分享:
分享到微信朋友圈
X
临床研究
基于HRMR-VWI分析颈动脉斑块的特征与Plaque-RADS评分的临床应用价值
宋梦星 李帅 彭雯佳

Cite this article as: SONG M X, Sylvester Ndamka Josephat, LI S, et al. Analysis of the characteristics of carotid plaque based on HRMR-VWI and the clinical application value of Plague-RADS score[J]. Chin J Magn Reson Imaging, 2024, 15(12): 101-108.本文引用格式:宋梦星, Ndamka Josephat Sylvester, 李帅, 等. 基于HRMR-VWI分析颈动脉斑块的特征与Plaque-RADS评分的临床应用价值[J]. 磁共振成像, 2024, 15(12): 101-108. DOI:10.12015/issn.1674-8034.2024.12.015.


[摘要] 目的 基于高分辨磁共振血管壁成像(high-resolution magnetic resonance vessel wall imaging, HRMR-VWI)分析颈动脉斑块的特征并进行斑块影像报告与数据系统(Plaque Reporting And Data System, Plaque-RADS)评分,探究Plaque-RADS评分的临床应用价值。材料与方法 回顾性收集2022年1月至2023年12月行HRMR-VWI的患者85例,其中梗死组33例,非梗死组52例,采用独立样本t检验或Mann-Whitney U检验,比较责任斑块与非责任斑块的各项参数,并对斑块进行Plaque-RADS评分,通过logistic回归分析筛选斑块的独立危险因素,绘制受试者工作特征(receiver operating characteristic, ROC)曲线评估各参数的诊断效能。结果 梗死组中责任斑块33个,非责任斑块29个,非梗死组中非责任斑块102个。责任斑块的最小管腔面积、纤维化组织体积占比明显小于非责任斑块(P<0.05);责任斑块的长度、斑块体积、平均管壁厚度、最小管壁厚度、最大管壁厚度、重构指数、斑块内出血(intraplaque hemorrhage, IPH)或血栓体积、IPH或血栓体积占比明显大于非责任斑块(P<0.05);与非责任斑块相比,责任斑块的斑块负荷、狭窄度、Plaque-RADS评分更大(P<0.001)。logistic回归分析显示,斑块的长度[比值比(odds ratio, OR)=1.67,95%置信区间(confidence interval, CI):1.04~1.10]、斑块负荷(OR=3.57,95% CI:1.76~7.24)、重构指数(OR=3.26,95% CI:1.62~6.59)IPH或血栓(OR=5.33,95% CI:2.27~12.52)、Plaque-RADS评分(OR=4.66,95% CI:2.35~9.24)、狭窄度(OR=3.77,95% CI:1.98~7.15),以及平均管壁厚度(OR=2.13,95% CI:1.05~4.32)为发生急性脑梗死(acute cerebral infarction, ACI)的重要风险因素;Plaque-RADS评分预测ACI的曲线下面积(area under the curve, AUC)为0.815(95% CI:0.732~0.898),Plaque-RADS评分联合其余各项危险因素预测ACI的AUC为0.837(95% CI:0.735~0.921)。结论 颈动脉斑块存在IPH或血栓,以及斑块长度、斑块负荷、重构指数、管腔狭窄度、平均管壁厚度、Plaque-RADS评分增加,均会增加同侧发生ACI发生的风险;Plaque-RADS评分可标准化评估颈动脉斑块,提示斑块的危险分层,识别出高风险患者,是发生同侧ACI的有效预测指标。
[Abstract] Objective This study utilizes high-resolution magnetic resonance vessel wall imaging (HRMR-VWI) to analyze the characteristics of carotid atherosclerotic plaques, and Plaque Reporting and Data System (Plaque-RADS) scoring system were performed to explore the clinical value of Plaque-RADS.Materials and Methods A retrospective collection of 85 patients who underwent HRMR-VWI from January 2022 to December 2023 was analyzed. This cohort included 33 patients in the stroke group and 52 patients in the non-stroke group. Independent sample t-tests or Mann-Whitney U tests were used to compare parameters between culprit and non-culprit plaques. logistic regression analysis identified independent risk factors for plaque characteristics, and receiver operating characteristic (ROC) curves were used to assess the diagnostic efficiency of these parameters.Results There were 33 culprit and 29 non-culprit plaques in the stroke group, while 102 non-culprit plaques in the non-stroke group. Culprit plaques had significantly smaller minimum lumen area and a lower percentage of fibrous tissue volume (P<0.05); They also exhibited greater plaque length, volume, average wall thickness, minimum and maximum wall thickness, remodeling index, and volume of intraplaque hemorrhage (IPH) or thrombus (P<0.05) compared to non-culprit plaques. Furthermore, compared to non-culprit plaques, culprit lesions had higher plaque burden, degree of stenosis, and Plaque-RADS scores (P<0.001). Logistic regression revealed that plaque length [odds ratio (OR)=1.67, 95% confidence interval (CI): 1.04-1.10)], plaque burden (OR=3.57, 95% CI: 1.76-7.24), remodeling index (OR=3.26, 95% CI: 1.62-6.59), presence of IPH or thrombus (OR=5.33, 95% CI: 2.27-12.52), and Plaque-RADS score (OR=4.66, 95% CI: 2.35-9.24), among others, were significant risk factors for ipsilateral acute cerebral infarction (ACI). The area under the curve (AUC) for Plaque-RADS scoring alone was 0.815 (95% CI: 0.732-0.898), and combining it with other risk factors yielded an AUC of 0.837 (95% CI: 0.735-0.921).Conclusions Carotid plaques with IPH or thrombus, increased plaque length, burden, remodeling index, degree of stenosis, average wall thickness, and higher Plaque-RADS scores significantly elevate the risk of ipsilateral ACI. The Plaque-RADS score provides a standardized evaluation of carotid plaques, indicating the risk stratification and identifying high-risk patients, thus serving as an effective predictor of ACI. This study underscores the value of Plaque-RADS in enhancing clinical decision-making and improving outcomes for patients with carotid atherosclerosis.
[关键词] 颈动脉斑块;急性脑梗死;磁共振成像;高分辨磁共振血管壁成像;Plaque-RADS评分
[Keywords] carotid atherosclerotic plaque;acute cerebral infarction;magnetic resonance imaging;high-resolution magnetic resonance vessel wall imaging;Plaque Reporting and Data System

宋梦星 1   2   李帅 1   彭雯佳 1*  

1 海军军医大学第一附属医院影像医学科,上海 200433

2 海军军医大学外训大队,上海 200433

通信作者:彭雯佳,E-mail: cindywpj@aliyun.com

作者贡献声明:彭雯佳确定本研究的具体方向,对稿件重要内容进行了修改;宋梦星起草和撰写稿件,获取、分析、解释本研究的数据;Ndamka Josephat Sylvester、李帅获取、分析或解释本研究的数据,对稿件重要内容进行了修改;彭雯佳获得了上海市自然科学基金项目、上海市科委医学创新研究专项资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 上海市自然科学基金项目 22ZR1478100 上海市科委医学创新研究专项 22Y11911200
收稿日期:2024-09-11
接受日期:2024-12-10
中图分类号:R445.2  R543.5 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.12.015
本文引用格式:宋梦星, Ndamka Josephat Sylvester, 李帅, 等. 基于HRMR-VWI分析颈动脉斑块的特征与Plaque-RADS评分的临床应用价值[J]. 磁共振成像, 2024, 15(12): 101-108. DOI:10.12015/issn.1674-8034.2024.12.015.

0 引言

       缺血性脑卒中是全球发病和死亡的主要原因[1, 2, 3],不仅影响患者的生存率,还显著影响患者的行为能力和生活质量。颈动脉粥样硬化是缺血性卒中的主要病因之一,约占所有卒中和短暂性脑缺血发作病例的20%。颈动脉斑块的形成和进展可能导致血管狭窄或斑块破裂,进而引发血栓形成,阻塞脑部血流,导致缺血性脑卒中或短暂性脑缺血发作[4, 5]。此外,颈动脉斑块还反映了全身动脉粥样硬化的严重程度[6, 7, 8]。因此,分析颈动脉斑块的特征,并评估斑块的危险分层,有助于临床制订个性化治疗方案,更好地评估手术的风险和益处。

       研究表明,颈动脉斑块的风险评估不仅依赖于狭窄程度,还需考虑特定的斑块特征,如斑块的组成、稳定性和形态等,这些特征与缺血性事件的风险增加密切相关[9]。目前已有多项研究表明,颈动脉斑块的形态学特征如纤维帽(fibrous cap, FC)、富脂坏死核心(lipid-rich necrotic core, LRNC)、斑块内出血(intraplaque hemorrhage, IPH)与缺血性事件风险显著相关[10, 11, 12],但在报告和解释这些颈动脉斑块特征方面仍缺乏统一的标准和共识。2023年,SABA等[13]提出斑块影像报告与数据系统(Plaque Reporting and Data System, Plaque-RADS),将其用于标准化评估和报告颈动脉斑块,它借鉴了其他影像学评估系统,如乳腺影像报告与数据系统(Breast Imaging Reporting and Data System, BI-RADS)和前列腺影像报告与数据系统(Prostate Imaging Reporting and Data System, PI-RADS),Plaque-RADS评分范围从1分(无斑块)到4分(复杂斑块),旨在为颈动脉斑块的检测、评分和报告提供一致的标准。但是,目前Plaque-RADS评分的诊断效能尚缺乏大量的临床验证,其在实际临床应用中的一致性和准确性还需要进一步的研究支持。

       高分辨磁共振血管壁成像(high-resolution magnetic resonance vessel wall imaging, HRMR-VWI)作为传统血管成像的补充和优化,在颈动脉斑块的检测和评估中得到了广泛应用,HRMR-VWI能够高分辨率与多平面成像,对斑块的大小、体积及其成分进行精确地定量分析,进而评估血管管壁[14, 15, 16],但这些研究中所纳入的斑块特征较少,未将斑块的宏观与微观特征相结合,缺乏多维度整合信息,难以全面评估斑块异质性、复杂性。此外,目前尚未有研究证实Plaque-RADS评分的应用效能,因此本研究通过HRMR-VWI分析颈动脉斑块的各项定性及定量指标,并采用Plaque-RADS对斑块进行系统化的评分,以验证Plaque-RADS评分在预测缺血性事件风险和指导临床决策中的有效性和可靠性,从而提升颈动脉斑块患者的临床管理和治疗的精准度。

1 材料与方法

1.1 研究对象

       回顾性分析2022年1月至2023年12月在海军军医大学第一附属医院行HRMR-VWI的患者。纳入标准:(1)年龄>18岁;(2)至少存在一侧颈动脉斑块(HRMR-VWI显示血管壁的偏心性或不规则增厚);(3)临床、实验室、影像资料完整。排除标准:(1)放射治疗、血管炎引起的颈动脉狭窄;(2)颈动脉夹层、动脉瘤、原发性颅内疾病;(3)已行颈动脉支架治疗的患者;(4)颅内其他血管中重度狭窄;(5)图像存在伪影,影响斑块评估的患者。本研究遵守《赫尔辛基宣言》,经上海长海医院医学伦理委员会批准,免除受试者知情同意,批准文号:CHEC2022-240。

       根据行HRMR-VWI检查的患者近6个月内弥散加权成像(diffusion weighted imaging, DWI)或脑CT灌注成像(computerized tomography perfusion imaging, CTP)评判是否有相应供血区的急性脑梗死(acute cerebral infarction, ACI)。具体而言,若DWI提示相应供血区为高信号,或CTP提示相应供血区脑血流容量(cerebral blood volume, CBV)绝对值<2.0 mL/100 g、脑血流流量(cerebral blood flow, CBF)相对值<30%对侧正常脑组织CBF值,最大达峰时间(time to maximum, Tmax)>10 s以上,提示有相应供血区的ACI,则将此类患者归为梗死组,而无相应异常表现的患者归为非梗死组;责任斑块定义为梗死灶所在区域供血动脉上唯一的或最狭窄处的斑块;非责任斑块定义为非梗死区域供血动脉上的斑块或发生在梗死区域供血动脉上非最狭窄处的斑块[17]图1为患者入组的流程图。

       患者的临床基线资料包括:性别、年龄、吸烟史、饮酒史、高血压病史、糖尿病史、冠心病史;实验室检查资料包括低密度脂蛋白胆固醇(low-density lipoprotein cholesterol, LDL-C)、总胆固醇(total cholesterol, TC)、高密度脂蛋白胆固醇(high -density lipoprotein cholesterol, HDL-C)、脂蛋白a、三酰甘油(triglyceride, TG)、脑钠肽(brain natriuretic peptide, BNP)、糖化白蛋白、糖化血红蛋白、同型半胱氨酸。

图1  患者入组流程图。HRMR-VWI:高分辨磁共振血管壁成像。
Fig. 1  Patient inclusion flowchart. HRMR-VWI: high-resolution magnetic resonance vessel wall imaging.

1.2 影像学检查和图像分析

       本研究采用的MR扫描仪,包括德国西门子skyra 3.0 T扫描仪、德国西门子Avanto 1.5 T扫描仪、美国GE Discovery 750W 3.0 T扫描仪,使用头颈线圈,线圈通道数分别为20通道、12通道、24通道。扫描序列:三维时间飞跃法磁共振血管造影(3D time of flight-magnetic resonance angiography, 3D-TOF MRA)、T2WI快速自旋回波(fast spin echo, FSE)、T1WI FSE。3D-TOF MRA序列参数:TR 21.0~23.0 ms,TE 3.4~7.0 ms,FOV 160 mm×160 mm,FA 20°,层厚1.4 mm,层间距0.5 mm,激励次数(number of excitations, NEX)1;T2WI FSE序列参数:TR 2 500.0~3 900.0 ms,TE 64.2~78.0 ms,FOV 200 mm×200 mm,FA 142°,层厚3 mm,层间距0.5 mm,NEX 4;T1WI FSE序列参数:TR 580.0~669.0 ms,TE 9.5~11.0 ms,FOV 200 mm×200 mm,FA 142°,层厚3 mm,层间距0.5 mm,NEX 4。

       由从事头颈部血管影像诊断2位具有5年以上工作经验的住院医师和主治医师共同评判斑块中所有定性指标以及Plaque-RADS评分,如有争议,则由第三位具有10年以上工作经验的副主任医师确定最终结果,Plaque-RADS评分具体如下:1分:正常的血管壁,无斑块;2分:最大管壁厚度<为3 mm的偏心斑块,无IPH、FC破裂和腔内血栓(图2);3分:最大管壁厚度≥3 mm,可含LRNC、钙化、愈合的溃疡和纤维组织,无IPH、血栓和斑块破裂(图3);4分:至少存在以下一种特征,IPH、FC破裂或腔内血栓(图4)。使用MR VascularView软件(Nanjing Jingsan Medical Science and Technology, Ltd., Jiangsu, China)测量斑块中的定量指标,如最小管腔面积、纤维化组织体积占比、斑块长度、斑块体积、平均管壁厚度、最小管壁厚度、最大管壁厚度、IPH体积、IPH体积占比、脂质体积、脂质体积占比、纤维化组织体积、钙化组织体积、钙化组织体积占比,并计算斑块负荷、管腔狭窄度及重构指数。计算公式如下:斑块负荷=斑块面积/血管面积×100%,并将斑块负荷分为:轻度(<50%);中度(50%≤斑块负荷<70%);重度(斑块负荷≥70%);管腔狭窄度[18]=(1-B/A)×100% 如颈内动脉分叉后全程狭窄,则取对侧颈动脉作比较)(A为颈动脉膨大部以远正常处管腔内径,B为颈内动脉最窄处宽度)。并将管腔狭窄度分成:无/轻微狭窄(管腔狭窄度<30%);轻度狭窄(30%≤管腔狭窄度<50%);中度狭窄(50%≤管腔狭窄度<70%);重度狭窄(70%≤管腔狭窄度≤99%);闭塞(管腔狭窄度>99%)。重构指数=病变处血管横截面积/平均参考血管面积。

图2  男,75岁,无明显症状。2A:3D-TOF MRA显示右侧颈总动脉分叉部外侧壁斑块,管腔轻度狭窄(白箭);2B:T1WI FSE显示斑块呈等信号(白箭);2C:T2WI FSE显示斑块呈稍高信号(白箭);2D:DWI显示颅内未见明显高信号影。最大管壁厚度<3 mm,Plaque-RADS评分为2分。3D-TOF MRA:三维时间飞跃法磁共振血管造影;FSE:快速自旋回波;DWI:弥散加权成像;Plaque-RADS:斑块影像报告与数据系统。
Fig. 2  Imaging of a 75-year-old asymptomatic male. 2A:3D-TOF MRA reveals a plaque on the lateral wall of the right common carotid bifurcation with mild luminal narrowing (white arrow); 2B: T1WI FSE demonstrates the plaque with iso-signal intensity (white arrow); 2C: T2WI FSE depicts the plaque with slightly hyperintense signal (white arrow); 2D: DWI shows no significant high-signal lesions intracranially. The maximum wall thickness of the plaque is less than 3 mm, and the Plaque-RADS score is 2. 3D-TOF MRA: 3D time of flight-magnetic resonance angiography; FSE: fast spin echo; DWI: diffusion weighted imaging; Plaque-RADS: Plaque Reporting and Data System.
图3  女,71岁,无明显诱因下出现头晕10天。3A:3D-TOF MRA显示左侧颈内动脉起始部中度狭窄(白箭);3B:T1WI FSE显示斑块呈等、低信号(白箭);3C:T2WI FSE显示斑块呈等信号,内见低信号影,提示斑块内含钙化组织(白箭);3D:DWI显示颅内未见明显高信号影。最大管壁厚度>3 mm,FC完整,无IPH,Plaque-RADS评分为3分。3D-TOF MRA:三维时间飞跃法磁共振血管造影;FSE:快速自旋回波;DWI:弥散加权成像;FC:纤维帽;IPH:斑块内出血;Plaque-RADS:斑块影像报告与数据系统。
Fig. 3  Imaging of a 71-year-old female presenting with dizziness lasting ten days without a clear precipitant. 3A: 3D-TOF MRA illustrates moderate stenosis at the origin of the left internal carotid artery (white arrow); 3B: T1WI FSE shows the plaque with iso- and low-signal intensity (white arrow); 3C: T2WI FSE reveals the plaque with iso-signal intensity and internal low signal suggesting calcification (white arrow); 3D: DWI indicates no apparent high-signal lesions within the brain. Key features include a maximal wall thickness greater than 3 mm, an intact FC, no IPH, and a Plaque-RADS score of 3. 3D-TOF MRA: 3D time of flight-magnetic resonance angiography; FSE: fast spin echo; DWI: diffusion weighted imaging; FC: fibrous cap; IPH: intraplaque hemorrhage; Plaque-RADS: Plaque Reporting and Data System.
图4  男,59岁,2月前突发右侧肢体无力。4A:3D-TOF MRA显示左侧颈内动脉起始部充满斑块,管腔重度狭窄、近闭塞(白箭);4B:T1WI FSE显示斑块内见高信号影,提示IPH或血栓形成(白箭);4C:T2WI FSE显示斑块为混杂等高信号(白箭);4D:DWI显示左侧脑室旁见斑片状高信号影,提示新鲜梗死灶(白箭)。Plaque-RADS评分为4分。3D-TOF MRA:三维时间飞跃法磁共振血管造影;FSE:快速自旋回波;DWI:弥散加权成像;IPH:斑块内出血;Plaque-RADS:斑块影像报告与数据系统。
Fig. 4  Imaging of a 59-year-old male who experienced sudden right-sided limb weakness two months prior. 4A: 3D-TOF MRA displays severe stenosis and near occlusion at the origin of the left internal carotid artery filled with plaque (white arrow); 4B: T1WI FSE exhibits high-signal intensity within the plaque, suggestive of IPH or thrombus formation (white arrow); 4C: T2WI FSE shows the plaque with mixed iso- and high-signal intensity (white arrow); 4D: DWI reveals a patchy high-signal lesion adjacent to the left ventricle, indicative of a recent infarct. The Plaque-RADS score is 4. 3D-TOF MRA: 3D time of flight-magnetic resonance angiography; FSE: fast spin echo; DWI: diffusion weighted imaging; IPH: intraplaque hemorrhage; Plaque-RADS: Plaque Reporting and Data System.

1.3 统计学方法

       采用SPSS 26.0进行统计学分析。连续变量以均数±标准差表示,分类变量以数值或百分比表示,比较梗死组与非梗死组的临床资料以及责任斑块与非责任斑块各项特征,分类变量采用卡方检验,连续变量采用独立样本t检验,有序分类变量采用Mann-Whitney U检验。采用多因素二元logistic回归分析筛选斑块的独立危险因素,绘制受试者工作特征(receiver operating characteristic, ROC)曲线评估Plaque-RADS评分及各危险因素的诊断效能。DeLong检验用于分析比较不同危险因素预测效能的差异性。P<0.05为差异具有统计学意义。

2 结果

2.1 一般资料

       最终纳入患者共85例,其中梗死组33例,非梗死组52例,共计164个斑块,其中责任斑块33个,非责任斑块131个。梗死组与非梗死组两组性别、年龄、吸烟史、饮酒史、高血压病史、糖尿病史、冠心病史差异无统计学意义,两组之间LDL-C、HDL-C、TC、脂蛋白a、TG、糖化白蛋白、糖化血红蛋白、同型半胱氨酸、BNP差异均无统计学意义(P均>0.05),见表1

表1  梗死组与非梗死组临床基线资料比较
Tab. 1  Comparison of clinical baseline data between infarct group and Non-infarct group

2.2 斑块特征比较

       责任斑块的最小管腔面积、纤维化组织体积占比明显小于非责任斑块(P<0.05),责任斑块管腔狭窄度(P<0.001)、斑块负荷(P<0.001)、斑块长度(P=0.008)、斑块体积(P=0.009)、平均管壁厚度(P<0.001)、最小管壁厚度(P<0.001)、最大管壁厚度(P<0.001)、重构指数(P<0.001)、IPH或血栓体积(P=0.008)IPH或血栓体积占比(P<0.001)明显大于非责任斑块。两组斑块脂质体积、脂质体积占比、纤维化组织体积、钙化组织体积、钙化组织体积占比差异无统计学意义(P>0.05),详见表2

表2  责任斑块与非责任斑块各项特征分析结果
Tab. 2  Results of characteristic analysis of responsible and non-responsible plaques

2.3 斑块特征诊断效能比较

       logistic回归分析显示,斑块的长度[比值比(odds ratio, OR)=1.67,95%置信区间(confidence interval, CI):1.04~1.10]、斑块负荷(OR=3.57,95% CI:1.76~7.24)、重构指数(OR=3.26,95% CI:1.62~6.59)、是否存在IPH或血栓(OR=5.33,95% CI:2.27~12.52)、狭窄度(OR=3.77,95% CI:1.98~7.15)、平均管壁厚度(OR=2.13,95% CI:1.05~4.32)(上述6个参数后文简称“六项危险因素”),以及Plaque-RADS评分(OR=4.66,95% CI:2.35~9.24)为发生ACI的重要危险因素;ROC曲线分析显示,六项危险因素联合预测ACI的曲线下面积(area under the curve, AUC)为0.812(95% CI:0.722~0.902),Plaque-RADS评分预测ACI的AUC为0.815(95% CI:0.732~0.898),Plaque-RADS评分联合管腔狭窄度预测ACI的AUC为0.818(95% CI:0.731~0.906),Plaque-RADS评分联合六项危险因素预测ACI的AUC为0.837(95% CI:0.735~0.921)(图5表3)。DeLong检验结果显示,与Plaque-RADS评分相比,六项危险因素联合、Plaque-RADS评分联合管腔狭窄度、Plaque-RADS评分联合六项危险因素AUC值差异无统计学意义(P>0.05)。

图5  各斑块特征预测ACI的ROC曲线。5A:各斑块特征预测ACI的ROC曲线;5B:Plaque-RADS评分、管腔狭窄度及二者联合预测ACI的ROC曲线;5C:Plaque-RADS评分、六项危险因素联合预测ACI的ROC曲线;5D:Plaque-RADS评分、Plaque-RADS评分联合六项危险因素预测ACI的ROC曲线。ACI:急性脑梗死;ROC:受试者工作特征;Plaque-RADS:斑块影像报告与数据系统。
Fig. 5  ROC curve for predicting ACI with plaque characteristics. 5A: ROC curve of each plaque characteristic predicting ACI; 5B: ROC curve of Plaque-RADS score, luminal stenosis and their combination for predicting ACI; 5C: ROC curve of Plaque-RADS score and six risk factors combination for predicting ACI; 5D: ROC curve of Plaque-RADS score and Plaque-RADS score combined with six risk factors for predicting ACI. ACI: acute cerebral infarction; ROC: receiver operating characteristic; Plaque-RADS: Plaque Reporting and Data System.
表3  各危险因素、Plaque-RADS评分联合管腔狭窄度以及各危险因素联合应用的诊断效能
Tab. 3  Diagnostic efficiency of each risk factor, Plaque-RADS score combined with luminal stenosis, and their combined prediction

3 讨论

       本研究通过HRMR-VWI比较责任斑块和非责任斑块的各项特征,并采用Plaque-RADS评分对斑块特征进行标准化、系统化评估,结果发现斑块的长度、斑块负荷、重构指数、IPH或血栓、管腔狭窄度、平均管壁厚度、Plaque-RADS评分为发生ACI的重要风险因素,Plaque-RADS评分预测ACI的AUC为0.815,诊断效能优于各参数单独预测,表明Plaque-RADS评分在评估斑块危险性方面具有较高的独立性和诊断效能,可作为识别责任斑块和预测ACI风险的重要工具。

3.1 责任斑块与非责任斑块的特征比较结果分析

       HRMR-VWI能够提供精细的血管成像,准确显示斑块的形态特征和微观结构。该技术对于精确评估斑块的组成和位置至关重要,尤其是检测微小斑块或斑块内部的细微变化。此外,HRMR-VWI能够综合反映斑块的不同组成成分,从而提供更全面的斑块评估信息[19]。本研究所分析的图像来自于不同的设备,均采用了头颈联合线圈,而非依赖于特定设备和特定的颈动脉斑块专用线圈,且管壁成像为2D采集,方案简便高效,因此具有较好的推广性和普适性。

       在本研究中,梗死组与非梗死组之间的临床基线资料无显著差异,这表明在后续对斑块的分析是在高风险人群中进行更为深入的筛选。本研究对颈动脉斑块的大小以及管腔狭窄情况进行了更加全面的评估,发现责任斑块的管腔狭窄度、斑块体积、斑块长度、斑块负荷、重构指数以及管壁厚度均较非责任斑块大,责任斑块的最小管腔面积明显小于非责任斑块,提示体积大以及导致管腔狭窄度大的斑块,更易导致ACI的发生,这与既往研究相符[20, 21]

       目前已有学者通过HRMR-VMI对斑块成分进行了深入讨论,研究发现IPH、薄的FC、LRNC均与斑块的不稳定性增加显著相关,其中IPH是轻度至中度颈动脉狭窄患者同侧脑缺血事件的独立危险因素[14, 22, 23]。本研究显示,伴有IPH或血栓且IPH或血栓体积大的斑块更易导致ACI的发生,这可能是由于斑块内部血液成分渗出,导致斑块体积增大,纤维帽变薄,并且增加斑块的炎症反应和坏死[24],从而增加斑块的破裂风险,导致血栓形成,进一步阻塞血管,进而导致ACI的发生。此外,本研究显示责任斑块的纤维化组织体积更小,而两组斑块的纤维化组织体积占比无明显差异,提示两组斑块的纤维成分不仅存在于FC,也可能存在于斑块内部。在纤维化的早期阶段,受损的动脉内皮经历重塑,初始斑块的形成类似于一种保护性反应,有助于维持细胞外基质的稳态。然而,随着纤维化的进一步发展,斑块中的纤维性成分会分泌过量的细胞因子和蛋白水解酶,产生炎症反应,最终导致动脉的收缩性重构[25]。因此,通过分析斑块中纤维化组织体积占比并不能很好地区分责任斑块与非责任斑块。尽管文献普遍认为LRNC更易导致斑块破裂[26, 27],但本研究却显示责任斑块和非责任斑块之间在脂质体积及脂质体积占比无显著差异。这一结果提示斑块破裂的发生不仅仅由脂质体积决定,还可能受到其他因素的影响,如斑块的FC厚度、炎症水平、钙化程度[28, 29]等。因此,在评估斑块时,仅依赖脂质含量可能不足以准确预测斑块的破裂风险。此外,此结果还可能反映出不同个体间斑块病理特征的复杂性,说明脂质体积并非唯一的决定性因素。

       除此之外,钙化是斑块形成的标志性成分,关于颈动脉斑块中钙化组织的作用,不同的研究存在不一致之处。有研究表明,不同形态、大小、位置的钙化可能在斑块稳态中起不同作用,如边缘性钙化可能提示斑块存在炎症活动,更易导致ACI的发生,而致密的结节性钙化则赋予斑块更高的机械稳定性,降低了斑块大小和管腔狭窄所带来的栓塞风险[30, 31, 32],但在颈动脉狭窄程度较高的患者中钙化的意义尚未明确[33]。本研究发现,两组斑块的钙化组织体积及其占比无明显差异,说明颈动脉斑块中钙化组织含量与ACI的发生关系不明显。因此,分析颈动脉斑块含钙化成分时,应更关注其形态及分布。

3.2 Plaque-RADS可用于颈动脉斑块的危险分层评估

       目前,颈动脉斑块的治疗决策仍然基于管腔狭窄程度,本研究发现,斑块长度、斑块负荷、重构指数、IPH或血栓、Plaque-RADS评分、管腔狭窄度以及平均管壁厚度为发生ACI的重要风险因素,这一结果揭示了斑块特征在脑血管疾病中的关键作用。首先,斑块长度和斑块负荷是反映病变严重程度的重要指标,较长的斑块和较高的斑块负荷提示血管堵塞更明显,从而增加ACI的风险。重构指数衡量了血管在病变过程中的适应性重构程度,与斑块负荷密切相关[34],研究表明,冠状动脉斑块的正性重构与心脏缺血事件的发生率高度相关[35]。同样,在颈动脉斑块中,重构指数也是导致ACI发生的重要因素,重构指数高可能表明血管壁在病变区域进行的补偿性扩展,这虽然暂时维持了血管通畅,但同时也暗示了病变的复杂性和潜在不稳定性。IPH或血栓的存在直接增加了斑块破裂的风险,破裂后的斑块更容易诱发ACI[36]。狭窄度直接反映了血管的狭窄程度,严重的狭窄可能导致血流显著减少,增加ACI的发生概率。平均管壁厚度的增加则可能提示血管壁的慢性炎症或纤维化过程,这些病理变化与动脉粥样硬化的发展密切相关。这些因素共同作用,揭示了ACI的多重风险机制。因此,简单的血管狭窄并不足以解释ACI的发生,还需考虑斑块的具体病理特征和结构变化,在临床实践中,应综合评估多个斑块特征,以更准确地预测和防止ACI的发生。未来的治疗策略可能需要针对这些高风险特征进行更有针对性的干预,从而降低ACI发生的风险。

       Plaque-RADS评分作为一种综合评分系统,通过系统化和标准化的方式综合考虑了斑块的多种特征,除了需要通过测量最大管壁厚度来区分2分和3分之外,无须测量其他复杂的数据,即可系统评估斑块的复杂性及其破裂风险,可统一不同机构之间使用术语和评估标准。本研究表明,评分高通常与ACI风险增加相关,Plaque-RADS评分的识别责任斑块的AUC为0.815,诊断效能优于各危险因素单独预测;此外,与Plaque-RADS评分相比,六项危险因素联合、Plaque-RADS评分联合管腔狭窄度、Plaque-RADS评分联合六项危险因素AUC值差异无统计学意义,这表明Plaque-RADS评分在评估斑块危险性方面具有较高的独立性和诊断效能,可作为识别责任斑块和预测ACI风险的重要工具。此结果为Plaque-RADS评分在颈动脉斑块影像学报告中的应用提供了有力的依据,并为颈动脉斑块影像评估提供了新的研究视角。

3.3 本研究的局限性

       本研究的存在以下局限性:(1)本研究样本纳入数量相对较少,研究结果可能存在一定的偏差,需要进一步进行多中心、大样本研究;(2)本研究以是否发生ACI确立责任斑块与非责任斑块,并未进一步分析一过性脑缺血患者的颈动脉斑块特征,可能导致风险分层的不够精准。上述不足之处将在后续多中心、前瞻性的临床研究中不断完善和改进。

4 结论

       综上所述,颈动脉斑块存在IPH或血栓,以及斑块长度、斑块负荷、重构指数、管腔狭窄度、平均管壁厚度、Plaque-RADS评分增加,均会增加同侧发生ACI发生的风险;Plaque-RADS评分可标准化评估颈动脉斑块,提示斑块的危险分层,识别出高风险患者,是发生同侧ACI的有效预测指标。

[1]
BOS D, ARSHI B, VAN DEN BOUWHUIJSEN Q J A, et al. Atherosclerotic carotid plaque composition and incident stroke and coronary events[J]. J Am Coll Cardiol, 2021, 77(11): 1426-1435. DOI: 10.1016/j.jacc.2021.01.038.
[2]
TAN K S, PANDIAN J D, LIU L, et al. Stroke in Asias[J]. Cerebrovasc Dis Extra, 2024, 14(1): 58-75. DOI: 10.1159/000538928.
[3]
HILKENS N A, CASOLLA B, LEUNG T W, et al. Stroke[J]. Lancet, 2024, 403(10446): 2820-2836. DOI: 10.1016/s0140-6736(24)00642-1.
[4]
FEIGIN V L, BRAININ M, NORRVING B, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022[J]. Int J Stroke, 2022, 17(1): 18-29. DOI: 10.1177/17474930211065917.
[5]
TSAO C W, ADAY A W, ALMARZOOQ Z I, et al. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association[J/OL]. Circulation, 2023, 147(8): e93-e621 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/36695182/. DOI: 10.1161/CIR.0000000000001123.
[6]
VAN DER TOORN J E, BOS D, IKRAM M K, et al. Carotid plaque composition and prediction of incident atherosclerotic cardiovascular disease[J/OL]. Circ Cardiovasc Imaging, 2022, 15(3): e013602 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/35196868/. DOI: 10.1161/CIRCIMAGING.121.013602.
[7]
YU M X, YANG D D, ZHANG R H, et al. Carotid atherosclerotic plaque predicts progression of intracranial artery atherosclerosis: a MR imaging-based community cohort study[J/OL]. Eur J Radiol, 2024, 172: 1113002 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/38281437/. DOI: 10.1016/j.ejrad.2024.111300.
[8]
SPENCE J D. Carotid plaque burden is a stronger predictor of cardiovascular risk than IMT[J/OL]. J Am Coll Cardiol, 2022, 80(21): e191 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/36396207/. DOI: 10.1016/j.jacc.2022.08.806.
[9]
FERNÁNDEZ-ALVAREZ V, LINARES-SÁNCHEZ M, SUÁREZ C, et al. Novel Imaging-Based Biomarkers for Identifying Carotid Plaque Vulnerability[J/OL]. Biomolecules, 2023, 13(8): 1236 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/37627301/. DOI: 10.3390/biom13081236.
[10]
BARADARAN H, GUPTA A. Extracranial vascular disease: carotid stenosis and plaque imaging[J]. Neuroimaging Clin N Am, 2021, 31(2): 157-166. DOI: 10.1016/j.nic.2021.02.002.
[11]
BOS D, VAN DAM-NOLEN D H K, GUPTA A, et al. Advances in multimodality carotid plaque imaging: AJR expert panel narrative review[J]. AJR Am J Roentgenol, 2021, 217(1): 16-26. DOI: 10.2214/AJR.20.24869.
[12]
YUAN W Z, LIU X Y, YAN Z R, et al. Association between high-resolution magnetic resonance vessel wall imaging characteristics and recurrent stroke in patients with intracranial atherosclerotic steno-occlusive disease: a prospective multicenter study[J]. Int J Stroke, 2024, 19(5): 569-576. DOI: 10.1177/17474930241228203.
[13]
SABA, CAU R, MURGIA A, et al. Carotid plaque-RADS: a novel stroke risk classification system[J]. JACC Cardiovasc Imaging, 2024, 17(1): 62-75. DOI: 10.1016/j.jcmg.2023.09.005.
[14]
BENSON J C, SABA L, BATHLA G, et al. MR imaging of carotid artery atherosclerosis: updated evidence on high-risk plaque features and emerging trends[J]. AJNR Am J Neuroradiol, 2023, 44(8): 880-888. DOI: 10.3174/ajnr.A7921.
[15]
ZHAI S J, JIA L, KUKUN H J, et al. Predictive power of high-resolution vessel wall magnetic resonance imaging in ischemic stroke[J]. Am J Transl Res, 2022, 14(1): 664-671.
[16]
PAKIZER D, KOZEL J, ELMERS J, et al. Diagnostics accuracy of magnetic resonance imaging in detection of atherosclerotic plaque characteristics in carotid arteries compared to histology: a systematic review[J/OL]. J Magn Reson Imaging, 2024 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/38981139/. DOI: 10.1002/jmri.29522.
[17]
CHENG X Q, LIU J, LI H X, et al. Incremental value of enhanced plaque length for identifying intracranial atherosclerotic culprit plaques: a high-resolution magnetic resonance imaging study[J/OL]. Insights Imag, 2023, 14(1): 99 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/37227551/. DOI: 10.1186/s13244-023-01449-y.
[18]
中华医学会外科学分会血管外科学组. 颈动脉狭窄诊治指南[J]. 中华血管外科杂志, 2017, 2(2): 78-84. DOI: 10.3760.cma.j.issn.2096-1863.2017.02.003.
Vascular Surgery Group of Surgical Society of Chinese Medical Association. Guidelines for diagnosis and treatment of carotid artery stenosis[J]. Chin J Vasc Surg, 2017, 2(2): 78-84. DOI: 10.3760.cma.j.issn.2096-1863.2017.02.003.
[19]
VAN DAM-NOLEN D H K, TRUIJMAN M T B, VAN DER KOLK A G, et al. Carotid plaque characteristics predict recurrent ischemic stroke and TIA: the PARISK (plaque At RISK) study[J]. JACC Cardiovasc Imaging, 2022, 15(10): 1715-1726. DOI: 10.1016/j.jcmg.2022.04.003.
[20]
PERET A, ROMERO-SANCHEZ G, DABIRI M, et al. MR angiography of extracranial carotid disease[J]. Magn Reson Imaging Clin N Am, 2023, 31(3): 395-411. DOI: 10.1016/j.mric.2023.04.003.
[21]
ZHANG Y, BAI Y, XIE J, et al. Carotid plaque components and other carotid artery features associated with risk of stroke: a systematic review and meta-analysis[J/OL]. J Stroke Cerebrovasc Dis, 2022, 31(12): 106857 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/36334373/. DOI: 10.1016/j.jstrokecerebrovasdis.2022.106857.
[22]
BENSON J C, CHEEK H, AUBRY M C, et al. Cervical carotid plaque MRI: review of atherosclerosis imaging features and their histologic underpinnings[J]. Clin Neuroradiol, 2021, 31(2): 295-306. DOI: 10.1007/s00062-020-00987-y.
[23]
YUAN C, CANTON G, HATSUKAMI T S. Unfinished debate: why IPH-based metrics are still needed-An Editorial for "Signal intensity and volume of carotid intraplaque hemorrhage on magnetic resonance imaging and the risk of ipsilateral cerebrovascular events: the Plaque At RISK (PARISK) study"[J/OL]. J Cardiovasc Magn Reson, 2024, 26(2): 101071 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/39121951/. DOI: 10.1016/j.jocmr.2024.101071.
[24]
BALMOS I A, SLEVIN M, BRINZANIUC K, et al. Intraplaque neovascularization, CD68+ and iNOS2+ macrophage infiltrate intensity are associated with atherothrombosis and intraplaque hemorrhage in severe carotid atherosclerosis[J/OL]. Biomedicines, 2023, 11(12): 3275 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/38137496/. DOI: 10.3390/biomedicines11123275.
[25]
SINGH S, TORZEWSKI M. Fibroblasts and their pathological functions in the fibrosis of aortic valve sclerosis and atherosclerosis[J/OL]. Biomolecules, 2019, 9(9): 472 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/31510085/. DOI: 10.3390/biom9090472.
[26]
TAO L, WANG X H, LI X Q, et al. Intracranial plaque with large lipid core is associated with embolic stroke of undetermined source[J]. Ann Clin Transl Neurol, 2023, 10(3): 363-372. DOI: 10.1002/acn3.51726.
[27]
GIMNICH O A, ZIL-E-ALI A, BRUNNER G. Imaging approaches to the diagnosis of vascular diseases[J]. Curr Atheroscler Rep, 2022, 24(2): 85-96. DOI: 10.1007/s11883-022-00988-x.
[28]
BALMOS I A, HORVÁTH E, BRINZANIUC K, et al. Inflammation, microcalcification, and increased expression of osteopontin are histological hallmarks of plaque vulnerability in patients with advanced carotid artery stenosis[J/OL]. Biomedicines, 2023, 11(3): 881 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/36979863/. DOI: 10.3390/biomedicines11030881.
[29]
GONG X, YU C, LU Z, et al. Residual inflammatory risk and vulnerable plaque in the carotid artery in patients with ischemic stroke[J/OL]. Front Neurol, 2024, 15: 1325960 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/38721119/. DOI: 10.3389/fneur.2024.1325960.
[30]
SABA, NARDI V, CAU R, et al. Carotid artery plaque calcifications: lessons from histopathology to diagnostic imaging[J]. Stroke, 2022, 53(1): 290-297. DOI: 10.1161/STROKEAHA.121.035692.
[31]
SUN Y M, XU H Y, WANG S, et al. Carotid massive intraplaque hemorrhage, lipid-rich necrotic core, and heavy circumferential calcification were associated with new ipsilateral ischemic cerebral lesions after carotid artery stenting: high-resolution magnetic resonance vessel wall imaging study[J]. Cardiovasc Diagn Ther, 2023, 13(2): 355-366. DOI: 10.21037/cdt-22-543.
[32]
FU F L, LIU X L, ZHANG R, et al. Prevalence and clinical implications of calcification in internal carotid artery stenosis: a retrospective study[J/OL]. BMC Neurol, 2024, 24(1): 279 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/39127616/. DOI: 10.1186/s12883-024-03788-9.
[33]
HOMSSI M, SAHA A, DELGADO D, et al. Extracranial carotid plaque calcification and cerebrovascular ischemia: a systematic review and meta-analysis[J]. Stroke, 2023, 54(10): 2621-2628. DOI: 10.1161/STROKEAHA.123.042807.
[34]
LUO J C, BAI X S, TIAN Q Y, et al. Patterns and implications of artery remodeling based on high-resolution vessel wall imaging in symptomatic severe basilar artery stenosis[J]. Quant Imaging Med Surg, 2023, 13(4): 2098-2108. DOI: 10.21037/qims-22-771.
[35]
KINOSHITA D, SUZUKI K, YUKI H, et al. Coronary plaque phenotype associated with positive remodeling[J]. J Cardiovasc Comput Tomogr, 2024, 18(4): 401-407. DOI: 10.1016/j.jcct.2024.04.009.
[36]
PARMA L, DUCHENE J, WEBER C. Breaking point: how intraplaque hemorrhage propels plaque rupture[J]. Circ Res, 2024, 135(2): 317-319. DOI: 10.1161/CIRCRESAHA.124.324795.

上一篇 基于颅内动脉粥样硬化斑块特征和表观扩散系数直方图在预测缺血性脑卒中复发中的联合分析
下一篇 三维准连续式动脉自旋标记在诊断鼻咽癌颈部小淋巴结转移瘤中的应用价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2