分享:
分享到微信朋友圈
X
临床研究
基于DCE-MRI和DWI瘤内及瘤周的影像组学预测乳腺癌HER-2状态的价值
王雨薇 孙敏 刘凤海 康立清 全帅

Cite this article as: WANG Y W, SUN M, LIU F H, et al. Value of intratumoral and peritumoral radiomics based on DCE-MRI and DWI in predicting HER-2 status in breast cancer[J]. Chin J Magn Reson Imaging, 2024, 15(12): 116-123.本文引用格式:王雨薇, 孙敏, 刘凤海, 等. 基于DCE-MRI和DWI瘤内及瘤周的影像组学预测乳腺癌HER-2状态的价值[J]. 磁共振成像, 2024, 15(12): 116-123. DOI:10.12015/issn.1674-8034.2024.12.017.


[摘要] 目的 探讨基于动态对比增强磁共振成像(dynamic contrast-enhanced magnetic resonance imaging, DCE-MRI)和扩散加权成像(diffusion-weighted imaging, DWI)的瘤内及瘤周影像组学预测乳腺癌人表皮生长因子受体2(human epidermal growth factor receptor-2, HER-2)状态的价值。材料与方法 回顾性分析246例经术后病理证实的乳腺癌患者的临床及影像学资料,按7∶3比例随机分为训练组和验证组。采用ITK-SNAP软件手动勾画病灶瘤内感兴趣区,使用PHIgo-AK软件进行瘤周的扩展并提取瘤内及瘤周的影像组学特征。采用最小冗余最大相关(max-relevance and min-redundancy, mRMR)算法等选择DCE-MRI、DWI瘤内及瘤周的最优特征数。分别建立单序列及联合序列的影像组学模型,采用受试者工作特征(receiver operating characteristic, ROC)曲线对各模型的预测效能进行分析,并计算曲线下面积(area under the curve, AUC),选出预测效能最高的模型,在训练组中从临床及常规影像学特征中通过单因素logistic回归筛选出预测HER-2状态的独立危险因素,结合预测效能最高模型的影像组学标签评分(radiomic score, rad-score)建立融合模型,并以诺模图(nomogram)展示,采用AUC值,决策曲线分析(decision curve analysis, DCA)评估模型的效能及临床价值。结果 基于DCE-MRI和DWI瘤内及瘤周的影像组学联合模型预测HER-2状态的AUC值在训练组和验证组分别为0.953和0.948,效能最高。肿瘤最大径是区分乳腺癌HER-2状态的独立危险因素,最终结合rad-score和肿瘤最大径建立的融合模型对乳腺癌HER-2状态有良好的预测效能,在训练组的AUC值为0.961,验证组为0.958。结论 基于DCE-MRI和DWI瘤内及瘤周的影像组学方法对乳腺癌HER-2状态的预测具有良好的价值。
[Abstract] Objective To explore the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) based intratumoral and peritumoral radiomics methods in predicting the status of human epidermal growth factor receptor 2 (HER-2) in breast cancer.Materials and Methods Clinical and imaging data of 246 patients with pathologically proven breast cancer were retrospectively analyzed and randomly divided into training group and verification group according to a ratio of 7∶3. ITK-SNAP software was used to manually outline the intratumoral areas of interest, and PHIgo-AK software was used to expand the peritumoral and extract the intratumoral and peritumoral radiomics features. The optimal number of intratumor and peritumor features of DCE-MRI and DWI were selected by max-relevance and min-redundancy (mRMR) algorithm. Radiomics models of single sequence and combined sequence were established respectively, and the prediction efficiency of each model was analyzed by receiver operating characteristic (ROC) curve. The area under the curve (AUC) was calculated to select the model with the highest predictive efficiency. Independent risk factors for predicting HER-2 status were screened from clinical and routine imaging features in the training group through single logistic regression. A fusion model was established by combining the radiomic score (rad-score) of the model with the highest predictive power, and then presented by nomogram. AUC value, decision curve analysis and DCA were used to evaluate the efficacy and clinical value of the model.Results The combined intratumoral and peritumoral imaging model based on DCE-MRI and DWI predicted the AUC value of HER-2 status in the training group and the verification group, which were 0.953 and 0.948, respectively, with the highest efficiency. Tumor maximum diameter is an independent risk factor for distinguishing breast cancer HER-2 status. Finally, the fusion model established by combining rad-score and tumor maximum diameter has good predictive efficacy for breast cancer HER-2 status, with the AUC value of 0.961 in the training group and 0.958 in the verification group.Conclusions The intratumoral and peritumoral radiomic methods based on DCE-MRI and DWI have good value in the prediction of breast cancer HER-2 status.
[关键词] 乳腺癌;人类表皮生长因子受体2;影像组学;瘤周;磁共振成像;动态对比增强磁共振成像;扩散加权成像
[Keywords] breast cancer;human epidermal growth factor receptor 2;radiomics;peritumor;magnetic resonance imaging;dynamic contrast-enhanced magnetic resonance imaging;diffusion-weighted imaging

王雨薇 1   孙敏 2*   刘凤海 2   康立清 2   全帅 3  

1 河北医科大学附属沧州市中心医院磁共振成像科,沧州 061000

2 沧州市中心医院磁共振成像科,沧州 061000

3 通用电气药业(上海)有限公司,上海 210000

通信作者:孙敏,E-mail: 63986578@qq.com

作者贡献声明:孙敏设计本研究的方案,对稿件重要内容进行了修改;王雨薇负责起草和撰写稿件,获取、分析和解释本研究的数据,刘凤海、康立清及全帅获取、分析或解释本研究的数据,对稿件重要内容做出了修改;孙敏获得了河北省医学科学研究课题计划项目资助。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 河北省医学科学研究课题计划 20241572
收稿日期:2024-08-27
接受日期:2024-12-10
中图分类号:R445.2  R737.9 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.12.017
本文引用格式:王雨薇, 孙敏, 刘凤海, 等. 基于DCE-MRI和DWI瘤内及瘤周的影像组学预测乳腺癌HER-2状态的价值[J]. 磁共振成像, 2024, 15(12): 116-123. DOI:10.12015/issn.1674-8034.2024.12.017.

0 引言

       在2024年国际癌症研究机构发布了2022年全球癌症统计数据,结果显示女性乳腺癌新发约230万人,发病率为11.5%,仅次于肺癌(12.4%)成为全球发病率第二高的癌症[1]。并且乳腺癌作为一种异质性肿瘤[2],不同个体表现出不同的治疗效果及预后,准确诊断乳腺癌的分子分型至关重要。人表皮生长因子受体2(human epidermal growth factor receptor-2, HER-2)是乳腺癌生物学标志物之一[3],在大约20%~25%的乳腺癌中扩增或过表达[4],其状态对乳腺癌患者的治疗与预后有重要指导作用[5, 6, 7],目前对于HER-2状态的检出主要依靠穿刺或术后的免疫组织化学(immunohistochemical, IHC)检测,但由于穿刺活检有创[8],且部分组织有时很难代表肿瘤整体的性质,此外,当IHC结果为2+时还需要进行荧光原位杂交(fluorescence in situ hybridization, FISH)法检测,而该检测费时且成本高,并且HER-2阳性乳腺癌患者的确诊时间影响患者的肿瘤分期[9]。所以HER-2状态的及时、准确检出对乳腺癌患者的治疗与预后有重要作用。影像组学则可以无创地从影像图像中提取人眼无法观察到的定量的影像特征,获取更多的信息[10, 11],有关影像组学在乳腺癌方面的应用近年来成为热点。早期有关HER-2状态的影像组学研究多集中在瘤内[12, 13],预测效能相对较低,既往有研究表明瘤周可能具有与肿瘤发生发展的相关信息[14],有关瘤周的研究逐渐兴起。有研究[15]基于动态对比增强磁共振成像(dynamic contrast-enhanced magnetic resonance imaging, DCE-MRI)瘤内及瘤周的影像组学预测乳腺癌的HER-2状态,提高了模型的预测效能。DCE-MRI能够更加客观地反映病灶与周围组织的对比差异[16];扩散加权成像(diffusion-weighted imaging, DWI)能够反映出肿瘤组织与周围正常结构因弥散速度不同而导致的信号差异[17]。但目前尚缺乏基于DCE-MRI和DWI瘤内及瘤周的影像组学并结合临床独立危险因素预测乳腺癌HER-2状态的相关研究,因此,本研究旨在探讨基于DCE-MRI和DWI瘤内及瘤周(5 mm)的影像组学预测乳腺癌HER-2状态的价值,并结合临床独立危险因素构建融合模型,以期为临床上识别乳腺癌的HER-2状态提供新的方法。

1 材料与方法

1.1 研究对象

       回顾性分析2019年1月至2023年10月沧州市中心医院经病理证实的乳腺癌患者,调取患者的临床及影像学资料。纳入标准:(1)术后行IHC及必要时的FISH检测;(2)肿块性病变;(3)单侧单发病灶;(4)有完整的临床及病理确诊乳腺癌资料;(5)未进行活检及放化疗;(6)有完整的MRI资料。排除标准:(1)图像质量不佳及病灶大小<1 cm,不易勾画肿块边缘者;(2)既往有其他恶性肿瘤病史。最终入组246例,将病例按照7∶3的比例随机分为训练组(n=172)和验证组(n=74)。本研究遵守《赫尔辛基宣言》,经沧州市中心医院医学伦理委员会批准,免除受试者知情同意(批准文号:2023-279-01)。

1.2 仪器与方法

       所有患者的图像均使用GE Signa Discovery MR750W 3.0 T MR扫描仪(GE Healthcare, Milwakee, WI, USA)扫描获取,患者俯卧位,采用乳腺专用线圈(8通道),DWI序列扫描参数:TR 2 891.8 ms,TE 71.2 ms,层厚5 mm,层间距1 mm,FOV 400 mm×400 mm,矩阵128×128,b=0或800 s/mm2;DCE-MRI序列扫描参数:TR 7.3 ms,TE 1.2 ms,层厚2 mm,无间距,FOV 360 mm×360 mm,矩阵288×288。注射对比剂前先扫蒙片,从第2期开始经肘静脉注射,再连续扫描7期,每期60 s,总时间为480 s。对比剂为钆双胺[10 mL∶2.87 g通用电气药业(上海)有限公司],注射对比剂后用20~30 mL生理盐水冲洗。将入组图像从本院后处理工作站中以DICOM格式导出。

1.3 乳腺癌HER-2状态的病理学评价

       所有乳腺癌患者的HER-2状态根据美国病理学家学会临床实践指南,采用IHC或FISH进行检测[18],IHC结果为0/1+定义为HER-2阴性,IHC结果3+定义为HER-2阳性。如果IHC结果为2+,则进行FISH最终确定HER2状态,FISH阳性则HER-2为阳性,若FISH结果为阴性则HER-2状态为阴性。

1.4 临床及常规影像学特征评价

       采集乳腺癌患者的年龄、是否绝经、肿瘤最大径、是否有腋窝淋巴结转移、表观扩散系数(apparent diffusion coefficient, ADC)值等资料。

       使用R软件(版本4.3.0,https://www.r-project.org)对训练组中患者的年龄、是否绝经、肿瘤最大径、是否有腋窝淋巴结转移、ADC值(为避免与影像组学特征混淆,肿瘤最大径、是否有腋窝淋巴结转移、ADC值等非影像组学的MRI特征被包括在临床基线特征内)进行单因素logistic回归分析筛选出最优特征,作为预测乳腺癌HER-2状态的独立危险因素。

1.5 图像分割及影像组学特征提取

       将246例患者的DWI、DCE-MRI(本研究根据时间信号曲线选择强化最明显的时期)图像导入开源软件ITK-SNAP(version 3.8.0, http://www.itksnap.org)上,由一名具有2年工作经验的放射科住院医师对瘤内的感兴趣区(region of interest, ROI)进行逐层勾画,考虑到肿瘤异质性分析的重要性以及需要进行瘤周的自动扩张,在勾画时包括肿瘤坏死、囊变区,边界欠清晰时两个序列互相参照,勾画完成后由另外一位具有10年以上工作经验的放射科副主任医师进行检查,如果意见不一致时将请另外一位具有20年以上工作经验的放射科主任医师进行商讨后再确定肿瘤的边界,逐层勾画生成三维容积感兴趣区(volume of interest, VOI),使用PHIgo-AK软件(Version 3.2, GE Healthcare Analysis Kit)进行瘤周5 mm的扩展(图1)。

       为将图像灰度值调整为标准正态分布,在提取影像组学特征之前,需要对原始图像使用Z-Score标准法进行图像体素归一化处理,之后使用pyradiomics软件包,提取各个序列瘤内及瘤周的影像组学特征,包括:形状学特征,一阶特征,灰度共生矩阵(gray-level co-occurrence matrix, GLCM)特征,灰度大小区域矩阵(gray-level size zone matrix, GLSZM)特征,灰度游程矩阵(gray-levelrun-length matrix, GLRLM)特征,灰度相关矩阵(gray-level dependencematrix, GLDM)特征,相邻灰度差矩阵(neighbouring gray tone differenceMatrix, NGTDM),LoG Sigma特征,Wavelet特征,LBP特征。

图1  女,45岁,乳腺浸润性导管癌。1A:乳腺动态对比增强磁共振(DCE-MRI)图像,红色区域为病灶最大截面的瘤内感兴趣区;1B:瘤内病灶的三维容积感兴趣区;1C:乳腺DCE-MRI图像,红色区域为自动外扩5 mm的瘤周图像。
Fig. 1  A 45-year-old woman with invasive ductal carcinoma of the breast. 1A: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the breast. The red area is the intratumoral area of interest with the largest cross-section of the lesion; 1B: 3D volume area of interest of intratumoral lesions; 1C: DCE-MRI image of the breast. The red area is the peritumoral image with automatic outward expansion of 5 mm.

1.6 特征筛选及模型的建立

       为了防止样本过拟合,首先采用最小冗余最大相关(max-relevance and min-redundancy, mRMR)算法去除冗余和不相关的特征,然后使用方差分析、相关性分析、单因素逻辑回归分析、多因素逻辑回归分析、最小绝对收缩和选择算子(least absolute shrinkage and selection operator, LASSO)回归进行降维筛选,分别选择DCE-MRI、DWI、DCE-MRI+DWI联合序列瘤内、瘤周以及瘤内+瘤周的最优特征数,图2为DCE-MRI+DWI联合序列瘤内+瘤周影像组学模型LASSO回归的特征筛选过程。使用逻辑回归(logistic regression, LR)作为分类器,基于DCE-MRI和DWI分别建立瘤内及瘤周模型。采用受试者工作特征(receiver operating characteristic, ROC)曲线分析计算曲线下面积(area under the curve, AUC)、敏感度、特异度及准确度,选出最优模型,并将其结合筛选出的独立危险因素构建融合模型。为了确保结果的可重复性,在数据划分、模型训练和评估过程中,设置了随机种子,以固定随机数生成的初始状态,从而保证每次实验结果的一致性。

图2  动态对比增强磁共振(DCE-MRI)+扩散加权成像(DWI)联合序列瘤内+瘤周影像组学特征降维筛选示意图。2A:使用最小绝对收缩和选择算子(LASSO)算法获得二项偏差最小的最优对数(λ)值;2B:不同纹理特征的LASSO收敛系数图。
Fig. 2  Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) + diffusion-weighted imaging (DWI) combined with sequence intratumoral + peritumoral imaging feature dimension reduction screening diagram. 2A: Use the least absolute shrinkage and selection operator (LASSO) algorithm to obtain the optimal logarithm (λ) value graph with the least binomial deviation; 2B: LASSO convergence coefficient graph for different texture features.

1.7 统计学分析

       统计学分析在R软件和SPSS 25.0软件上进行,定义P<0.05为差异有统计学意义。训练组的数据被用来建立模型,验证组的数据被用来验证和评估模型。患者的临床及影像资料中,计量资料中符合正态分布的用均数±标准差表示,采用独立样本t检验。计数资料采用例数(%)表示,采用卡方检验。构建的融合模型以诺模图的形式展示,使用校准曲线评估模型的一致性,使用决策曲线分析(decision curve analysis, DCA)评估模型的临床应用价值。通过Hosmer-Lemeshow检验评价诺模图的拟合优度。采用DeLong检验对各模型的AUC值进行比较。

2 结果

2.1 患者的基线特征以及独立危险因素的筛选

       本研究共纳入了246名患者,训练组172名患者,其中HER-2阳性者36名,阴性者136名,验证组共74名患者,其中HER-2阳性者16名,阴性者58名。对训练组及验证组的临床基线资料进行统计学分析(表1)。结果显示,肿瘤最大径差异具有统计学意义(P<0.05)。其余指标:年龄、是否绝经、腋窝淋巴结转移、ADCmean、ADCmin、ADCmax在训练组与验证组差异均不具有统计学意义(P>0.05)。

       对训练组中年龄、是否绝经、肿瘤最大径、是否有腋窝淋巴结转移、ADC值进行单因素logistic回归分析(表2),得出肿瘤最大径为预测乳腺癌HER-2状态的独立危险因素(OR=1.044,P=0.015)。

表1  临床资料基线特征
Tab. 1  Clinical data baseline characteristics
表2  训练组临床特征的单因素logistic回归分析
Tab. 2  Univariate and multivariate logistic regression analysis of baseline characteristics in the training group

2.2 影像组学特征提取和影像组学模型的构建

       经过降维筛选,最终保留的特征如下:DCE-MRI序列瘤内、瘤周、瘤内+瘤周对应保留的特征数分别为4、2、7个;DWI序列瘤内、瘤周、瘤内+瘤周对应保留3、3、5个特征;DCE-MRI+DWI联合序列瘤内、瘤周、瘤内+瘤周对应保留6、7、16个特征。DCE-MRI+DWI联合序列瘤内+瘤周模型的影像组学标签评分(radiomic score, rad-score)公式见式(1)。各特征系数见表3

       其中,Xi为选择的特征值,Ci为选择的特征值的回归系数,b为截距,值为-3.025。

       本研究分别基于DCE-MRI、DWI、DWI+DCE-MRI所筛选出的特征构建影像组学模型,共建立了9个模型(表4表5图3),结果显示在训练组中各模型的预测效能为DCE-MRI序列瘤内模型[AUC=0.815,95%置信区间(confidence interval, CI):0.752~0.874],瘤周模型(AUC=0.730,95% CI:0.654~0.800),DWI序列瘤内模型(AUC=0.803,95% CI:0.738~0.860),瘤周模型(AUC=0.731,95% CI:0.666~0.795)。当将两个序列联合后的预测效能为瘤内(AUC=0.879,95% CI:0.800~0.947)、瘤周(AUC=0.810,95% CI:0.753~0.866)。此外无论是单序列还是联合序列,瘤内+瘤周模型的AUC值总是更高,DCE-MRI、DWI、DWI+ DCE-MRI联合序列瘤内+瘤周模型在训练组中的AUC值分别为 0.876、0.822、0.953,验证组中分别为0.851、0.802、0.948,这表明肿瘤内和肿瘤周围区域可能具有互补的信息。同时根据所计算出的AUC值、敏感度、特异度、准确度结果得出DWI+DCE-MRI联合序列瘤内+瘤周模型性能最佳,其 AUC值在训练组为0.953,验证组为0.948,准确度为92.4%、敏感度为86.1%、特异度为94.1%。DeLong检验显示训练组中DWI+ DCE-MRI联合序列瘤内+瘤周模型与DWI瘤内+瘤周模型差异具有统计学意义(Z=-3.050,P=0.002),但与DCE-MRI瘤内+瘤周模型差异无统计学意义(Z=-1.613,P=0.107)。在本研究后期选择 DWI+DCE-MRI联合序列瘤内+瘤周作为最佳影像组学模型,用于进一步建立融合模型。

图3  训练组(3A)及验证组(3B)各个模型的ROC曲线。DCE:DCE-MRI瘤内模型;DCE5:DCE-MRI瘤周模型;DCEDCE5:DCE-MRI瘤内+瘤周模型;DWI:DWI瘤内模型;DWI5:DWI瘤周模型;DWIDWI5:DWI瘤内+瘤周模型;DCEDWI:DCE-MRI+DWI瘤内模型;DCE5DWI5:DCE-MRI+DWI瘤周模型;Combine:DCE-MRI+DWI联合序列瘤内+瘤周模型。ROC:受试者工作特征;AUC:曲线下面积;DCE:动态对比增强;DWI:扩散加权成像。
Fig. 3  ROC curves of each model in the training group (3A) and validation group (3B). DCE: DCE-MRI intratumoral model; DCE5: DCE-MRI peritumoral model; DCEDCE5: DCE-MRI intratumoral + peritumoral model; DWI: DWI intratumoral model; DWI5: DWI peritumoral model; DWIDWI5: DWI intratumoral + peritumoral model; DCEDWI: DCE-MRI+DWI intratumoral model; DCE5DWI5: DCE-MRI+DWI peritumoral model; Combine: DCE-MRI+DWI combined sequence intratumoral + peritumoral model. ROC: receiver operating characteristic; AUC: area under the curve; DCE: dynamic contrast-enhanced; DWI: diffusion-weighted imaging.
表3  DWI+DCE-MRI瘤内及瘤周影像组学模型的特征系数表
Tab. 3  Feature coefficients of DWI+DCE-MRI intratumoral and peritumoral imaging models
表4  训练组中各模型的诊断性能
Tab. 4  Diagnostic performance of each model in the training group
表5  验证组中各模型的诊断性能
Tab. 5  verifies the diagnostic performance of each model in the group

2.3 融合模型的构建

       经统计分析得出肿瘤最大径是预测乳腺癌HER-2状态的独立危险因素,将其与 DCE-MRI+DWI联合序列瘤内+瘤周影像组学模型的rad-score联合构建融合模型,结果在训练组的AUC为0.961,验证组为0.958(表4表5图3),并以诺模图的形式展示(图4)。该模型的校准曲线接近于理想曲线(图5)。DCA显示当阈值概率范围在0~0.9时训练组融合模型的净收益最大,并且临床应用价值更高(图6)。融合模型的Hosmer-Lemeshow 检验结果在训练组(P=0.192)、验证组(P=0.845)差异均不具有统计学意义,说明该模型的拟合优度较好。

图4  融合模型预测乳腺癌人表皮生长因子受体2(HER-2)状态的影像组学诺模图。动态对比增强磁共振成像(DCE-MRI)+扩散加权成像(DWI)联合序列瘤内+瘤周模型和肿瘤最大径建立的诺模图,Points表示每一个变量所对应的分数,不同的rad-score及肿瘤最大径对应的分数不同,将分数相加即为每一例患者所得的最终总分。通过最终总分即可读出对应的预测HER-2阳性的风险。
Fig. 4  Radiomics nomogram of fusion model predicting human epidermal growth factor receptor-2 (HER-2) status of breast cancer. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)+diffusion-weighted imaging (DWI) combined with sequences of intratumoral+peritumoral model and tumor maximum diameter, Points represent the number of points corresponding to each variable. The number of Points corresponding to different rad-scores and maximum tumor diameter is different, and the sum of the scores is the final total points obtained by each patient. The corresponding risk of predicting positive HER-2 can be read out from the final score.
图5  动态对比增强磁共振成像(DCE-MRI)+扩散加权成像(DWI)联合序列瘤内+瘤周模型(combine)与诺模图(nomogram)在训练组(5A)和验证组(5B)的校准曲线。
Fig. 5  Calibration curves of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) + diffusation-weighted imaging (DWI) combined sequence intratumoral + peritumoral model (combine) with nomogram in training group (5A) and validation group (5B).
图6  动态对比增强磁共振成像(DCE-MRI)+扩散加权成像(DWI)联合序列瘤内+瘤周模型(combine)与诺模图(nomogram)在训练组(6A)和验证组(6B)的决策曲线分析(DCA)。All表示所有患者均为人表皮生长因子受体2(HER-2)表达阳性;None表示所有患者均为HER-2表达阴性。
Fig. 6  Decision curve analysis (DCA) of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) + diffusation-weighted imaging (DWI) combined sequence intratumoral + peritumoral models (combine) with nomogram in training group (6A) and validation group (6B). All indicated that all patients had positive expression of human epidermal growth factor receptor-2 (HER-2). None indicated negative HER-2 expression in all patients.

3 讨论

       本研究基于乳腺癌患者的DCE-MRI和DWI瘤内及瘤周的影像组学标签,分别建立单序列及联合序列的影像组学模型,探讨预测乳腺癌患者HER-2状态的价值。最终在构建的各模型中基于DCE-MRI+DWI联合序列瘤内+瘤周的影像组学模型最优,将其rad-score联合独立危险因素即肿瘤最大径建立融合模型,结果显示融合模型的AUC值在训练组和验证组分别为0.961及0.958,为构建的所有模型中最高。本研究将DCE-MRI和DWI瘤内及瘤周的影像组学特征以及临床独立危险因素同时纳入研究,能够获得更多的信息,构建出优于只分析瘤内或单序列的模型,在预测乳腺癌的HER-2状态方面表现出良好的价值,并且结合临床独立危险因素肿瘤最大径构建的影像组学诺模图及其DCA曲线均显示出一定的临床价值。

3.1 影像组学对乳腺癌HER-2状态预测的价值

       有学者指出HER-2阳性乳腺癌通常与肿瘤复发风险相关[19],许多研究表明[20, 21, 22]HER-2阳性患者靶向治疗有利于降低其复发风险及死亡风险,改善患者的无病生存期。因此,早期且准确识别乳腺癌患者的HER-2状态具有重要作用。近年来各种成像方式在乳腺癌影像组学有关HER-2状态的方面均有研究,如超声[23, 24]、钼靶[25, 26]、PET-MRI[27]等。MRI具有高软组织分辨率,在乳腺癌的诊断上具有显著优势[28, 29]。既往有许多研究表明基于MRI的影像组学对乳腺癌HER-2状态预测的价值。YUE等[12]基于DCE-MRI通过自动分割的方法进行影像组学特征的提取,建模后的影像组学模型在区分乳腺癌HER-2阳性与阴性方面表现出良好的预测效能,AUC值达到了0.867。ZHOU等[13]则同时研究了T2WI、DCE-MRI序列,结果显示联合模型最优,在区分乳腺癌HER-2状态方面的AUC值超过了0.8,刘婷婷等[30]基于多参数MRI对乳腺癌的HER-2状态进行研究,结果也显示多参数模型预测效能最佳(训练集及测试集的AUC值分别为0.932、0.906),体现出相对于单序列,多序列往往会获得更多的信息,DCE-MRI能够更加客观地反映病灶与周围组织的对比差异,并且能获得组织血管通透性等信息[16];DWI能够检测不同组织的水分子运动,反映出肿瘤组织与周围正常结构因弥散速度不同而导致的信号差异[17],均是乳腺癌诊断中十分重要的序列,因此,本研究选取了DCE-MRI和DWI两个序列,在各模型中,DCE-MRI+DWI序列构建的模型总能获得更高的AUC值。

       此外,近年来引入了HER-2低表达这一概念,有研究表明新型抗体靶向药物在乳腺癌HER-2低表达患者中有一定的治疗价值[31],有关HER-2低表达的研究逐渐兴起,指的是IHC检测结果为1+或2+,且FISH检测结果为阴性[32]。有学者[33, 34]通过影像组学的方法对HER-2低表达状态进行预测,并取得了较好的效果。本研究尚未将HER-2低表达纳入研究,未来需要进一步完善。

3.2 瘤内及瘤周的影像组学在乳腺癌方面的应用

       既往的研究多集中在瘤内,而有研究表明[14, 35, 36]肿瘤周围区域的一些特征如瘤周水肿等可能促进癌症的进展,也可能与血管生成、淋巴管和血管的瘤周浸润等有关。LI等[37]基于DCE-MRI的参数图进行瘤内及瘤周的特征提取并建立影像组学模型,结果基于瘤内、瘤周、瘤内+瘤周构建的模型在预测乳腺癌患者HER-2状态的AUC值分别为0.773、0.784、0.808,可以看出联合瘤周后模型的AUC值有所提高,但该研究只用了DCE-MRI序列,该学者后续基于DWI和ADC图像中的瘤内、瘤周和瘤内+瘤周特征计算了三个rad-score,预测乳腺癌患者的HER-2阳性和阴性状态,结果联合影像组学评分(com-rad-score)最优,进一步体现了瘤周对预测乳腺癌HER-2状态的价值[38],这与本研究的结果一致。本研究将瘤周纳入到研究中来,结果显示无论是基于DCE-MRI、DWI序列还是两者的联合序列,瘤内+瘤周模型的结果均为最优。但是,该研究[38]的ROI只选取了肿瘤最大层面,并且没有分别研究各序列的预测价值,而本研究则逐层勾画ROI最终生成三维VOI,并且分别研究了单序列及联合序列瘤内及瘤周的预测效能。我们还发现,尽管周晶等[39]的研究是基于多参数MRI瘤内和瘤周的影像组学进行的有关乳腺癌HER-2状态的预测,但该研究没有构建影像组学诺模图,而在本研究还筛选出了独立危险因素即肿瘤最大径,建立了影像组学诺模图,对临床上识别乳腺癌HER-2状态有一定的意义。

       对于瘤周的范围目前尚无统一的定论。有学者[37, 39]选择瘤内及肿瘤周围4 mm的影像组学方法预测乳腺癌患者HER-2状态。DING等[40]创新性地研究了瘤周不同的范围,基于DCE-MRI瘤内及瘤周(分别选择了2、4、6、8 mm)对乳腺癌前哨淋巴结的状态进行预测,研究了两位放射科医师勾画的ROI,最终在训练集与验证集分别产生了不同的预测效能。BRAMAN等[41]将瘤周区域定义为2.5~5 mm不等的区域,对乳腺癌患者新辅助化疗后的效果进行预测,该学者后续还研究了肿瘤周围5个直径为3 mm的环形区域,对乳腺癌HER-2阳性的内在分子亚型及靶向治疗效果进行研究,建模分析后均显示出一定的价值[42]。张成孟等[43]及明洁等[44]则基于DCE-MRI瘤内及瘤周(5 mm)进行影像组学的研究,分别探讨对乳腺癌患者的HER-2及Ki-67的状态预测的价值,结果瘤内+瘤周联合模型的AUC值在训练组分别为0.831和0.949。本研究参照既往两者的研究,选取肿瘤周围5 mm作为瘤周的范围。

3.3 融合模型对乳腺癌HER-2状态预测的价值

       目前,许多研究[45, 46, 47]将临床及影像学等特征纳入到影像组学研究中来,结果显示大多结合独立危险因素构建的融合模型的预测效能较好。但既往有关乳腺癌HER-2状态方面的独立危险因素的结果有一定的差异。王伟康等[15]的研究发现ADC值是预测乳腺癌HER-2状态的独立危险因素而肿瘤最大径不是,这与本研究的结果不一致,本研究分析了ADCmin、ADCmax及ADCmean,结果差异均不具有统计学意义,而肿瘤最大径在本研究中是预测乳腺癌HER-2状态的独立危险因素,分析可能与纳入的图像质量、设备及成像方式等有关。但本研究与张成孟等[43]的研究结果一致,即肿瘤最大径在预测乳腺癌HER-2状态方面差异具有统计学意义。本研究通过单因素逻辑回归分析筛选出独立危险因素为肿瘤最大径,结合rad-score构建的融合模型的AUC值在训练组为0.961,验证组为0.958,在预测乳腺癌的HER-2状态方面的AUC值均为最高。

3.4 本研究的局限性

       尽管本研究在预测乳腺癌HER-2状态方面表现出良好的预测能力,但仍存在一定的局限性:(1)本研究为单中心的回顾性研究,可能会存在部分选择偏倚,模型的稳健性缺乏外部数据的验证;(2)本研究为人工勾画瘤内区域,费时且费力,且可能会带有一定的主观性,近年来自动、半自动的勾画方法逐渐兴起,未来有望将其纳入到研究中来;(3)本研究只进行了瘤周5 mm的扩张,缺乏不同瘤周范围对结果影响的探讨,未来需要对不同的瘤周范围进一步研究;(4)本研究中临床及影像学资料纳入的相对较少,有统计学意义的只有肿瘤最大径,未来需要纳入更多的临床及影像学资料。目前,精准医疗深入人心,并随着人工智能及大数据的发展,影像组学有望越来越多地应用到实际中来。

4 结论

       本研究基于乳腺癌患者的DCE-MRI和DWI瘤内及瘤周的影像组学结合独立危险因素建立的融合模型对乳腺癌患者HER-2状态的预测具有较高的价值,有望为临床上患者的精准化治疗提供指导。

[1]
NIERENGARTEN M B. Global cancer statistics 2022: the report offers a view on disparities in the incidence and mortality of cancer by sex and region worldwide and on the areas needing attention[J/OL]. Cancer, 2024, 130(15): 2568 [2024-08-02]. https://pubmed.ncbi.nlm.nih.gov/39032060/. DOI: 10.1002/cncr.35444.
[2]
PASHA N D, TURNER N C. Understanding and overcoming tumor heterogeneity in metastatic breast cancer treatment[J]. Nat Cancer, 2021, 2(7): 680-692. DOI: 10.1038/s43018-021-00229-1.
[3]
TAMIMI R M, COLDITZ G A, HAZRA A, et al. Traditional breast cancer risk factors in relation to molecular subtypes of breast cancer[J]. Breast Cancer Res Treat, 2012, 131(1): 159-167. DOI: 10.1007/s10549-011-1702-0.
[4]
ELSHAZLY A M, GEWIRTZ D A. An overview of resistance to Human epidermal growth factor receptor 2 (Her2) targeted therapies in breast cancer[J]. Cancer Drug Resist, 2022, 5(2): 472-486. DOI: 10.20517/cdr.2022.09.
[5]
马萍, 王立军, 孔德光, 等. 1560例不同HER2表达状态乳腺癌患者的临床病理特征及预后比较[J]. 中国普外基础与临床杂志, 2023, 30(5): 554-560. DOI: 10.7507/1007-9424.202211052.
MA P, WANG L J, KONG D G, et al. Comparison of clinicopathological features and prognosis of 1560 breast cancer patients with different HER2 expression status[J]. Chinese Journal of Basic and Clinical Studies in General Surgery, 2023, 30(5): 554-560. DOI: 10.7507/1007-9424.202211052.
[6]
DUNTON K, VONDELING G, HANCOCK E, et al. Methods for estimating long-term outcomes for trastuzumab deruxtecan in HER2-positive unresectable or metastatic breast cancer after two or more anti-HER2 therapies[J]. Target Oncol, 2022, 17(6): 655-663. DOI: 10.1007/s11523-022-00923-9.
[7]
CAMERON D, PICCART-GEBHART M J, GELBER R D, et al. 11 years' follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial[J]. Lancet, 2017, 389(10075): 1195-1205. DOI: 10.1016/S0140-6736(16)32616-2.
[8]
KAMEYAMA H, DONDAPATI P, SIMMONS R, et al. Needle biopsy accelerates pro-metastatic changes and systemic dissemination in breast cancer: implications for mortality by surgery delay[J/OL]. Cell Rep Med, 2023, 4(12): 101330 [2024-06-09]. https://pubmed.ncbi.nlm.nih.gov/38118415/. DOI: 10.1016/j.xcrm.2023.101330.
[9]
连至炜, 王鑫, 吴其佑, 等. HER2阳性乳腺癌患者延迟确诊对确诊分期影响的研究[J]. 中华肿瘤防治杂志, 2023, 30(1): 43-47. DOI: 10.16073/j.cnki.cjcpt.2023.01.07.
LIAN Z W, WANG X, WU Q Y, et al. Association between delays in diagnosis and clinical stage of HER2-positive breast cancer[J]. Chin J Cancer Prev Treat, 2023, 30(1): 43-47. DOI: 10.16073/j.cnki.cjcpt.2023.01.07.
[10]
PAREKH V, JACOBS M A. Radiomics: a new application from established techniques[J]. Expert Rev Precis Med Drug Dev, 2016, 1(2): 207-226. DOI: 10.1080/23808993.2016.1164013.
[11]
GUIOT J, VAIDYANATHAN A, DEPREZ L, et al. A review in radiomics: making personalized medicine a reality via routine imaging[J]. Med Res Rev, 2022, 42(1): 426-440. DOI: 10.1002/med.21846.
[12]
YUE W Y, ZHANG H T, GAO S, et al. Predicting breast cancer subtypes using magnetic resonance imaging based radiomics with automatic segmentation[J]. J Comput Assist Tomogr, 2023, 47(5): 729-737. DOI: 10.1097/RCT.0000000000001474.
[13]
ZHOU J, TAN H N, LI W, et al. Radiomics signatures based on multiparametric MRI for the preoperative prediction of the HER2 status of patients with breast cancer[J]. Acad Radiol, 2021, 28(10): 1352-1360. DOI: 10.1016/j.acra.2020.05.040.
[14]
HWANG K T, KIM Y A, KIM J, et al. The influences of peritumoral lymphatic invasion and vascular invasion on the survival and recurrence according to the molecular subtypes of breast cancer[J]. Breast Cancer Res Treat, 2017, 163(1): 71-82. DOI: 10.1007/s10549-017-4153-4.
[15]
王伟康, 林桂涵, 陈春妙, 等. 基于MRI动态增强扫描瘤内联合瘤周影像组学列线图术前预测乳腺癌HER-2状态的价值[J]. 中国中西医结合影像学杂志, 2023, 21(3): 259-264. DOI: 10.3969/j.issn.1672-0512.2023.03.006.
WANG W K, LIN G H, CHEN C M, et al. Value of dynamic enhanced intratumoral MRI combined with a peritumoral radiomics nomogram in preoperatively predicting HER-2 status of breast cancer[J]. Chin Imag J Integr Tradit West Med, 2023, 21(3): 259-264. DOI: 10.3969/j.issn.1672-0512.2023.03.006.
[16]
TÜRKBEY B, THOMASSON D, PANG Y X, et al. The role of dynamic contrast-enhanced MRI in cancer diagnosis and treatment[J]. Diagn Interv Radiol, 2010, 16(3): 186-192. DOI: 10.4261/1305-3825.DIR.2537-08.1.
[17]
PARTRIDGE S C, NISSAN N, RAHBAR H, et al. Diffusion-weighted breast MRI: clinical applications and emerging techniques[J]. J Magn Reson Imaging, 2017, 45(2): 337-355. DOI: 10.1002/jmri.25479.
[18]
WOLFF A C, HAMMOND M H, ALLISON K H, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of American pathologists clinical practice guideline focused update[J]. Arch Pathol Lab Med, 2018, 142(11): 1364-1382. DOI: 10.5858/arpa.2018-0902-SA.
[19]
欧开萍, 罗扬, 张育荣, 等. 人表皮生长因子受体2阳性乳腺癌术后早期复发转移模式及危险因素[J]. 癌症进展, 2020, 18(19): 1989-1992. DOI: 10.11877/j.issn.1672-1535.2020.18.19.08.
OU K P, LUO Y, ZHANG Y R, et al. Early recurrence and metastasis pattern and risk factors of human epidermal growth factor receptor-2 positive breast cancer after surgery[J]. Cancer Progress, 2020, 18(19): 1989-1992. DOI: 10.11877/j.issn.1672-1535.2020.18.19.08.
[20]
PICCART M, PROCTER M, FUMAGALLI D, et al. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer in the APHINITY trial: 6 years' follow-up[J]. J Clin Oncol, 2021, 39(13): 1448-1457. DOI: 10.1200/JCO.20.01204.
[21]
SUTHERLAND S, ASHLEY S, MILES D, et al. Treatment of HER2-positive metastatic breast cancer with lapatinib and capecitabine in the lapatinib expanded access programme, including efficacy in brain metastases: the UK experience[J]. Br J Cancer, 2010, 102(6): 995-1002. DOI: 10.1038/sj.bjc.6605586.
[22]
LEE H J, PARK S Y. Reply to 'Intratumoral heterogeneity of HER2 gene amplification in breast cancer: its clinicopathological significance'[J]. Mod Pathol, 2013, 26(4): 610-611. DOI: 10.1038/modpathol.2013.38.
[23]
YAN M Y, YAO J C, ZHANG X, et al. Machine learning-based model constructed from ultrasound radiomics and clinical features for predicting HER2 status in breast cancer patients with indeterminate (2+) immunohistochemical results[J/OL]. Cancer Med, 2024, 13(3): e6946 [2024-07-19]. https://pubmed.ncbi.nlm.nih.gov/38234171/. DOI: 10.1002/cam4.6946.
[24]
DU Y, LI F, ZHANG M Q, et al. The emergence of the potential therapeutic targets: ultrasound-based radiomics in the prediction of human epidermal growth factor receptor 2-low breast cancer[J]. Acad Radiol, 2024, 31(7): 2674-2683. DOI: 10.1016/j.acra.2024.01.023.
[25]
DENG Y L, LU Y P, LI X X, et al. Prediction of human epidermal growth factor receptor 2 (HER2) status in breast cancer by mammographic radiomics features and clinical characteristics: a multicenter study[J]. Eur Radiol, 2024, 34(8): 5464-5476. DOI: 10.1007/s00330-024-10607-9.
[26]
NIU S X, JIANG W Y, ZHAO N N, et al. Intra- and peritumoral radiomics on assessment of breast cancer molecular subtypes based on mammography and MRI[J]. J Cancer Res Clin Oncol, 2022, 148(1): 97-106. DOI: 10.1007/s00432-021-03822-0.
[27]
FOWLER A M, STRIGEL R M. Clinical advances in PET-MRI for breast cancer[J/OL]. Lancet Oncol, 2022, 23(1): e32-e43 [2024-06-11]. https://pubmed.ncbi.nlm.nih.gov/34973230/. DOI: 10.1016/S1470-2045(21)00577-5.
[28]
WEKKING D, PORCU M, SILVA P D, et al. Breast MRI: clinical indications, recommendations, and future applications in breast cancer diagnosis[J]. Curr Oncol Rep, 2023, 25(4): 257-267. DOI: 10.1007/s11912-023-01372-x.
[29]
MANN R M, CHO N, MOY L. Breast MRI: state of the art[J]. Radiology, 2019, 292(3): 520-536. DOI: 10.1148/radiol.2019182947.
[30]
刘婷婷, 林佳璐, 娄鉴娟, 等. 多参数MRI影像组学评估浸润性乳腺癌HER-2表达状态的临床应用价值[J]. 南京医科大学学报(自然科学版), 2024, 44(2): 218-227. DOI: 10.7655/NYDXBNSN230584.
LIU T T, LIN J L, LOU J J, et al. Clinical application value of multi-parameter MRI radiomics evaluation of HER-2 expression status in invasive breast cancer[J]. J Nanjing Med Univ Nat Sci, 2024, 44(2): 218-227. DOI: 10.7655/NYDXBNSN230584.
[31]
FEHRENBACHER L, CECCHINI R S, GEYER C E, et al. NSABP B-47/NRG oncology phase III randomized trial comparing adjuvant chemotherapy with or without trastuzumab in high-risk invasive breast cancer negative for HER2 by FISH and with IHC 1+ or 2[J]. J Clin Oncol, 2020, 38(5): 444-453. DOI: 10.1200/JCO.19.01455.
[32]
EIGER D, AGOSTINETTO E, SAÚDE-CONDE R, et al. The exciting new field of HER2-low breast cancer treatment[J/OL]. Cancers, 2021, 13(5): 1015 [2024-06-13]. https://pubmed.ncbi.nlm.nih.gov/33804398/. DOI: 10.3390/cancers13051015.
[33]
邹紫勤, 黄艳芳, 杨宇. 多模态磁共振成像联合预后因子在HER-2低表达乳腺癌中的诊断价值分析[J]. 磁共振成像, 2023, 14(11): 48-55. DOI: 10.12015/issn.1674-8034.2023.11.009.
ZOU Z Q, HUANG Y F, YANG Y. Diagnostic value analysis of multimodal magnetic resonance imaging combined with prognostic factors in HER-2 low expression breast cancer[J]. Chin J Magn Reson Imag, 2023, 14(11): 48-55. DOI: 10.12015/issn.1674-8034.2023.11.009.
[34]
RAMTOHUL T, DJERROUDI L, LISSAVALID E, et al. Multiparametric MRI and radiomics for the prediction of HER2-zero, -low, and-positive breast cancers[J/OL]. Radiology, 2023, 308(2): e222646 [2024-06-13]. https://pubmed.ncbi.nlm.nih.gov/37526540/. DOI: 10.1148/radiol.222646.
[35]
SEMENZA G L. The hypoxic tumor microenvironment: a driving force for breast cancer progression[J]. Biochim Biophys Acta, 2016, 1863(3): 382-391. DOI: 10.1016/j.bbamcr.2015.05.036.
[36]
UEMATSU T. Focal breast edema associated with malignancy on T2-weighted images of breast MRI: peritumoral edema, prepectoral edema, and subcutaneous edema[J]. Breast Cancer, 2015, 22(1): 66-70. DOI: 10.1007/s12282-014-0572-9.
[37]
LI C L, SONG L R, YIN J D. Intratumoral and peritumoral radiomics based on functional parametric maps from breast DCE-MRI for prediction of HER-2 and ki-67 status[J]. J Magn Reson Imaging, 2021, 54(3): 703-714. DOI: 10.1002/jmri.27651.
[38]
LI C L, YIN J D. Radiomics nomogram based on radiomics score from multiregional diffusion-weighted MRI and clinical factors for evaluating HER-2 2+ status of breast cancer[J/OL]. Diagnostics, 2021, 11(8): 1491 [2024-06-13]. https://pubmed.ncbi.nlm.nih.gov/34441425/. DOI: 10.3390/diagnostics11081491.
[39]
周晶, 余璇, 吴青霞, 等. 基于多参数MRI瘤内和瘤周影像组学特征评估乳腺癌人表皮生长因子受体2状态的价值[J]. 中华放射学杂志, 2023, 57(12): 1338-1345. DOI: 10.3760/cma.j.cn112149-20221209-00992.
ZHOU J, YU X, WU Q X, et al. The value of intratumoral and peritumoral radiomics features of multi-parameter MRI in evaluation of the status of human epithelial growth factor receptor 2 in breast cancer[J]. Chin J Radiol, 2023, 57(12): 1338-1345. DOI: 10.3760/cma.j.cn112149-20221209-00992.
[40]
DING J, CHEN S L, SERRANO SOSA M, et al. Optimizing the peritumoral region size in radiomics analysis for sentinel lymph node status prediction in breast cancer[J/OL]. Acad Radiol, 2022, 29(Suppl 1): S223-S228 [2024-06-15]. https://pubmed.ncbi.nlm.nih.gov/33160860/. DOI: 10.1016/j.acra.2020.10.015.
[41]
BRAMAN N M, ETESAMI M, PRASANNA P, et al. Erratum to: Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J/OL]. Breast Cancer Res, 2017, 19(1): 80 [2024-06-15]. https://pubmed.ncbi.nlm.nih.gov/28693537/. DOI: 10.1186/s13058-017-0862-1.
[42]
BRAMAN N, PRASANNA P, WHITNEY J, et al. Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2 (ERBB2)-positive breast cancer[J/OL]. JAMA Netw Open, 2019, 2(4): e192561 [2024-06-15]. https://pubmed.ncbi.nlm.nih.gov/31002322/. DOI: 10.1001/jamanetworkopen.2019.2561.
[43]
张成孟, 丁治民, 陈鹏, 等. 基于DCE-MRI瘤内及瘤周影像组学联合TIC分型及Ki-67预测乳腺癌患者HER-2表达[J]. 磁共振成像, 2023, 14(4): 68-75. DOI: 10.12015/issn.1674-8034.2023.04.012.
ZHANG C M, DING Z M, CHEN P, et al. Prediction of HER-2 expression in breast cancer patients based on DCE-MRI intratumor and peritumoral imaging combined with TIC typing and Ki-67[J]. Chin J Magn Reson Imag, 2023, 14(4): 68-75. DOI: 10.12015/issn.1674-8034.2023.04.012.
[44]
明洁, 陈莹, 刘莹, 等. 基于DCE-MRI瘤内联合瘤周影像组学模型术前预测乳腺癌Ki-67表达状态的价值[J]. 磁共振成像, 2022, 13(10): 132-137, 149. DOI: 10.12015/issn.1674-8034.2022.10.020.
MING J, CHEN Y, LIU Y, et al. Value of preoperative prediction of Ki-67 expression in breast cancer based on DCE-MRI intratumoral combined with peritumoral radiomics model[J]. Chin J Magn Reson Imag, 2022, 13(10): 132-137, 149. DOI: 10.12015/issn.1674-8034.2022.10.020.
[45]
XIN L M, MIN G, WEI W S, et al. The diagnostic value of a nomogram based on clinical imaging and MRIBased radiomic features in triple-negative breast cancer[J/OL]. Curr Med Imaging, 2023 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/37881087/. DOI: 10.2174/0115734056227812231016112438.
[46]
CHEN Y S, LI J P, ZHANG J, et al. Radiomic nomogram for predicting axillary lymph node metastasis in patients with breast cancer[J]. Acad Radiol, 2024, 31(3): 788-799. DOI: 10.1016/j.acra.2023.10.026.
[47]
FANG C Y, ZHANG J T, LI J Z, et al. Clinical-radiomics nomogram for identifying HER2 status in patients with breast cancer: a multicenter study[J/OL]. Front Oncol, 2022, 12: 922185 [2024-06-19]. https://pubmed.ncbi.nlm.nih.gov/36158700/. DOI: 10.3389/fonc.2022.922185.

上一篇 三维准连续式动脉自旋标记在诊断鼻咽癌颈部小淋巴结转移瘤中的应用价值
下一篇 基于深度学习的3D超分辨率重建技术的MRI影像组学预测TACE联合分子靶向药物治疗不可切除肝癌的疗效
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2