分享:
分享到微信朋友圈
X
综述
影像组学预测肝内胆管癌微血管侵犯的研究进展
马佳美 孙柳 李晓萌 殷小平

Cite this article as: MA J M, SUN L, LI X M, et al. Research progress of radiomics inpredicting microvascular invasion of intrahepatic cholangicarcinoma[J]. Chin J Magn Reson Imaging, 2024, 15(12): 224-227, 234.本文引用格式:马佳美, 孙柳, 李晓萌, 等. 影像组学预测肝内胆管癌微血管侵犯的研究进展[J]. 磁共振成像, 2024, 15(12): 224-227, 234. DOI:10.12015/issn.1674-8034.2024.12.035.


[摘要] 肝内胆管癌(intrahepatic cholangicarcinoma, ICC)是肝脏第二常见的原发性恶性肿瘤,其发病率在世界范围内呈上升趋势。微血管侵犯(microvascular invasion, MVI)被认为是ICC患者预后不良的一个重要因素。影像组学从医疗图像中高通量地提取定量特征,客观提供肿瘤内异质性和癌症表型信息,其在术前预测ICC MVI中的重要价值已被证实,但ICC MVI预测模型的最佳影像学方法、影像组学特征、独立预测因子等关键问题仍不明确,瘤周影像组学的研究也尚欠缺。本文将针对上述问题,从电子计算机断层扫描(computed tomography, CT)、MRI、正电子发射体层成像(positron emission tomography, PET)及超声(ultrasound, US)四个方面对影像组学术前预测ICC MVI的研究进展作一综述,旨在促进临床ICC MVI的精准诊疗。
[Abstract] Intrahepatic cholangiocarcinoma (ICC) is the second common malignant tumor originating in the liver, and its incidence is rising worldwide. Microvascular invasion (MVI) is a considerable poor-prognostic factor in ICC. Radiomics transforms image information into intuitive data to reflect tumor internal heterogeneity by extracting quantitative features from medical images with high throughput, which important value in predicting ICC MVI before surgery has been proven. However, the optimal radiological method, radiomics features, independent predictors, and other key issues related to the prediction model of ICC MVI remain unclear, and research on peritumoral radiomics is also lacking. This review will stress these issues by providing a comprehensive review on ICC MVI prediction before surgery from the four sections of computed tomography (CT), MRI, positron emission tomography (PET) and ultrasound (US). The aim of this paper is to promote the accurate diagnosis and treatment of ICC MVI for clinicians.
[关键词] 肝内胆管癌;微血管侵犯;影像组学;计算机断层扫描;磁共振成像;正电子发射体层成像;超声
[Keywords] intrahepatic cholangiocarcinoma;microvascular invasion;radiomics;computed tomography;magnetic resonance imaging;positron emission tomography;ultrasound

马佳美 1, 2   孙柳 1, 2   李晓萌 1, 2   殷小平 1, 2*  

1 河北大学附属医院放射科,保定 071000

2 河北省炎症相关肿瘤精准影像诊断学重点实验室,保定 071000

通信作者:殷小平,E-mail: yinxiaoping78@sina.com

作者贡献声明:殷小平确定本研究的方向,对稿件的重要内容进行了修改,获得河北省自然科学基金项目资助;马佳美起草和撰写稿件,获取、分析并阅读本研究的相关文献;孙柳和李晓萌辅助获取本研究的相关文献,并对稿件进行修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 河北省自然科学基金 H2024201034
收稿日期:2024-06-19
接受日期:2024-12-10
中图分类号:R445.2  R735.7  R735.8 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.12.035
本文引用格式:马佳美, 孙柳, 李晓萌, 等. 影像组学预测肝内胆管癌微血管侵犯的研究进展[J]. 磁共振成像, 2024, 15(12): 224-227, 234. DOI:10.12015/issn.1674-8034.2024.12.035.

0 引言

       肝内胆管癌(intrahepatic cholangicarcinoma, ICC)是指肝内胆管衬覆上皮细胞发生的恶性肿瘤,以腺癌多见[1],约占原发性肝癌的10%~15%[2],占胆管癌的20%~30%[3]。按生长模式分类,ICC可为肿块型、管周浸润型、管内生长型及混合型(肿块型+管周浸润型),肿块型为常见类型[4]。近些年ICC发病率在世界范围内呈逐渐上升趋势[5, 6],术后5年总生存率为20%~40%[7]。虽然多模式及替代治疗方案开始使用[8, 9],但手术治疗仍是迄今为止唯一有效的治疗方法[10]。微血管侵犯(microvascular invasion, MVI)已被证实为ICC患者术后早期复发和总生存率较差的独立危险因素[11, 12, 13, 14],MVI指仅能在显微镜下观察到的,于内皮细胞附衬的微小血管腔内存在的癌细胞巢团[15],多见于肿瘤包膜内和癌旁肝组织内的门静脉微小分支,在ICC可有淋巴管侵犯[1, 16],按病理分级标准分为:M0级、M1级,M2级[17]。研究发现MVI与甲胎蛋白(alpha-fetoprotein, AFP)水平、总胆红素(total bilirubin, TBIL)、术前循环肿瘤细胞(circulating tumor cells before surgery, ctc)、肝炎病因、肿瘤大小、肿瘤数量、术前影像淋巴结转移、肿瘤包膜和肿瘤边缘平滑度有关[18, 19, 20],然而,现阶段ICC的MVI状态依然通过术后组织病理切片检测来证实,致使临床决策受限。

       影像组学是借助计算机软件,从医疗图像中高通量地提取定量特征,使用统计学和机器学习的方法,筛选出最有价值的组学特征,与临床特征、常规影像特征、基因组学特征、蛋白组学特征相结合,构建模型,指导临床决策,其评估及预测性能远大于常规影像学[21, 22, 23]。目前,人工智能预测肿瘤微环境已成为研究热点,影像组学模型预测肝细胞癌(hepatocellular carcinoma, HCC)MVI的可行性和潜在益处已得到证实[24]。同时,影像组学对于ICC的研究涉及到鉴别诊断、预后评估、淋巴结转移、MVI、神经侵犯(perineural invasion, PNI)等多个方面。本文将对国内外基于影像组学预测ICC MVI的相关研究结果进行综述,并对未来研究方向初步展望,促进ICC MVI的精准诊疗。

1 基于CT影像组学预测ICC MVI的研究进展

       增强CT(contrast-enhanced computer tomography, CE-CT)图像可反映病灶的大小、数量、对大血管的侵犯状态、有无远处转移等,是诊断和评估ICC最常用的成像方式。基于CT图像的ICC MVI影像组学模型尚少,吕昊阳等[25]将筛选出的2个ICC MVI独立预测因子—瘤内动脉穿行、癌胚抗原(carcino-embryonic antigen, CEA)>5 ng/mL建立临床模型,并与门脉期影像组学模型相联合,最终预测模型训练组、验证组受试者工作特征曲线下面积(area under the curve, AUC)分别为0.881、0.891,显示该模型具有良好的预测效果。XIANG等[26]通过多因素分析确定与ICC MVI相关的潜在危险因素,包括卫星结节、动脉低增强和肿瘤轮廓,使用这些预测因子建立的临床模型显示,训练组AUC为0.822,最后联合临床模型和影像组学模型构建列线图,训练组AUC为0.886,优于单独临床模型,证明了影像组学模型对ICC患者MVI状态的诊断效能,而且联合模型预测价值更高。两个研究团队基于CE-CT图像,从ICC病灶中提取特征,构建动脉期、门脉期、动脉-门脉期融合模型预测ICC患者MVI状态,均证实门脉期影像组学模型对术前预测ICC MVI效能最佳[25, 26]。LIAO等[27]纳入基于CE-CT扫描的119例混合型肝细胞癌-肝内胆管癌(combined hepatocellular intrahepatic cholangiocarcinoma, cHCC-ICC)患者进行回顾性分析,发现CEA升高、肝包膜回缩和动脉期肿瘤周围增强是预测cHCC-ICC MVI的独立危险因素,因肿瘤含有肝细胞癌成分,所以需要进一步研究证实上述特征对ICC的预测效应。

       综上所述,ICC的临床影像研究中,临床-影像学-影像组学联合模型的预测效能均大于单一模型;CEA>5 ng/mL、卫星结节、动脉低增强、瘤内动脉穿行、肿瘤轮廓为ICC MVI的临床或影像学预测因子。由于相关文献较少,CE-CT的最佳期相及预测因子存在一定争议,因此,需要更多相关研究来证实CT影像组学模型对ICC MVI预测的应用价值。

2 基于MRI影像组学预测ICC MVI的研究进展

       MRI图像中提取的影像学特征对预测ICC患者的MVI状态具有很高的价值,与CT影像组学不同的是,MRI扫描序列较多,不同研究结果的AUC差距较大,选取最优序列的影像组学特征构建模型成为关键。基于MRI工作原理,研究人员认为T1加权成像(T1 weighted imaging, T1WI)、扩散加权成像(diffusion-weighted imaging, DWI)、T1WI增强扫描延迟期(3D T1-weighted quick spoiled gradient echo sequence-axial delayed phase, T1WI-D)三种序列最优,从这三个序列提取特征可以最大限度地提高预测模型对ICC MVI的诊断准确性[28, 29, 30]。ZHANG等[31]与LIU等[32]两个研究团队通过栖息地成像方法进行术前预测HCC MVI和ICC PNI,研究中均采用DWI影像特征建模,且取得较好预测效能。栖息地成像是癌症成像中用于识别共享成像特征的肿瘤亚区域或“栖息地”的现代方法[33],可以用此方法建立模型预测ICC MVI。基于深度学习方法,LIU等[34]开发了一种基于T2加权成像(T2 weighted imagin, T2WI)的预测模型,其对肿块型ICC的分类诊断准确率为92.26%,AUC为0.968,诊断效能极高。CHEN等[35]认为与DWI组学特征比较,从T2加权脂肪抑制成像(axial T2-weighted breath-hold fat-suppressed fast spin echo sequence, T2WI-FS)中提取的影像组学特征更有助于预测肿瘤的侵袭行为,因为T2WI-FS具有更高的信噪比,图像对比度优于DWI图像[36]。大多数研究所建立的ICC MVI影像组学预测模型均来源于肿瘤内部[28, 29, 37],而MVI通常出现在肿瘤周围区域,瘤周是指肿瘤性病变与正常组织交界区,该区域的微环境有其独特的物理和免疫特性,参与肿瘤发生发展的全过程,从瘤周提取影像组学特征对预测肿瘤MVI具有重要的临床意义[38, 39]。MA等[30]在六个MRI序列上描绘了瘤内和瘤周不同区域的四个感兴趣区,分别提取特征,发现瘤内+瘤周10 mm区域的影像组学模型诊断效能最高,其联合临床特征及最佳序列影像学特征构建列线图后实现了模型的可视化,训练组与验证组AUC分别为0.987、0.859。多个MRI影像组学模型显示,术前糖类抗原19-9(carbohydrate antigen 19-9, CA19-9)水平、肿瘤大小、肝内导管扩张、肿瘤多发、肿瘤边缘、肿瘤形态、动脉期增强模式和表观扩散系数(apparent diffusion coefficient, ADC)是预测ICC MVI的独立危险因素[40, 41, 42]。基于影像组学的无创术前工具可以帮助患者进行风险分层和个性化治疗,潜在地改善患者的预后[43],MVI状态可以有助于进行风险分层。CHEN等[44]的研究纳入了115例接受MRI检查的肿块型ICC患者,分为MVI高危组和低危组,构建的列线图模型在训练组及验证组AUC分别为0.767、0.760,具有较好的诊断效果;并在无复发生存期(relapse free survival, RFS)分析中,观察到高风险和低风险MVI组之间存在显著性差异。

       深度学习模型允许多个MRI序列的特征互相融合,在预测ICC MVI状态方面表现出比传统影像组学模型更好的性能,GAO等[45]用深度学习算法建立了一种基于增强MRI的多模态融合模型,用于ICC MVI术前评估,最终内部训练队列、验证队列及外部验证队列融合模型的AUC值分别为0.963、0.870、0.866。

       MRI的多个序列均有预测价值,但各研究结果不尽一致,融合序列模型预测性能优于单序列模型;多模态MRI能提取更多影像组学特征信息,增加模型的预测效能;ICC MVI的临床独立预测因子多样,选取单一ICC亚型肿瘤样本可以提高预测的精准程度;最佳瘤周模型可以提示瘤周切缘范围,指导临床手术方式;ICC患者动态增强MRI(dynamic contrast-enhanced MRI, DCE-MRI)的不同强化方式有其相应病理基础[46],不同对比剂对肿瘤的强化方式也不尽相同,可以选择合适的对比剂,研究DCE-MRI不同期相影像组学模型对ICC MVI患者的术前预测价值。

3 基于正电子发射计算机体层成像影像组学预测ICC MVI的研究进展

       正电子发射计算机体层成像(positron emission tomography/computed tomography, PET/CT)是一种结合代谢和功能评估的分子成像技术[47],不仅可以反映肿瘤的形态特征,还可以通过肿瘤代谢情况评估其进展。18F标记的氟代脱氧葡萄糖(18F-FDG)为常见的示踪剂。一些研究发现PET特征对ICC MVI的预测可以提供重要价值,FIZ等[48]从ICC患者术前PET/CT图像中提取瘤内和瘤周影像组学特征,临床+瘤内影像组学模型AUC值为0.871,当与瘤周5 mm区域特征联合,AUC值为0.881;JIANG等[49]将两个PET特征和CA19-9组成联合模型,训练组AUC值高达0.90,为术前评估预后提供可靠依据;由于PET特征优于CT特征,本研究选择的影像组学特征都是强度和纹理特征,形态学特征未能提供预测信息。另一基于18F-FDG PET/CT影像组学特征及病理参数的预测模型,用于识别肿瘤的MVI和PNI,AUC分别为0.83、0.94,瘤周3 mm区域组学模型效果最佳,成功证明了此模型对MVI和PNI的预测效能[50]。JIANG等还发现一些PET影像组学特征与病灶的18F-FDG摄取活性相关,这部分结果很重要,因为它可能是疾病严重程度和肿瘤分期的指标。18F-FDG由于其半衰期短,是最常见的放射性核素示踪剂,在对肝内肿瘤HCC、ICC的鉴别诊断中发挥重要作用[51],然而18F-FDG并非特异性显像剂,LIANG等[52]发现,在非胆管炎肝内病变中,18F-FAPI-04 PET/CT显示出比18F-FDG PET/CT更高的图像质量。

       ICC MVI的常规影像学表现,PET/CT尚无相关报道,基于PET/CT影像组学特征均为强度和纹理特征,与影像形态学之间的关系尚不明确,目前多用18F-FDG作为示踪剂,而开发出ICC-MVI特异性示踪剂是今后研究方向。

4 基于超声影像组学预测ICC MVI的研究进展

       与MRI、CT相比,超声(ultrasound, US)检查无辐射且便捷,是肝脏病变筛查、定性和随访的常规影像方法。目前US影像组学模型较MRI/CT少很多,仅在鉴别HCC和ICC方面有所研究,但也证实了US影像组学模型具有较好的预测价值[53]。涉及ICC MVI,可以借鉴HCC MVI预测模型,HU等[54]发现AFP>400 ng/mL和肿瘤直径>5 cm与MVI显著相关,这与前述MRI/CT影像组学报道相似;研究者同时应用影像组学技术从US图像中提取特征,建立影像组学评分,多因素分析显示,影像组学评分是MVI的独立预测因素,影像组学列线图(基于AFP、肿瘤大小和影像组学评分三个因素)的AUC为0.731,对MVI的预测性能优于临床列线图。

       基于US图像的ICC MVI影像组学预测模型有待开发,可以借鉴上述CT、MRI及PET影像组学预测模型的研究方法,结合其自身的影像特点发挥优势,建立基于US的影像组学模型,为ICC MVI的术前预测作出贡献。

5 不足与展望

       关于预测ICC MVI的影像组学模型,目前研究多为单中心、小样本、回顾性研究,存在选择偏倚;影像组学在ICC亚型上的应用主要集中在肿块型ICC,而对其他亚型(管周浸润型、管内生长型、混合型)的研究少见,导致生物特征分析不全面;在上述四种影像组学模型中,均缺少与MVI相关的常规影像学特征,而常规影像学特征是诊断疾病的根本,需给予重视;应选择合适的示踪剂用于PET/CT及增强超声(contrast-enhanced ultrasound, CEUS),不同种类MR对比剂能更好显示与MVI相关的常规影像特征,这都需要进一步研究。未来要持续关注ICC发生发展过程中影像学特征、临床因素及肿瘤基因层面的改变,关注MVI相关形态学特征,结合组织病理学、免疫组织化学标志物、基因组学和代谢组学特征建立更多预测模型,为精准诊疗及改善患者生存预后保驾护航。

[1]
中华人民共和国国家卫生健康委员会医政司. 原发性肝癌诊疗指南(2024年版)[J]. 磁共振成像, 2024, 15(6): 1-18. DOI: 10.12015/issn.1674-8034.2024.06.001.
Department of Medical Administration of the National Health Commission of the People's Republic of China. Guideline for diagnosis and treatment of primary liver cancer (2024 edition)[J]. Chin J Magn Reson Imag, 2024, 15(6): 1-18. DOI: 10.12015/issn.1674-8034.2024.06.001.
[2]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[3]
MOEINI A, HABER P K, SIA D. Cell of origin in biliary tract cancers and clinical implications[J/OL]. JHEP Rep, 2021, 3(2): 100226 [2024-03-02]. https://www.jhep-reports.eu/article/S2589-5559(21)00002-1/fulltext. DOI: 10.1016/j.jhepr.2021.100226.
[4]
肝内胆管癌编写专家委员会. 肝内胆管癌病理诊断专家共识(2022版)[J]. 中华病理学杂志, 2022, 51(9): 819-827. DOI: 10.3760/cma.j.cn112151-20220517-00423.
Expert Committee of Expert Consensus on Pathological Diagnosis of Intrahepatic Cholangiocarcinoma. Expert consensus on pathological diagnosis of intrahepatic cholangiocarcinoma (2022 version)[J]. Chin J Pathol, 2022, 51(9): 819-827. DOI: 10.3760/cma.j.cn112151-20220517-00423.
[5]
CERRITO L, AINORA M E, BORRIELLO R, et al. Contrast-enhanced imaging in the management of intrahepatic cholangiocarcinoma: state of art and future perspectives[J/OL]. Cancers, 2023, 15(13): 3393 [2024-03-02]. https://www.mdpi.com/2072-6694/15/13/3393. DOI: 10.3390/cancers15133393.
[6]
EUROPEAN ASSOCIATION FOR THE STUDY OF THE LIVER. EASL-ILCA Clinical Practice Guidelines on the management of intrahepatic cholangiocarcinoma[J]. J Hepatol, 2023, 79(1): 181-208. DOI: 10.1016/j.jhep.2023.03.010.
[7]
MAZZAFERRO V, GORGEN A, ROAYAIE S, et al. Liver resection and transplantation for intrahepatic cholangiocarcinoma[J]. J Hepatol, 2020, 72(2): 364-377. DOI: 10.1016/j.jhep.2019.11.020.
[8]
MORIS D, PALTA M, KIM C, et al. Advances in the treatment of intrahepatic cholangiocarcinoma: an overview of the current andfuturetherapeutic landscape for clinicians[J]. CA Cancer J Clin, 2023, 73(2): 198-222. DOI: 10.3322/caac.21759.
[9]
O'ROURKE C J, SALATI M, RAE C, et al. Molecular portraits of patients with intrahepatic cholangiocarcinoma who diverge as rapid progressors or long survivors on chemotherapy[J]. Gut, 2024, 73(3): 496-508. DOI: 10.1136/gutjnl-2023-330748.
[10]
BRAGAZZI M C, VENERE R, RIBICHINI E, et al. Intrahepatic cholangiocarcinoma: evolving strategies in management and treatment[J]. Dig Liver Dis, 2024, 56(3): 383-393. DOI: 10.1016/j.dld.2023.08.052.
[11]
CHEN Y F, LIU H Z, ZHANG J Y, et al. Prognostic value and predication model of microvascular invasion in patients with intrahepatic cholangiocarcinoma: a multicenter study from China[J/OL]. BMC Cancer, 2021, 21(1): 1299[2024-06-30]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8645153/. DOI: 10.1186/s12885-021-09035-5.
[12]
MAKI H, KAWAGUCHI Y, NAGATA R, et al. Conditional recurrence analysis of intrahepatic cholangiocarcinoma: changes in recurrence rate and survival after recurrence resection by disease-free interval[J]. Hepatol Res, 2023, 53(12): 1224-1234. DOI: 10.1111/hepr.13951.
[13]
SUN Z Q, HAN X, YOU W L, et al. Adjuvant therapy for cholangiocarcinoma after surgery and prognosis factors for cholangiocarcinoma: a single-center retrospective cohort study[J/OL]. Front Oncol, 2023, 13: 1116338 [2024-06-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10063974/. DOI: 10.3389/fonc.2023.1116338.
[14]
XU Y, LI Z, ZHOU Y Z, et al. Using immunovascular characteristics to predict very early recurrence and prognosis of resectable intrahepatic cholangiocarcinoma[J/OL]. BMC Cancer, 2023, 23(1): 1009 [2024-06-30]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10588260/. DOI: 10.1186/s12885-023-11476-z.
[15]
RODRÍGUEZ-PERÁLVAREZ M, LUONG T V, ANDREANA L, et al. A systematic review of microvascular invasion in hepatocellular carcinoma: diagnostic and prognostic variability[J]. Ann Surg Oncol, 2013, 20(1): 325-339. DOI: 10.1245/s10434-012-2513-1.
[16]
中国医师协会肝癌专业委员会. 肝细胞癌伴微血管侵犯诊断和治疗中国专家共识(2024版)[J]. 中华消化外科杂志, 2024, 23(2): 153-164. DOI: 10.3760/cma.j.cn115610-20240125-00041.
Chinese Association of Liver Cancer of Chinese Medical Doctor Association. Chinese expert consensus on the diagnosis and treatment of hepatocellular carcinoma with microvascular invasion (2024 edition)[J]. Chin J Dig Surg, 2024, 23(2): 153-164. DOI: 10.3760/cma.j.cn115610-20240125-00041.
[17]
WANG H, CHEN J J, YIN S Y, et al. A grading system of microvascular invasion for patients with hepatocellular carcinoma undergoing liver resection with curative intent: a multicenter study[J]. J Hepatocell Carcinoma, 2024, 11: 191-206. DOI: 10.2147/jhc.s447731.
[18]
ZHANG Z H, JIANG C, QIANG Z Y, et al. Role of microvascular invasion in early recurrence of hepatocellular carcinoma after liver resection: a literature review[J]. Asian J Surg, 2024, 47(5): 2138-2143. DOI: 10.1016/j.asjsur.2024.02.115.
[19]
YU L, DAI M G, LU W F, et al. Preoperative prediction model for microvascular invasion in HBV-related intrahepatic cholangiocarcinoma[J/OL]. BMC Surg, 2023, 23(1): 239 [2024-10-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10433593/. DOI: 10.1186/s12893-023-02139-8.
[20]
FENG B, WANG L Y, ZHU Y J, et al. The value of LI-RADS and radiomic features from MRI for predicting microvascular invasion in hepatocellular carcinoma within 5cm[J]. Acad Radiol, 2024, 31(6): 2381-2390. DOI: 10.1016/j.acra.2023.12.007.
[21]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[22]
LIU Z Y, WANG S, DONG D, et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges[J]. Theranostics, 2019, 9(5): 1303-1322. DOI: 10.7150/thno.30309.
[23]
GUIOT J, VAIDYANATHAN A, DEPREZ L, et al. A review in radiomics: making personalized medicine a reality via routine imaging[J]. Med Res Rev, 2022, 42(1): 426-440. DOI: 10.1002/med.21846.
[24]
BODARD S, LIU Y, GUINEBERT S, et al. Performance of radiomics in microvascular invasion risk stratification and prognostic assessment in hepatocellular carcinoma: a meta-analysis[J/OL]. Cancers, 2023, 15(3): 743 [2024-03-15]. https://pubmed.ncbi.nlm.nih.gov/36765701/. DOI: 10.3390/cancers15030743.
[25]
吕昊阳, 洪重, 黄侠鸣. 基于CE-CT影像组学与机器学习算法预测肿块型肝内胆管癌微血管侵犯[J]. 肝胆胰外科杂志, 2024, 36(1): 13-19. DOI: 10.11952/j.issn.1007-1954.2024.01.003.
LYU H Y, HONG Z, HUANG X M, et al. Prediction of microvascular invasion of mass-forming intrahepatic cholangiocarcinoma basedon contrast-enhanced CT radiomics and machine learning[J].Journal of Hepatopancreatobiliary Surgery, 2024, 36(1): 13-19. DOI: 10.11952/j.issn.1007-1954.2024.01.003.
[26]
XIANG F, WEI S M, LIU X Y, et al. Radiomics analysis of contrast-enhanced CT for the preoperative prediction of microvascular invasion in mass-forming intrahepatic cholangiocarcinoma[J/OL]. Front Oncol, 2021, 11: 774117 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/34869018/. DOI: 10.3389/fonc.2021.774117.
[27]
LIAO Z J, LU L, LIU Y P, et al. Clinical and DCE-CT signs in predicting microvascular invasion in cHCC-ICC[J/OL]. Cancer Imaging, 2023, 23(1): 112 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/37978567/. DOI: 10.1186/s40644-023-00621-3.
[28]
ZHOU Y, ZHOU G F, ZHANG J L, et al. Radiomics signature on dynamic contrast-enhanced MR images: a potential imaging biomarker for prediction of microvascular invasion in mass-forming intrahepatic cholangiocarcinoma[J]. Eur Radiol, 2021, 31(9): 6846-6855. DOI: 10.1007/s00330-021-07793-1.
[29]
TANG Z, LIU W R, ZHOU P Y, et al. Prognostic value and predication model of microvascular invasion in patients with intrahepatic cholangiocarcinoma[J]. J Cancer, 2019, 10(22): 5575-5584. DOI: 10.7150/jca.32199.
[30]
MA X J, QIAN X L, WANG Q, et al. Radiomics nomogram based on optimal VOI of multi-sequence MRI for predicting microvascular invasion in intrahepatic cholangiocarcinoma[J]. Radiol Med, 2023, 128(11): 1296-1309. DOI: 10.1007/s11547-023-01704-8.
[31]
ZHANG Y F, CHEN J J, YANG C, et al. Preoperative prediction of microvascular invasion in hepatocellular carcinoma using diffusion-weighted imaging-based habitat imaging[J]. Eur Radiol, 2024, 34(5): 3215-3225. DOI: 10.1007/s00330-023-10339-2.
[32]
LIU Z W, LUO C, CHEN X J, et al. Noninvasive prediction of perineural invasion in intrahepatic cholangiocarcinoma by clinicoradiological features and computed tomography radiomics based on interpretable machine learning: a multicenter cohort study[J]. Int J Surg, 2024, 110(2): 1039-1051. DOI: 10.1097/JS9.0000000000000881.
[33]
CHEN M M, TERZIC A, BECKER A S, et al. Artificial intelligence in oncologic imaging[J/OL]. Eur J Radiol Open, 2022, 9: 100441 [2024-03-24]. https://pubmed.ncbi.nlm.nih.gov/36193451/. DOI: 10.1016/j.ejro.2022.100441.
[34]
LIU Y L, WANG B, MO X, et al. A deep learning workflow for mass-forming intrahepatic cholangiocarcinoma and hepatocellular carcinoma classification based on MRI[J]. Curr Oncol, 2022, 30(1): 529-544. DOI: 10.3390/curroncol30010042.
[35]
CHEN S, ZHU Y M, WAN L J, et al. Predicting the microvascular invasion and tumor grading of intrahepatic mass-forming cholangiocarcinoma based on magnetic resonance imaging radiomics and morphological features[J]. Quant Imaging Med Surg, 2023, 13(12): 8079-8093. DOI: .
[36]
XU Q, ZHU Q Q, LIU H, et al. Differentiating benign from malignant renal tumors using T2- and diffusion-weighted images: a comparison of deep learning and radiomics models versus assessment from radiologists[J]. J Magn Reson Imaging, 2022, 55(4): 1251-1259. DOI: .
[37]
QIAN X L, LU X, MA X J, et al. A multi-parametric radiomics nomogram for preoperative prediction of microvascular invasion status in intrahepatic cholangiocarcinoma[J/OL]. Front Oncol, 2022, 12: 838701 [2024-03-20]. https://pubmed.ncbi.nlm.nih.gov/35280821/. DOI: 10.3389/fonc.2022.838701.
[38]
SILVA M, VIVANCOS C, DUFFAU H. The concept of «Peritumoral zone» in diffuse low-grade gliomas: oncological and functional implications for a connectome-guided therapeutic attitude[J/OL]. Brain Sci, 2022, 12(4): 504 [2024-03-21]. https://pubmed.ncbi.nlm.nih.gov/35448035/. DOI: 10.3390/brainsci12040504.
[39]
侯娟, 刘文亚. 肿瘤瘤周的影像组学研究进展[J]. 磁共振成像, 2024, 15(3): 230-234. DOI: 10.12015/issn.1674-8034.2024.03.038.
HOU J, LIU W Y. Advance of peritumoral radiomics research[J]. Chin J Magn Reson Imag, 2024, 15(3): 230-234. DOI: 10.12015/issn.1674-8034.2024.03.038.
[40]
MA X J, LIU L H, FANG J, et al. MRI features predict microvascular invasion in intrahepatic cholangiocarcinoma[J]. Cancer Imaging, 2020, 20(1): 40 [2024-03-11]. https://pubmed.ncbi.nlm.nih.gov/32576283/. DOI: 10.1186/s40644-020-00318-x.
[41]
ZHOU Y, WANG X L, XU C, et al. Mass-forming intrahepatic cholangiocarcinoma: can diffusion-weighted imaging predict microvascular invasion?[J]. J Magn Reson Imaging, 2019, 50(1): 315-324. DOI: 10.1002/jmri.26566.
[42]
CHEN S, WAN L J, ZHAO R, et al. Predictive factors of microvascular invasion in patients with intrahepatic mass-forming cholangiocarcinoma based on magnetic resonance images[J]. Abdom Radiol, 2023, 48(4): 1306-1319. DOI: 10.1007/s00261-023-03847-8.
[43]
ZHAN P C, YANG T, ZHANG Y, et al. Radiomics using CT images for preoperative prediction of lymph node metastasis in perihilar cholangiocarcinoma: a multi-centric study[J]. Eur Radiol, 2024, 34(2): 1280-1291. DOI: 10.1007/s00330-023-10108-1.
[44]
CHEN S, WAN L J, ZHAO R, et al. Nomogram based on preoperative clinical and MRI features to estimate the microvascular invasion status and the prognosis of solitary intrahepatic mass-forming cholangiocarcinoma[J]. Abdom Radiol, 2024, 49(2): 425-436. DOI: 10.1007/s00261-023-04079-6.
[45]
GAO W Y, WANG W T, SONG D J, et al. A multiparametric fusion deep learning model based on DCE-MRI for preoperative prediction of microvascular invasion in intrahepatic cholangiocarcinoma[J]. J Magn Reson Imaging, 2022, 56(4): 1029-1039. DOI: 10.1002/jmri.28126.
[46]
魏友平, 张顺, 宋美娜, 等. 肿块型肝内胆管细胞癌的MRI增强特征与相关病理及预后[J]. 磁共振成像, 2023, 14(8): 68-72. DOI: 10.12015/issn.1674-8034.2023.08.011.
WEI Y P, ZHANG S, SONG M N, et al. MRI enhanced features, pathology and prognosis of intrahepatic mass-forming cholangiocarcinoma[J]. Chin J Magn Reson Imag, 2023, 14(8): 68-72. DOI: 10.12015/issn.1674-8034.2023.08.011.
[47]
VAZ S C, ADAM J A, DELGADO BOLTON R C, et al. Joint EANM/SNMMI/ESTRO practice recommendations for the use of 2-[18F]FDG PET/CT external beam radiation treatment planning in lung cancer V1.0[J]. Eur J Nucl Med Mol Imaging, 2022, 49(4): 1386-1406. DOI: 10.1007/s00259-021-05624-5.
[48]
FIZ F, MASCI C, COSTA G, et al. PET/CT-based radiomics of mass-forming intrahepatic cholangiocarcinoma improves prediction of pathology data and survival[J]. Eur J Nucl Med Mol Imaging, 2022, 49(10): 3387-3400. DOI: 10.1007/s00259-022-05765-1.
[49]
JIANG C J, ZHAO L W, XIN B W, et al. 18F-FDG PET/CT radiomic analysis for classifying and predicting microvascular invasion in hepatocellular carcinoma and intrahepatic cholangiocarcinoma[J]. Quant Imaging Med Surg, 2022, 12(8): 4135-4150. DOI: 10.21037/qims-21-1167.
[50]
JIANG C, YUAN Y, GU B, et al. Preoperative prediction of microvascular invasion and perineural invasion in pancreatic ductal adenocarcinoma with 18F-FDG PET/CT radiomics analysis[J]. Clin Radiol, 2023, 78(9): 687-696. DOI: 10.1016/j.crad.2023.05.007.
[51]
KANEKO K, NAGAO M, YAMAMOTO A, et al. Patlak reconstruction using dynamic 18 F-FDG PET imaging for evaluation of malignant liver tumors: A comparison of HCC, ICC, and metastatic liver tumors[J]. Clin Nucl Med, 2024, 49(2): 116-123. DOI: 10.1097/RLU.0000000000005013.
[52]
LIANG J C, JIANG S Q, SONG J J, et al. Role of [18F] FAPI-04 in staging and therapeutic management of intrahepatic cholangiocarcinoma: prospective comparison with [18F]FDG PET/CT[J/OL]. EJNMMI Res, 2024, 14(1): 81 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/39256297/. DOI: 10.1186/s13550-024-01145-y.
[53]
CHEN J N, ZHANG W B, BAO J W, et al. Implications of ultrasound-based deep learning model for preoperatively differentiating combined hepatocellular-cholangiocarcinoma from hepatocellular carcinoma and intrahepatic cholangiocarcinoma[J]. Abdom Radiol, 2024, 49(1): 93-102. DOI: 10.1007/s00261-023-04089-4.
[54]
HU H T, WANG Z, HUANG X W, et al. Ultrasound-based radiomics score: a potential biomarker for the prediction of microvascular invasion in hepatocellular carcinoma[J]. Eur Radiol, 2019, 29(6): 2890-2901. DOI: 10.1007/s00330-018-5797-0.

上一篇 基于无创成像技术评估心外膜脂肪组织与心血管疾病相关性的研究进展
下一篇 棕色脂肪磁共振定量成像技术研究现状及应用进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2