分享:
分享到微信朋友圈
X
病例报告
胎盘梗死并胎儿颅脑急性缺血性改变MRI一例
王颖超 黄刚 魏铭 罗金娇

Cite this article as: WANG Y C, HUANG G, WEI M, et al. A case of MRI of placental infarction complicated with fetal ischemic stroke[J]. Chin J Magn Reson Imaging, 2024, 15(12): 157-159.本文引用格式:王颖超, 黄刚, 魏铭, 等. 胎盘梗死并胎儿颅脑急性缺血性改变MRI一例[J]. 磁共振成像, 2024, 15(12): 157-159. DOI:10.12015/issn.1674-8034.2024.12.023.


[摘要] 本研究为回顾性研究,遵守《赫尔辛基宣言》,并经河西学院附属张掖人民医院伦理委员会审核批准,免除受试者知情同意,批准文号:2021B-009。
[关键词] 胎盘梗死;胎儿;颅脑急性缺血性改变;磁共振成像;超声
[Keywords] placental infarction;fetus;acute ischemic changes in the brain;magnetic resonance imaging;ultrasound

王颖超 1   黄刚 2*   魏铭 1   罗金娇 3  

1 河西学院附属张掖人民医院医学影像科/医学影像研究所,张掖 734000

2 甘肃省人民医院放射科,兰州 730000

3 河西学院附属张掖人民医院医学病理科,张掖 734000

通信作者:黄刚,E-mail:keen0999@163.com

作者贡献声明:黄刚设计本研究的方案,对稿件重要的智力内容进行了修改;王颖超起草和撰写稿件,获取、分析和解释本案例的数据,获得了甘肃省教育厅高校教师创新基金项目的资助;魏铭、罗金娇获取、分析或解释本研究的数据,对稿件重要的智力内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 甘肃省教育厅高校教师创新基金项目 2024A-153
收稿日期:2024-04-29
接受日期:2024-12-10
中图分类号:R445.2  R714.46 
文献标识码:B
DOI: 10.12015/issn.1674-8034.2024.12.023
本文引用格式:王颖超, 黄刚, 魏铭, 等. 胎盘梗死并胎儿颅脑急性缺血性改变MRI一例[J]. 磁共振成像, 2024, 15(12): 157-159. DOI:10.12015/issn.1674-8034.2024.12.023.

       本研究为回顾性研究,遵守《赫尔辛基宣言》,并经河西学院附属张掖人民医院伦理委员会审核批准,免除受试者知情同意,批准文号:2021B-009。

       患者女,33岁,因“孕26+4周,产检发现血压升高1周”,2022年8月12日在甘州区妇幼保健院进行四维系统超声筛查提示:(1)宫内妊娠,头位,单活胎;(2)胎儿相当于妊娠约22周(宫内胎儿发育迟缓);(3)心胸比狭小;(4)羊水过少。为求进一步诊治,于2022年8月14日转诊至河西学院附属张掖人民医院。河西学院附属张掖人民医院MRI检查提示:胎盘增厚并局部不光整,其内信号不均,见斑片状异常信号,T1WI序列呈等信号,T2WI-FS序列呈高信号(图1A~1B),扩散加权成像(diffusion weighted imaging, DWI)序列(b=800)呈稍高信号(图1C),表观扩散系数(apparent diffusion coefficient, ADC)图呈稍低信号(图1D),提示梗死;胎儿颅脑弥漫性片状异常信号,T1WI序列呈等信号,T2WI序列呈稍高信号(图1E),DWI序列(b=800时)呈明显高信号(图1F),ADC图呈低信号(图1G),提示急性缺血性改变。MRI诊断:(1)胎盘部分梗死;(2)羊水少;(3)胎儿颅脑急性缺血性改变;(4)宫内窘迫。经治疗患者血压控制欠佳,病情加重,继续妊娠随时有胎死宫内可能并危及患者生命,随后告知孕妇及家属病情,孕妇及家属表示理解,要求终止妊娠。行羊膜穿刺术注入利凡诺100 mg引产,药物引产一体质量500 g男性死胎。胎盘大体所见(图1H):胎盘胎膜完整,胎膜灰褐色半透明,胎儿面正中偏内下呈青灰或灰黄色。镜下观察:绒毛发育基本成熟,绒毛间隙变窄,部分绒毛缺血苍白,在绒毛周围可见纤维蛋白沉积,紧邻梗死灶的未受累绒毛扩张充血明显,合体细胞结节明显增多,见大量绒毛外滋养细胞,绒毛外滋养细胞核较大深染,形状奇怪,胞浆丰富(图1I)。病理诊断:胎盘梗死[灶状(多区)],体积无法评估。

图1  女,33岁,孕26+4周,产检发现血压升高1周,外院四维超声筛查提示宫内胎儿发育迟缓。1A:磁共振矢状位T2WI序列显示胎盘内见斑片状高信号(箭头所指);1B:磁共振冠状位T2WI序列显示胎盘内见斑片状高信号(箭头所指);1C:DWI(b=800时)图显示胎盘内见斑片状高信号(箭头所指);1D:ADC图显示胎盘局部呈低信号(箭头所指);1E:磁共振T2WI序列显示胎儿脑实质呈稍高信号(箭头所指);1F:DWI(b=800时)显示胎儿脑实质呈弥漫性明显高信号(箭头所指);1G:ADC图显示胎儿脑实质呈低信号(箭头所指),结合DWI提示扩散受限;1H:胎盘大体标本示胎盘胎膜完整,胎膜灰褐色半透明,胎儿面正中偏内下呈青灰或灰黄色(箭头所指);1I:绒毛发育基本成熟,绒毛间隙变窄,部分绒毛缺血苍白,在绒毛周围可见纤维蛋白沉积,紧邻梗死灶的未受累绒毛扩张充血明显,合体细胞结节明显增多,见大量绒毛外滋养细胞,绒毛外滋养细胞核较大深染,形状奇怪,胞浆丰富(HE ×20)。DWI:扩散加权成像;ADC:表观扩散系数。
Fig. 1  33-year-old female patient, 26+4 weeks pregnant, was found to have elevated blood pressure for 1 week during delivery. The four-dimensional ultrasound screening in an external hospital indicats intrauterine fetal growth delay. 1A: The sagittal T2WI sequence of magnetic resonance imaging shows plaques and high signals in the placenta (arrow heads); 1B: Coronal T2WI sequence of magnetic resonance imaging shows patchy high signals within the placenta (arrow heads); 1C: DWI (b=800) shows a patchy high signal in the placenta (arrow heads); 1D: ADC image shows a low signal in the placenta (arrow heads); 1E: T2WI sequence of magnetic resonance imaging shows a slightly elevated signal in fetal brain parenchyma (arrow heads); 1F: DWI (b=800) shows a diffusely high signal in fetal brain parenchyma (arrow heads); 1G: The ADC images shows low signals in fetal brain parenchyma (arrow heads), which combined with DWI indicated limited diffusion; 1H: The gross specimen of the placenta shows that the placental membrane is intact, the membrane is grayish brown and translucent, and the fetal face is livid or grayish yellow (arrow heads); 1I: The villi are basically mature, the villi space is narrowed, part of the villi is ischemia and pale, and fibrin deposition could be seen around the villi. The uninvolved villi adjacent to the infarction have obvious dilation and hyperemia, and the cytologic nodules are significantly increased. A large number of exvillous trophoblast cells are found, the exvillous trophoblast nuclei are large and deeply stained, with strange shapes and abundant cytoplasm (HE ×20) . DWI: diffusion weighted imagin; ADC: apparent diffusion coefficien.

讨论

       胎盘梗死是因循环障碍使进入绒毛间隙的母体血液阻塞,引起部分或全部胎盘绒毛缺血、坏死[1]。其诱发因素可能为妊娠高血压[2]、子痫、狼疮抗凝、低置胎盘、胎盘早剥以及水痘、风疹等病毒感染[3]。尽管彩色多普勒超声是评估胎盘内循环和胎盘异常诊断的首选检查方法,但对胎盘梗死、血肿、间充质发育不良的诊断以及临床处理中贡献有限[4],尤其与胎盘梗死相关的囊性区域因细胞数量、纤维蛋白沉积、钙化和出血不同,造成其诊断敏感度很低,据统计,只有大约10%的胎盘梗死在产前被发现[4],加之超声是一种过于依赖操作者的成像检查方法,不同操作者之间的诊断准确性差异较大[5],因此对胎盘梗死的诊断准确性也是可变的。近年来,MRI一直是临床实践的一部分,越来越多地用于超声不能提供完整细节的患者,除了评估胎儿,MRI还可以显示胎盘的正常结构及其在妊娠期的形态变化,提供与组织性质和功能相关的定量测量,帮助临床医师诊断和制订诊疗措施,因此在胎盘方面的研究也越来越重要[6]。目前,对胎盘病理的MRI研究主要集中在胎盘植入性病变中,而对胎盘血管病理,如出血或缺血性病变研究相对较少。MESSERSCHMIDT等[7]对50例早期宫内生长受限的胎盘MRI进行了研究,结果显示MRI对胎盘血管疾病具有较高的预测,其中准确率为82%,敏感度为67%,特异度为89%。基于T2WI和DWI序列在检测急性缺血性病变方面具有高敏感度,MORADI等[8]研究发现在57.8%缺血性梗死的胎盘中,96.2%可以通过MRI检测到,特异度为63.2%,是检出胎盘非出血性病变(如梗死)的最佳成像序列。多项研究也证明,与正常生长的胎盘相比,MRI可以提高胎盘梗死中的囊性结构的诊断[9],而多普勒超声联合DWI可将预测胎儿宫内发育迟缓及胎盘梗死的敏感度从73%提高到100%,特异度保持在99%[10, 11]。因此,随着多重对比的增加和MRI新技术的不断发展,未来将会使复杂妊娠的胎盘功能检查成为可能[12]

       胎儿颅脑急性缺血性改变主要是胎儿宫内缺氧及酸中毒等所致[13],也是围生期胎儿死亡的主要原因,需要及早诊断并终止妊娠[14]。其病因有母体、胎盘和胎儿三方面因素,其中胎盘因素所占比例最高,主要源于胎盘的血栓-栓塞[15]。尽管超声是筛查胎儿颅脑首选的产前检查手段,但仍有许多局限性。例如,超声经常会遗漏颅脑畸形或血管性疾病的信息,导致医生对其错误诊断或遗漏诊断[16]。也有研究直接表明超声检查不能预测卒中的发生[17]。但MRI较超声相比能更好地显示脑灰质和白质,描绘脑干(桥状弯曲)和小脑(小叶和裂隙)等解剖结构以此区分正常和异常组织[17]。最近的研究显示在胎儿颅脑诊断价值上,1.5 T MRI在敏感度和准确率上均优于超声,且漏诊率及误诊率均较低[18]。另外MRI中的DWI、扩散张量成像(diffusion tensor imaging, DTI)可显示不同方面的灰质和白质的微观结构变化,以及大脑皮层、皮层下灰质和大白质的髓鞘化过程,尤其是DWI是诊断颅脑缺血性疾病最敏感的成像方式[11, 19]。目前已有多项研究表明在胎儿脑弥漫性缺血或损伤的检测和表征中DWI序列具有更高的诊断准确性及敏感性,且重复性较好[20]。甚至多数学者认为在往后的临床工作中,应将MRI,主要包括DWI及磁共振血管成像(magnetic resonance angiography, MRA)作为为围产期脑卒中诊断的金标准[21, 22]

       本病例中,笔者认为由于母体高血压及子痫前期的影响,螺旋动脉重构受损或阻塞引起缺氧甚至再灌注损伤,引起母体灌注不良和胎盘养分交换能力减弱,最终导致胎盘梗死并继发胎儿颅脑急性缺血性改变。基于胎盘梗死处于急性期,胎盘蜕膜血管内血流无明显减少,因此这也是超声无法诊断胎盘梗死的主要原因。另一方面,本病例展示了MRI较超声相比可对胎盘疾病中的循环以及胎儿中枢神经系统异常进行诊断,协助临床针对胎儿颅脑缺血性改变做出及时终止妊娠决策,而不是单纯对胎盘梗死进行监测,从而延误治疗,也有效避免了该患者因继续妊娠引发胎死宫内最终导致母体发生弥散性血管内凝血或产后大出血等不良结局。基于本病例后期没有对死胎颅脑进行解剖,因此无法对颅脑缺血性卒中进行准确诊断,只是根据颅脑扩散受限诊断了缺血性改变,是本病例的一大局限性。因此,笔者认为对于高危人群的孕产妇群体,尤其是在孕中、晚期,除了在超声检查的基础进一步行MRI检查,当MRI检查发现胎盘信号异常时,需加扫胎儿颅脑层面,以确定颅脑功能方面是否出现障碍,从而协助临床及时制订有效的妊娠管理和分娩计划决策。另外,应在条件允许的情况下,将MRI检查与病理结果相结合,在完善信息的同时提高对特殊病理疾病的认识。

[1]
ROBERTS D, AISAGBONHI O, PARAST M M. Incorporating placental pathology into clinical care and research[J]. Trends Mol Med, 2024. DOI: 10.1016/j.molmed.2024.08.002.
[2]
VISENTIN S, LONDERO A P, SANTORO L, et al. Abnormal umbilical cord insertions in singleton deliveries: placental histology and neonatal outcomes[J]. J Clin Pathol, 2022, 75(11): 751-758. DOI: 10.1136/jclinpath-2020-207342.
[3]
MOLTNER S, DE VRIJER B, BANNER H. Placental infarction and intrauterine growth restriction following SARS-CoV-2 infection[J]. Arch Gynecol Obstet, 2021, 304(6): 1621-1622. DOI: 10.1007/s00404-021-06176-7.
[4]
HERNANDEZ-ANDRADE E, HUNTLEY E S, BARTAL M F, et al. Doppler evaluation of normal and abnormal placenta[J]. Ultrasound Obstet Gynecol, 2022, 60(1): 28-41. DOI: 10.1002/uog.24816.
[5]
XIA H, KE S C, QIAN R R, et al. Comparison between abdominal ultrasound and nuclear magnetic resonance imaging detection of placenta accreta in the second and third trimester of pregnancy[J/OL]. Medicine (Baltimore), 2020, 99(2): e17908 [2024-04-29]. https://pubmed.ncbi.nlm.nih.gov/31914010/. DOI: 10.1097/md.0000000000017908.
[6]
AUGHWANE R, INGRAM E, JOHNSTONE E D, et al. Placental MRI and its application to fetal intervention[J]. Prenat Diagn, 2020, 40(1): 38-48. DOI: 10.1002/pd.5526.
[7]
MESSERSCHMIDT A, BASCHAT A, LINDUSKA N, et al. Magnetic resonance imaging of the placenta identifies placental vascular abnormalities independently of Doppler ultrasound[J]. Ultrasound Obstet Gynecol, 2011, 37(6): 717-722. DOI: 10.1002/uog.8891.
[8]
MORADI B, TABIBIAN E, KAZEMI M A, et al. Diagnostic models for the detection of intrauterine growth restriction and placental insufficiency severity based on magnetic resonance imaging of the placenta[J/OL]. Pol J Radiol, 2023, 88: e155-e164 [2024-04-29]. https://pubmed.ncbi.nlm.nih.gov/37057203/. DOI: 10.5114/pjr.2023.126224.
[9]
WEINSTEIN R, VAUGHT A, BARAS A, et al. Placental bands on MRI in the setting of placenta accreta spectrum: Case report with radiologic-pathologic correlation[J]. Radiol Case Rep, 2023, 18(2): 491-494. DOI: 10.1016/j.radcr.2022.10.086.
[10]
BONEL H M, STOLZ B, DIEDRICHSEN L, et al. Diffusion-weighted MR imaging of the placenta in fetuses with placental insufficiency[J]. Radiology, 2010, 257(3): 810-819. DOI: 10.1148/radiol.10092283.
[11]
LO J O, SCHABEL M C, ROBERTS V H J, et al. Effects of early daily alcohol exposure on placental function and fetal growth in a rhesus macaque model[J/OL]. Am J Obstet Gynecol, 2022, 226(1): 130.e131-130.e111 [2024-04-29]. https://pubmed.ncbi.nlm.nih.gov/34364844/. DOI: 10.1016/j.ajog.2021.07.028.
[12]
AUGHWANE R, MUFTI N, FLOURI D, et al. Magnetic resonance imaging measurement of placental perfusion and oxygen saturation in early-onset fetal growth restriction[J]. Bjog, 2021, 128(2): 337-345. DOI: 10.1111/1471-0528.16387.
[13]
KIRTON A, METZLER M J, CRAIG B T, et al. Perinatal stroke: mapping and modulating developmental plasticity[J]. Nat Rev Neurol, 2021, 17(7): 415-432. DOI: 10.1038/s41582-021-00503-x.
[14]
LERMAN-SAGIE T, PRAYER D, STÖCKLEIN S, et al. Fetal cerebellar disorders[J]. Handb Clin Neurol, 2018, 155: 3-23. DOI: 10.1016/b978-0-444-64189-2.00001-9.
[15]
GERALDO A F, PARODI A, BERTAMINO M, et al. Perinatal arterial ischemic stroke in fetal vascular malperfusion: A case series and literature review[J]. AJNR Am J Neuroradiol, 2020, 41(12): 2377-2383. DOI: 10.3174/ajnr.A6857.
[16]
GRIFFITHS P D, BRADBURN M, CAMPBELL M J, et al. MRI in the diagnosis of fetal developmental brain abnormalities: the MERIDIAN diagnostic accuracy study[J]. Health Technol Assess, 2019, 23(49): 1-144. DOI: 10.3310/hta23490.
[17]
SUH C H, JUNG S C, CHO S J, et al. MRI for prediction of hemorrhagic transformation in acute ischemic stroke: a systematic review and meta-analysis[J]. Acta Radiol, 2020, 61(7): 964-972. DOI: 10.1177/0284185119887593.
[18]
HO A, CHAPPELL L C, STORY L, et al. Visual assessment of the placenta in antenatal magnetic resonance imaging across gestation in normal and compromised pregnancies: Observations from a large cohort study[J]. Placenta, 2022, 117: 29-38. DOI: 10.1016/j.placenta.2021.10.006.
[19]
HART A R, EMBLETON N D, BRADBURN M, et al. Accuracy of in-utero MRI to detect fetal brain abnormalities and prognosticate developmental outcome: postnatal follow-up of the MERIDIAN cohort[J]. Lancet Child Adolesc Health, 2020, 4(2): 131-140. DOI: 10.1016/s2352-4642(19)30349-9.
[20]
AERTSEN M, DYMARKOWSKI S, VANDER MIJNSBRUGGE W, et al. Anatomical and diffusion-weighted imaging of brain abnormalities in third-trimester fetuses with cytomegalovirus infection[J]. Ultrasound Obstet Gynecol, 2022, 60(1): 68-75. DOI: 10.1002/uog.24856.
[21]
SANTOS M, DE SOUSA D A. Cerebrovascular disease in pregnancy and postpartum[J]. Curr Opin Neurol, 2022, 35(1): 31-38. DOI: 10.1097/wco.0000000000001005.
[22]
BISWAS A, MANKAD K, SHROFF M, et al. Neuroimaging perspectives of perinatal arterial ischemic stroke[J]. Pediatr Neurol, 2020, 113: 56-65. DOI: 10.1016/j.pediatrneurol.2020.08.011.

上一篇 基于人工智能压缩感知技术的鞍区多参数集成序列优化
下一篇 孤独症谱系障碍的神经影像学特征与遗传机制:多模态数据整合的现状与展望
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2