIRT2 FLAIR均低于HC组;IDMs B组额叶、顶叶的SIRT1、所有区域SIRT2、小脑半球、颞叶的ADC值均低于HC B组(P<0.05)。IDMs组与HC组的ROC曲线分析显示,所有部位SIRT2的AUC值最高,其中颞叶的SIRT2具有较好的诊断效能(AUC=0.702)。DeLong检验显示小脑半球、海马、颞叶、枕叶、内囊后肢、顶叶在SIRT2 与SIRT1、SIRT2 FLAIR或ADC的AUC值差异存在统计学意义(P<0.05)。IDMs组所有区域SIRT2与OGTT 1 h血糖呈负相关(P<0.05)。结论 MRI信号强度的半定量分析有助于识别IDMs的早期神经发育异常,其中SIRT2诊断效能更高。
[Abstract] Objective To investigate the value of semi-quantitative analysis based on T1WI, T2WI, T2 fluid attenuated inversion recovery (FLAIR), and diffusion-weighted imaging (DWI) sequences in exploring abnormal brain development changes in infants of gestational diabetic mothers (IDMs).Materials and Methods A total of 54 cases of DMs were retrospectively included as the observation group (IDMs group), while 70 infants born to mothers without high-risk perinatal factors during the same period served as the healthy control (HC) group. Based on whether the gestational age at birth was less than 37 weeks, the IDMs group and the HC group were further divided into preterm infants: 27 in the IDMs A group and 33 in the HC A group, and term infants: 27 in the IDMs B group and 37 in the HC B group. A 1.5 T MRI was performed using T1WI, T2WI, T2 FLAIR, and DWI sequences. Regions of interest (ROI) were manually drawn on the maximum slices of the cerebellar hemispheres, amygdala, hippocampus, temporal lobe white matter, globus pallidus, caudate nucleus, ventrolateral thalamic nucleus, posterior limb of the internal capsule, splenium of the corpus callosum, frontal white matter, occipital white matter, parietal white matter, centrum semiovale, and masseter muscles, measuring the signal intensity and apparent diffusion coefficient (ADC) values of each ROI. The mean signal intensity ratios (SIRT1, SIRT2, SIRT2 FLAIR) of each region/masseter muscle were calculated. Differences in these ratios and ADC values between groups were compared, and the diagnostic efficacy was evaluated using receiver operating characteristic (ROC) curves, with DeLong's test applied to compare the differences in the area under the curve (AUC). The relationship between MR intensity ratios and maternal 75 g oral glucose tolerance test (OGTT) blood glucose levels was also observed.Results Compared with the HC group, the IDMs group showed reduced SIRT1 in the occipital lobe, globus pallidus, caudate nucleus, posterior limb of the internal capsule, ventrolateral thalamic nucleus, parietal lobe, frontal lobe, and centrum semiovale, as well as lower SIRT2 in all regions, and lower SIRT2 FLAIR in all regions except for the occipital lobe and posterior limb of the internal capsule. The ADC values in the temporal lobe were also lower (P<0.05). After stratified analysis, it was found that SIRT1 in the cerebellar hemisphere, posterior limb of the internal capsule, ventrolateral thalamic nucleus, and centrum semiovale, as well as SIRT2 in all regions, and SIRT2 FLAIR in all areas except for the occipital lobe and splenium of the corpus callosum in the IDMs A group were lower than in the control group. In the IDMs B group, SIRT1 in the frontal and parietal lobes, SIRT2 in all regions, and ADC values in the cerebellar hemisphere and temporal lobe were lower than those in the HC B group (P<0.05). ROC curve analysis showed that the AUC values for SIRT2 in all regions in the IDMs group were the highest, with SIRT2 in the temporal lobe demonstrating good diagnostic efficacy (AUC=0.702). DeLong's test indicated statistically significant differences in AUC values between SIRT2 and SIRT1, SIRT2 FLAIR, or ADC in the cerebellar hemisphere, hippocampus, temporal lobe, occipital lobe, posterior limb of the internal capsule, and parietal lobe (P<0.05). SIRT2 in all regions of the IDMs group was negatively correlated with 1-hour blood glucose levels from the OGTT (P<0.05).Conclusions The relative signal intensity ratios of T1WI, T2WI, and T2 FLAIR, along with ADC values, are useful for the early detection of neurodevelopmental abnormalities in IDMs. Among these, SIRT2 demonstrates a higher diagnostic efficacy.
[关键词] 妊娠期糖尿病婴儿;脑发育;磁共振成像;扩散加权成像;信号强度比值
[Keywords] infant of gestational diabetic mothers;brain development;magnetic resonance imaging;diffusion-weighted imaging;signal intensity ratio

孙菲 1, 2   于金红 2   罗贺丹 2, 3   苗延巍 2*  

1 大连市妇女儿童医疗中心(集团)放射科,大连 116001

2 大连医科大学附属第一医院放射科,大连 116011

3 大连市公共卫生临床中心放射科,大连 116031

通信作者:苗延巍,E-mail:ywmiao716@163.com

作者贡献声明:苗延巍设计本研究的方案,对稿件重要内容进行修改;孙菲参与设计本研究方案、获取数据、起草及撰写稿件;于金红参与获取数据、对稿件重要内容进行修改;罗贺丹对本研究数据的统计分析进行指导及分析,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信度。


收稿日期:2024-04-29
接受日期:2024-12-16
中图分类号:R445.2  R722.1 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.12.013
本文引用格式:孙菲, 于金红, 罗贺丹, 等. 妊娠期糖尿病孕妇婴儿脑发育异常的MRI半定量研究[J]. 磁共振成像, 2024, 15(12): 87-93. DOI:10.12015/issn.1674-8034.2024.12.013.

0 引言

       妊娠期高血糖是常见的妊娠期并发症之一,包括孕前糖尿病合并妊娠、糖尿病前期和妊娠期糖尿病(gestational diabetes mellitus, GDM)[1]。GDM是在妊娠前未检出,在妊娠中期或晚期诊断出的糖尿病[2]。全球20~49岁妊娠妇女患病率为16.7%[3],我国平均患病率为17.5%[4]。GDM可能导致多种不良妊娠结局,包括自然流产、胎儿畸形、先兆子痫、胎儿死亡、巨大儿、新生儿低血糖、高胆红素血症和新生儿呼吸窘迫综合征等[5, 6, 7]。GDM引起的母体高胰岛素抵抗及炎症会改变胎盘激素的合成,导致代谢产物通过胎盘对胎儿中枢神经系统的发育产生长期负面影响[8, 9, 10]。暴露于GDM的儿童更容易出现语言、学习、记忆、运动协调、感知和问题解决能力等方面的障碍,且罹患孤独症和精神分裂症等疾病的风险增加 [10, 11, 12]。因此早期评估妊娠期糖尿病婴儿(infant of gestational diabetic mothers, IDMs)颅脑发育异常及病理机制的相关性具有重要意义。GDM与妊娠期高血压在病理机制上具有相似性,信号强度值测量有助于发现婴儿早期的脑发育异常[13],但目前尚无应用此方法进行IGDMs颅脑评估的研究。因此本研究基于常规T1WI、T2WI、T2液体衰减反转恢复(fluid attenuated inversion recovery, FLAIR)以及扩散加权成像(diffusion weighted imaging, DWI)序列对IDMs的颅脑进行半定量分析,探讨各参数对诊断IGDMs脑发育异常的价值,我们期望为早期干预提供更精准的依据,从而改善IDMs的神经发育预后。

1 材料与方法

1.1 研究对象

       本研究遵守《赫尔辛基宣言》,经大连市妇女儿童医疗中心(集团)伦理委员会批准,免除受试者监护人知情同意,伦理编号:DLET-KY-2023-68。回顾性纳入2016年1月至2023年5月期间入住我院母亲被诊断为GDM的54例婴儿为IDMs组,出生胎龄为28~40周,行MRI检查时的纠正胎龄为37~45周。依据出生胎龄是否小于37周,将IDMs组分为早产儿IDMs A组(27例)和足月儿IDMs B组(27例)。选取同期70例无高危围产因素的婴儿作为健康对照(healthy control, HC)组,依据出生胎龄,将HC组分为早产儿HC A组(33例)和足月儿HC B组(37例)。

       IDMs组纳入标准:(1)母亲符合GDM诊断标准,参照中国妊娠期高血糖诊治指南(2022)“一步法”或“两步法”检查确诊 [1];(2)纠正胎龄为37~45周,出生胎龄≥28周的婴儿;(3)母亲及婴儿临床资料全面,母亲未接受降糖药物治疗。

       IDMs组与HC组排除标准:(1)母亲孕期合并其他高危围产因素,如妊娠期高血压、甲状腺疾病、染色体异常的遗传疾病等;(2)存在宫内感染、5min Apgar评分<7分、染色体疾病、中枢神经系统畸形等脑部异常的婴儿;(3)MRI图像缺失、扫描序列不全、存在明显伪影的图像;(4)母亲75 g口服葡萄糖耐量试验(Oral Glucose Tolerance Test, OGTT)资料记录不全。

1.2 检查方法

       采用美国GE Signa HDXT 1.5 T MRI仪器及8通道头颈联合线圈进行MRI检查。患儿检查前进行灌肠镇静(国产10%水合氯醛0.5 mL/kg,生产厂家:特丰制药有限公司),待患儿熟睡后外耳道内塞入棉球以保护听力。各扫描序列详细参数见表1

表1  MR序列及参数
Tab. 1  MR Sequence and Parameters

1.3 MRI图像分析及处理

1.3.1 图像处理

       将T1WI、T2WI、T2 FLAIR、DWI原始数据以DICOM格式导出到个人电脑,使用MRIcroGL软件转化为NIFTI格式。利用FSL(FMRIB's Software Library)软件对DWI图像进行后处理,获取表观扩散系数(apparent diffusion coefficient, ADC)图并进行保存。使用ImageJ软件手动绘制感兴趣区(region of interest, ROI)。

1.3.2 ROI测量

       所有病例的ROI测量工作由两名放射科医师(9年以上儿科影像诊断工作经验)完成,在T1WI、T2WI、T2 FLAIR及ADC图上分别选取小脑半球、杏仁核、海马、颞叶白质、豆状核、尾状核、丘脑腹外侧核、内囊后肢、胼胝体压部、额叶白质、枕叶白质、顶叶白质、半卵圆中心及咬肌显示最大的层面勾画ROI,面积平均为(12±5)mm2。除胼胝体压部外,所测的ROI均为双侧,获取各ROI的T1WI、T2WI、T2 FLAIR信号强度值及ADC值(×10-3 mm2/s)(图1),计算各区域/咬肌的T1、T2信号强度比值(signal intensity ratio, SIR),简称SIRT1、SIRT2、SIRT2 FLAIR。

图1  感兴趣区示意图。1A:咬肌;1B:小脑半球;1C:杏仁核、海马、颞叶白质;1D:豆状核、尾状核、内囊后肢、丘脑腹外侧核、额叶白质、枕叶白质;1E:胼胝体压部;1F:顶叶白质;1G:半卵圆中心。
Fig. 1  Schematic representation of region of interest. 1A: Masseter muscle; 1B: The cerebellar hemispheres; 1C: Amygdala, hippocampus, and temporal white matter; 1D: Lenticular nucleus, caudate nucleus, posterior limb of internal capsule, ventrolateral nucleus of thalamus, frontal white matter, occipital white matter; 1E: The splenium of the corpus callosum; 1F: Parietal white matter; 1G: The center of the semiovale.

1.4 统计学方法

       使用SPSS 26.0统计软件包及MedCalc(版本15.2.2)软件进行分析,采用组内相关系数(intra-class correlation coefficients, ICC)检验两名观察者所测数据的一致性,ICC>0.75表明一致性良好。符合正态分布计量资料以均数±标准差(x¯±s)表示,采用独立样本t检验;不符合正态分布的以中位数(P25, P75)表示,采用Mann-Whitney U检验。计数资料采用卡方检验,以例(%)表示。使用受试者工作特征(receiver operating characteristic, ROC)曲线评价脑区各比值及ADC值诊断效能,采用DeLong检验比较AUCs间的差异性。采用Pearson或Spearman相关系数法分析比值和母亲75 g OGTT结果的相关性。除ROC曲线分析外采用FDR检验对P值进行显著性校正,校正后P<0.05认为差异有统计学意义。

2 结果

2.1 临床资料

       三组的组间基本资料在性别、年龄、出生体质量、孕周、纠正胎龄、母亲分娩方式、是否为双胎之一、母亲年龄间差异均无统计学意义(P>0.05),见表234

图2  IDMs组与HC组组间差异示意图。*表示校正后P<0.05;#表示校正后P<0.001。IDMs:妊娠期糖尿病婴儿;HC:健康对照;SIR:各区域与咬肌最大层面感兴趣区的信号强度比值;ADC:表观扩散系数。
Fig. 2  Schematic representation of group differences between IDMs and HC groups. *indicates corrected P<0.05; and # indicates corrected P<0.001. IDMs: infant of gestational diabetic mothers; HC: healthy control; SIR: the signal intensity ratio of each region to the maximum level ROI of the masseter muscle; ADC: apparent diffusion coefficient.
表2  IDMs组和HC组之间临床资料差异
Tab. 2  Clinical data differences between IDMs group and HC group
表3  IDMs A组和HC A组之间临床资料差异
Tab. 3  Clinical data differences between IDMs A group and HC A group
表4  IDMs B组和HC B组之间临床资料差异
Tab. 4  Clinical data differences between IDMs B group and HC B group

2.2 一致性检验

       两名观察者测量数据的一致性较好(ICC值范围为0.889~0.997)。

2.3 各MR参数组间差异

       IDMs组枕叶、豆状核、尾状核、内囊后肢、丘脑腹外侧核、顶叶、额叶、半卵圆中心的SIRT1、所有区域SIRT2、除枕叶及内囊后肢以外的SIRT2 FLAIR、颞叶的ADC值均小于HC组(P<0.05,图2A~2G)。分层分析后,IDMs A组的小脑半球、内囊后肢、丘脑腹外侧核、半卵圆中心的SIRT1、所有部位的SIRT2、除枕叶、胼胝体压部外的SIRT2 FLAIR均小于HC A组(P<0.05);两组间ADC值差异没有统计学意义。IDMs B组的额叶、顶叶的SIRT1、所有区域的SIRT2、小脑半球、颞叶的ADC值均小于HC B组(P<0.05);两组间SIRT2 FLAIR差异无统计学意义。

图3  小脑半球、海马、颞叶、枕叶、内囊后肢、顶叶的SIR-ROC曲线。SIR:各区域与咬肌最大层面感兴趣区的信号强度比值;ROC:受试者工作特征。
Fig. 3  SIR-ROC curve for the cerebellum hemisphere, hippocampus, temporal lobe, occipital lobe, internal capsule posterior limb, and parietal lobe. SIR: the signal intensity ratio of each region to the maximum level ROI of the masseter muscle; ROC: receiver operating characteristic.

2.4 诊断效能

       IDMs组与HC组差异具有统计学意义的区域ROC曲线分析显示:所有区域 SIRT2的AUC值最高,其中颞叶的SIRT2具有较好的诊断效能(AUC = 0.702)。DeLong检验结果:小脑半球、海马、颞叶、枕叶、内囊后肢、顶叶的SIRT2的AUCs大于其他比值(P < 0.05)。详见图3表5

图4  小脑半球(4A)、胼胝体压部(4B)、半卵圆中心(4C)的SIRT2与母亲1 h PG的相关性分析。SIR为各区域与咬肌最大层面ROI的信号强度比值;PG为血糖。
Fig. 4  Correlation analysis of SIRT2 in the cerebellar hemisphere (4A), splenium of the corpus callosum (4B) and centrum semiovale (4C) with maternal 1 h blood glucose. SIR: the signal intensity ratio of each region to the maximum level ROI of the masseter muscle; PG: post-glucose.
表5  各比值间的诊断效能ROC曲线分析
Tab. 5  Diagnostic efficacy ROC curve analysis of various ratios

2.5 MRI参数与母亲75 g OGTT的相关性

       IGDMs组所有脑区的SIRT2与OGTT 0 h血糖(post-glucose, PG)及2 h PG无明确相关性,与OGTT 1 h PG呈负相关,其中小脑半球、内囊后肢和半卵圆中心的∣r∣> 0.3(图4)。

3 讨论

       本研究在国内首次通过应用MR多序列成像半定量分析探究IDMs脑发育异常。结果显示T2信号强度比值的价值高于其他序列,且其与IDMs母亲OGTT 1h PG具有相关性。这一发现为揭示IDMs颅脑发育变化的病理机制及临床干预评估提供了新的神经影像学证据。

3.1 参考结构选择

       GDM导致的母体全身慢性炎症和高胰岛素血症可诱发胎儿神经炎症,并减少胎儿肺表面活性物质的合成引发围产期缺氧[14, 15, 16]。慢性宫内缺氧及胎盘血管疾病使胎儿红细胞生成增加,铁需求超出胎盘转运能力,导致IDMs铁缺乏[17]。缺铁和神经炎症可以导致胎儿神经细胞增殖障碍和自然细胞死亡编程的改变[8, 18, 19]。这些因素最终引发颅脑信号强度变化。由于咬肌的信号强度相对稳定[20],因此我们选择其作为参考区域,以减少背景误差的影响。

3.2 各序列比值及ADC值在探究IGDMs颅脑发育异常中的价值

       婴儿的髓鞘化发育趋势遵循由后至前、由下至上、由中央至四周的规律[21]。在出生2个月时,顶叶、丘脑腹外侧核、半卵圆中心、内囊后肢已可观测到髓鞘形成[22],本研究中T1、T2比值的改变提示这些脑区可能存在髓鞘发育异常。出生后,额叶的神经元迁移主要集中在前3个月,葡萄糖水平的变化会显著影响额-丘脑、额-小脑和额-海马网络的神经代谢连接,这可能是额叶具有易损性的原因之一[23, 24, 25]。本研究显示SIRT2及SIRT2 FLAIR组间比较结果存在差异,推测原因主要有以下几点:胎儿宫内编程至关重要,早产使胎儿过早暴露于外界环境,使其脑发育更易受到各项因素干扰[26];其次FLAIR序列是一种抑制特定物质信号的成像技术,因此推测两组组织成分可能存在差异,这为临床进一步研究提供了新的思路。

       ADC值是已经标准化的定量单位,因此本研究中不再进行比值处理[27]。研究发现IDMs可能会在颞叶及小脑区域出现扩散受限。这是由于葡萄糖缺乏及缺氧、缺血会引发严重的脑能量衰竭和细胞膜离子泵活性降低,从而减少细胞外空间容积,使水分从细胞外转移到细胞内进而影响ADC值[28]。足月新生儿中小脑是代谢最活跃的区域之一[23],而颞叶遵循长期的倒U型发育轨迹[29]。可以推测两者在结构和代谢上的特殊性使其更容易受到早期损伤。此外,本研究中早产儿的ADC值未见差异,这与既往的研究[30]结果一致。DWI对低血糖足月儿具有较高的敏感性,但对早产儿则不太敏感[31]。推测部分婴儿在检查时可能已跨过急性改变期,导致部分可逆性影像改变不可见[32]

       使用ROC曲线和DeLong检验分析后发现,SIRT2具有更高的诊断价值,其中颞叶的AUC值最高。颞叶与人类认知密切相关,其亚区被视为大脑主要组织与进化轴的起始结构,使其对宫内高血糖的不良影响较为敏感[33]。此外,胼胝体压部、枕叶和顶颞后区是血糖变化引起的婴儿颅脑病变的敏感区域[34, 35, 36]。缺氧及低血糖损伤易引发癫痫,主要定位于颞叶和枕叶,而胼胝体压部则是癫痫发作泛化的主要途径[37, 38]。铁缺乏则降低细胞色素C氧化酶活性,影响海马体和前额叶区等大脑结构[39]。此外,IDMs发生孤独症谱系障碍或注意力缺陷多动障碍的风险高于正常婴儿,主要受累区域为胼胝体压部、颞叶、顶叶和枕叶[36, 40, 41]

3.3 SIRT2与OGTT的相关性

       OGTT是一种妊娠早期筛查GDM的有效方法,研究[42]显示母体1 h PG与儿童葡萄糖耐量受损相关,并与胰岛素敏感性呈负相关,表明母体孕期血糖越高,对子代血糖及胰岛素抵抗影响的越显著。IDMs的常见并发症低血糖会诱导神经元死亡和功能障碍;而高血糖则损伤髓鞘和神经元,影响大脑结构和认知功能[23, 24, 43]。本研究发现SIRT2与母亲OGTT的1 h PG呈负相关,提示1 h PG升高增加IDMs神经发育的不良风险,特别是在小脑半球、胼胝体压部和半卵圆中心区域。因此,临床需关注孕期血糖对胎儿神经发育的影响,并积极干预以改善预后,尤其是在T2序列成像的指导下,更加精准地评估胎儿神经发育情况。

3.4 局限性

       本研究存在一定的局限性。首先样本量较小,信号比值为相对定量,并不是真正意义上的T1、T2值;其次,本研究的ROI为手动勾画,具有一定主观性这在后续的研究中需要进行完善。

4 结论

       综上所述,T1WI、T2WI、T2 FLAIR的相对SIR及ADC值能够在一定程度上反映IDMs早期神经发育异常。临床中结合MRI及母亲OGTT水平联合监测很有必要,可为揭示IGDMs颅脑发育改变病理机制变化和临床干预评估提供诊断依据。

[1]
中华医学会妇产科学分会产科学组, 中华医学会围产医学分会, 中国妇幼保健协会妊娠合并糖尿病专业委员会. 妊娠期高血糖诊治指南(2022)[第一部分][J]. 中华妇产科杂志, 2022, 57(1): 3-12. DOI: 10.3760/cma.j.cn112141-20210917-00528.
Obstetrics Science Group of Obstetrics and Gynecology Branch of Chinese Medical Association, Perinatal Medicine Branch of Chinese Medical Association, Pregnancy Combined with Diabetes Professional Committee of China Maternal and Child Health Care Association. Guideline of diagnosis and treatment of hyperglycemia in pregnancy (2022) [Part one][J]. Chinese Journal of Obstetrics and Gynecology, 2022, 57(1): 3-12. DOI: 10.3760/cma.j.cn112141-20210917-00528.
[2]
ELSAYED N A, ALEPPO G, BANNURU R R, et al. American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024[J]. Diabetes Care, 2024, 47(Supplement_1): S20-S42. DOI: 10.2337/dc24-S002.
[3]
SUN H, SAEEDI P, KARURANGA S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J/OL]. Diabetes Res Clin Pract, 2022, 183: 109119 [2024-04-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11057359/. DOI: 10.1016/j.diabres.2021.109119.
[4]
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 中华糖尿病杂志, 2021, 13(4): 315-409. DOI: 10.3760/cma.j.cn115791-20210221-00095.
Chinese Diabetes Society. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition)[J]. Chinese Journal of Diabetes Mellitus, 2021, 13(4): 315-409. DOI: 10.3760/cma.j.cn115791-20210221-00095.
[5]
ELSAYED N A, ALEPPO G, BANNURU R R, et al. American Diabetes Association Professional Practice Committee. 15. Management of Diabetes in Pregnancy: Standards of Care in Diabetes—2024[J]. Diabetes Care, 2024, 47(Supplement_1): S282-S294. DOI: 10.2337/dc24-S015.
[6]
PREDA A, PĂDUREANU V, MOȚA M, et al. Analysis of maternal and neonatal complications in a group of patients with gestational diabetes mellitus[J/OL]. Medicina (Kaunas), 2021, 57(11): 1170 [2024-04-29]. https://doi.org/10.3390/medicina57111170. DOI: 10.3390/medicina57111170.
[7]
YE W, LUO C, HUANG J, et al. Gestational diabetes mellitus and adverse pregnancy outcomes: systematic review and meta-analysis[J/OL]. BMJ, 2022, 377: e067946 [2024-04-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9131781/. DOI: 10.1136/bmj-2021-067946.
[8]
OLMOS-ORTIZ A, FLORES-ESPINOSA P, DIAZ L, et al. Immunoendocrine dysregulation during gestational diabetes mellitus: The central role of the placenta[J/OL]. Int J Mol Sci, 2021, 22(15): 8087 [2024-04-29]. https://doi.org/10.3390/ijms22158087. DOI: 10.3390/ijms22158087.
[9]
VUONG B, ODERO G, ROZBACHER S, et al. Exposure to gestational diabetes mellitus induces neuroinflammation, derangement of hippocampal neurons, and cognitive changes in rat offspring[J/OL]. J Neuroinflammation, 2017, 14(1): 80 [2024-04-29]. https://pubmed.ncbi.nlm.nih.gov/28388927/. DOI: 10.1186/s12974-017-0859-9.
[10]
ORNOY A, BECKER M, WEINSTEIN-FUDIM L, et al. Diabetes during pregnancy: A maternal disease complicating the course of pregnancy with long-term deleterious effects on the offspring. A clinical review[J/OL]. Int J Mol Sci, 2021, 22(6): 2965 [2024-04-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC5384149/. DOI: 10.3390/ijms22062965.
[11]
VALLE-BAUTISTA R, MARQUEZ-VALADEZ B, FRAGOSO-CABRERA A D, et al. Impaired cortical cytoarchitecture and reduced excitability of deep-layer neurons in the offspring of diabetic rats[J/OL]. Front Cell Dev Biol, 2020, 8: 564561 [2024-04-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7527606/. DOI: 10.3389/fcell.2020.564561.
[12]
ROWLAND J, WILSON C A. The association between gestational diabetes and ASD and ADHD: a systematic review and meta-analysis[J/OL]. Sci Rep, 2021, 11(1): 5136 [2024-04-29]. https://pubmed.ncbi.nlm.nih.gov/33664319/. DOI: 10.1038/s41598-021-84573-3.
[13]
张丁, 赵鑫, 邢庆娜, 等. 合成MRI定量评估妊娠高血压孕妇子代脑发育异常[J]. 中国医学影像技术, 2022, 38(11): 1601-1605. DOI: 10.13929/j.issn.1003-3289.2022.11.001.
ZHANG D, ZHAO X, XING Q N, et al. Synthetic MRI in evaluation on abnormal brain development in offspring of pregnant women with gestational hypertension[J]. Chin J Med Imaging Technol, 2022, 38(11): 1601-1605. DOI: 10.13929/j.issn.1003-3289.2022.11.001.
[14]
YILDIZ ATAR H, BAATZ J E, RYAN R M. Molecular mechanisms of maternal diabetes effects on fetal and neonatal surfactant[J/OL]. Children (Basel), 2021, 8(4): 281 [2024-04-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8067463/. DOI: 10.3390/children8040281.
[15]
SALMASO N, JABLONSKA B, SCAFIDI J, et al. Neurobiology of premature brain injury[J]. Nat Neurosci, 2014, 17(3): 341-346. DOI: 10.1038/nn.3604.
[16]
RAY G W, ZENG Q, KUSI P, et al. Genetic and inflammatory factors underlying gestational diabetes mellitus: a review[J/OL]. Front Endocrinol (Lausanne), 2024, 15: 1399694 [2024-04-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11061502/. DOI: 10.3389/fendo.2024.1399694.
[17]
VERNER A M, MANDERSON J, LAPPIN T R, et al. Influence of maternal diabetes mellitus on fetal iron status[J/OL]. Arch Dis Child Fetal Neonatal Ed, 2007, 92(5): F399-401 [2024-04-29]. https://pubmed.ncbi.nlm.nih.gov/17095546/. DOI: 10.1136/adc.2006.097279.
[18]
KRUSE M S, BARUTTA J, VEGA M C, et al. Down regulation of the proliferation and apoptotic pathways in the embryonic brain of diabetic rats[J]. Cell Mol Neurobiol, 2012, 32(6): 1031-1037. DOI: 10.1007/s10571-012-9820-8.
[19]
RODOLAKI K, PERGIALIOTIS V, IAKOVIDOU N, et al. The impact of maternal diabetes on the future health and neurodevelopment of the offspring: a review of the evidence[J/OL]. Front Endocrinol (Lausanne), 2023, 14: 1125628 [2024-04-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10352101/. DOI: 10.3389/fendo.2023.1125628.
[20]
KONAR A S, PAUDYAL R, SHAH A D, et al. Qualitative and quantitative performance of magnetic resonance image compilation (MAGiC) method: An exploratory analysis for head and neck imaging[J/OL]. Cancers (Basel), 2022, 14(15): 3624 [2024-04-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9331960/. DOI: 10.3390/cancers14153624.
[21]
赵彩雯, 赵鑫, 刘彦超, 等. 集成MRI技术对早产儿脑成熟评估研究[J]. 磁共振成像, 2021, 12(12): 1-5. DOI: 10.12015/issn.1674-8034.2021.12.001.
ZH C W, ZHAO X, LIU Y C, et al. Initial application of synthetic MRI in evaluating brain maturation of preterm infants[J]. Chin J Magn Reson Imaging, 2021, 12(12): 1-5. DOI: 10.12015/issn.1674-8034.2021.12.001.
[22]
MILOS R I, SCHMIDBAUER V, WATZENBOECK M L, et al. T1-weighted fast fluid-attenuated inversion-recovery sequence (T1-FFLAIR) enables the visualization and quantification of fetal brain myelination in utero[J]. Eur Radiol, 2024, 34(7): 4573-4584. DOI: 10.1007/s00330-023-10401-z.
[23]
CACCIATORE M, GRASSO E A, TRIPODI R, et al. Impact of glucose metabolism on the developing brain[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 1047545 [2024-04-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9816389/. DOI: 10.3389/fendo.2022.1047545.
[24]
PAREDES M F, JAMES D, GIL-PEROTIN S, et al. Extensive migration of young neurons into the infant human frontal lobe[J/OL]. Science, 2016, 354(6308): aaf7073 [2024-04-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC5436574/. DOI: 10.1126/science.aaf7073.
[25]
MAURAS N, MAZAIKA P, BUCKINGHAM B, et al. Longitudinal assessment of neuroanatomical and cognitive differences in young children with type 1 diabetes: association with hyperglycemia[J]. Diabetes, 2015, 64(5): 1770-1779. DOI: 10.2337/db14-1445.
[26]
LINDSAY K L, BUSS C, WADHWA P D, et al. The interplay between nutrition and stress in pregnancy: Implications for fetal programming of brain development[J]. Biol Psychiatry, 2019, 85(2): 135-149. DOI: 10.1016/j.biopsych.2018.06.021.
[27]
LETISSIER C, CROMBE A, CHERIER L, et al. Brain fetal magnetic resonance imaging to evaluate maturation of normal white matter during the third trimester of pregnancy[J]. Pediatr Radiol, 2021, 51(10): 1826-1838. DOI: 10.1007/s00247-021-05064-1.
[28]
HASEGAWA Y, FORMATO J E, LATOUR L L, et al. Severe transient hypoglycemia causes reversible change in the apparent diffusion coefficient of water[J]. Stroke, 1996, 27(9): 1648-1655; discussion 1655-1656. DOI: 10.1161/01.str.27.9.1648.
[29]
LUO S, HSU E, LAWRENCE K E, et al. Associations among prenatal exposure to gestational diabetes mellitus, brain structure, and child adiposity markers[J]. Obesity (Silver Spring), 2023, 31(11): 2699-2708. DOI: 10.1002/oby.23901.
[30]
DENISON F C, MACNAUGHT G, SEMPLE S I K, et al. Brain development in fetuses of mothers with diabetes: A case-control MR imaging study[J]. AJNR Am J Neuroradiol, 2017, 38(5): 1037-1044. DOI: 10.3174/ajnr.A5118.
[31]
TAM E W, WIDJAJA E, BLASER S I, et al. Occipital lobe injury and cortical visual outcomes after neonatal hypoglycemia[J]. Pediatrics, 2008, 122(3): 507-512. DOI: 10.1542/peds.2007-2002.
[32]
ZHANG Y, CHEN D, JI Y, et al. Dynamic magnetic resonance imaging findings in the early stages of neonatal hypoglycemic brain injury[J]. Eur J Pediatr, 2022, 181(12): 4167-4174. DOI: 10.1007/s00431-022-04637-y.
[33]
DE WAEL R VOS, ROYER J, TAVAKOL S, etal. Structural connectivity gradients of the temporal lobe serve as multiscale axes of brain organization and cortical evolution[J]. Cereb Cortex, 2021, 31(11): 5151-5164. DOI: 10.1093/cercor/bhab149.
[34]
BURNS C M, RUTHERFORD M A, BOARDMAN J P, et al. Patterns of cerebral injury and neurodevelopmental outcomes after symptomatic neonatal hypoglycemia[J]. Pediatrics, 2008, 122(1): 65-74. DOI: 10.1542/peds.2007-2822.
[35]
YALCIN E U, GENC H M, BAYHAN A, et al. Neurodevelopmental outcome in patients with typical imaging features of injury as a result of neonatal hypoglycemia[J]. Noro Psikiyatr Ars, 2022, 59(4): 296-302. DOI: 10.29399/npa.27997.
[36]
YU M, GAO X, NIU X, et al. Meta-analysis of structural and functional alterations of brain in patients with attention-deficit/hyperactivity disorder[J/OL]. Front Psychiatry, 2022, 13: 1070142 [2024-04-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9853532/. DOI: 10.3389/fpsyt.2022.1070142.
[37]
UNTERBERGER I, BAUER R, WALSER G, et al. Corpus callosum and epilepsies[J]. Seizure, 2016, 37: 55-60. DOI: 10.1016/j.seizure.2016.02.012.
[38]
MONTASSIR H, MAEGAKI Y, OHNO K, et al. Long term prognosis of symptomatic occipital lobe epilepsy secondary to neonatal hypoglycemia[J]. Epilepsy Res, 2010, 88(2-3): 93-99. DOI: 10.1016/j.eplepsyres.2009.10.001
[39]
MUDD A T, FIL J E, KNIGHT L C, et al. Early-life iron deficiency reduces brain iron content and alters brain tissue composition despite iron repletion: A neuroimaging assessment[J/OL]. Nutrients, 2018, 10(2): 135 [2024-04-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC5852711/. DOI: 10.3390/nu10020135.
[40]
刘阳, 朱志军, 曹满瑞, 等. 自闭症儿童早期大脑过度发育的sMRI研究[J]. 磁共振成像, 2020, 11(4): 264-269. DOI: 10.12015/issn.1674-8034.2020.04.005.
LIU Y, ZHU Z J, CAO M M, et al. Early brain overgrowth in children with autism spectrum disorders based on structural magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2020, 11(4): 264-269. DOI: 10.12015/issn.1674-8034.2020.04.005.
[41]
COURCHESNE E, PRESS G A, YEUNG-COURCHESNE R. Parietal lobe abnormalities detected with MR in patients with infantile autism[J]. AJR Am J Roentgenol, 1993, 160(2): 387-393. DOI: 10.2214/ajr.160.2.8424359.
[42]
SCHOLTENS D M, KUANG A, LOWE L P, et al. Hyperglycemia and adverse pregnancy outcome follow-up study (HAPO FUS): Maternal glycemia and childhood glucose metabolism[J]. Diabetes Care, 2019, 42(3): 381-392. DOI: 10.2337/dc18-2021.
[43]
TOMLINSON D R, GARDINER N J. Glucose neurotoxicity[J]. Nat Rev Neurosci, 2008, 9(1): 36-45. DOI: 10.1038/nrn2294.

上一篇 联合酰胺质子转移成像与定量磁敏感图成像技术在不同分期帕金森病患者中的初步探究
下一篇 基于颅内动脉粥样硬化斑块特征和表观扩散系数直方图在预测缺血性脑卒中复发中的联合分析
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2