分享:
分享到微信朋友圈
X
特别关注
影像学在评估直肠癌新辅助治疗疗效中的应用
孙应实 张晓燕

Cite this article as: SUN Y S, ZHANG X Y. Radiology in assessment of neoadjuvant treatment efficacy in rectal cancer[J]. Chin J Magn Reson Imaging, 2025, 16(1): 17-21.本文引用格式:孙应实, 张晓燕. 影像学在评估直肠癌新辅助治疗疗效中的应用[J]. 磁共振成像, 2025, 16(1): 17-21. DOI:10.12015/issn.1674-8034.2025.01.003.


[摘要] 新辅助放化疗(neoadjuvant chemoradiotherapy, CRT)是局部进展期直肠癌(locally advanced rectal cancer, LARC)患者的首选一线治疗方案,LARC患者CRT后肿瘤反应的评估直接关系到后续治疗方案的选择和长期预后。由于CRT引起的纤维化、水肿和炎症反应使得肿瘤的反应性评估尤其是肿瘤是否完全缓解面临挑战。基于现有的标准区分是否完全缓解并不可靠,无法满足临床需要。新的影像学检查方法及人工智能的兴起为新辅助治疗评效带来了希望,本文将围绕目前的影像学评效方法及研究现状进行评述,以期精准指导直肠癌个体化治疗。
[Abstract] Neoadjuvant chemoradiotherapy (CRT) is the preferred first-line treatment for patients with locally advanced rectal cancer (LARC). Assessment of tumor response following CRT directly influences subsequent treatment decisions and long-term prognosis. Challenges in evaluating tumor response, particularly complete response, arise due to fibrosis, edema, and inflammation induced by CRT. Current standard methods for distinguishing complete response are unreliable and inadequate for clinical needs. The emergence of new imaging techniques and artificial intelligence offers hope for improving assessment of neoadjuvant treatment efficacy. This review focuses on current imaging evaluation methods and research progress, aiming to facilitate precise imaging-guided personalized treatment for rectal cancer.
[关键词] 直肠癌;新辅助放化疗;疗效评价;个体化治疗;人工智能;磁共振成像;精准影像
[Keywords] rectal cancer;neoadjuvant chemoradiotherapy;treatment response evaluation;personalized treatment;artificial intelligence;magnetic resonance imaging;precision imaging

孙应实 *   张晓燕   

北京大学肿瘤医院暨北京市肿瘤防治研究所医学影像科,恶性肿瘤发病机制及转化研究教育部重点实验室,北京 100142

通信作者:孙应实,E-mail:sys27@163.com

作者贡献声明:孙应实设计本研究的方案,起草和撰写稿件,对稿件重要内容进行了修改,获得了国家重点研发计划项目、国家自然科学基金项目、首都卫生发展科研专项资助;张晓燕起草和撰写稿件,获取、分析和解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


        
        孙应实,北京大学影像医学与核医学博士,主任医师,教授,博士研究生导师。现任北京肿瘤医院医学影像科主任,北京大学医学部影像医学学系主任。中国抗癌协会肿瘤影像专委会候任主委,中华医学会放射学分会委员、腹部学组副组长,中国医师协会放射医师分会委员,北京医学会放射学分会副主任委员。Abdominal Radiology副主编,《中国医学影像技术》副主编。从事临床医疗及影像诊断方面工作逾25年,掌握本专业国内外发展现状及未来趋势,具有对世界先进技术消化吸收的能力及丰富的影像诊断经验。对结直肠肿瘤的MR、CT诊断有较深的造诣。主编国家卫健委《中国结直肠癌诊疗规范》2017版、2020版和2022版的影像学部分,主编《中国肿瘤整合诊治技术指南》的《MR检查》《CT检查》分册。主持9项国自然及科技部课题,多项省部级重点项目。

基金项目: 国家重点研发计划项目 2023YFC3402805 国家自然科学基金项目 82271955 首都卫生发展科研专项 首发2024-1-1022
收稿日期:2024-08-27
接受日期:2025-01-10
中图分类号:R445.2  R735.37 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.01.003
本文引用格式:孙应实, 张晓燕. 影像学在评估直肠癌新辅助治疗疗效中的应用[J]. 磁共振成像, 2025, 16(1): 17-21. DOI:10.12015/issn.1674-8034.2025.01.003.

0 引言

       目前新辅助放化疗(neoadjuvant chemoradiotherapy, CRT)+全直肠系膜切除术(total mesorectal excision, TME)仍然是局部进展期直肠癌(locally advanced rectal cancer, LARC)患者的标准治疗方式[1, 2],CRT能够缩小肿瘤并降低肿瘤分期,改善患者局部控制并降低放化疗毒性。CRT后的肿瘤退缩不仅有助于完整切除肿瘤且镜下切缘为阴性(实现R0切除),还增加了肛门括约肌保留的可能性。肿瘤退缩分级(tumor regression grade, TRG),是针对原发肿瘤对CRT反应度的不同分级,已有研究证实TRG是LARC患者CRT并TME后肿瘤学结局的预测因素[3, 4, 5]。病理学完全缓解(pathological complete response, pCR; TRG 0)或微小残留肿瘤(TRG 0~1)患者的生存率高于低缓解患者(TRG 2~3)[4, 5]。HUH等[5]报道,TRG 0和TRG 1患者的5年总生存(overall survival, OS)率和5年无病生存(disease-free survival, DFS)率高于TRG 2~3患者。

       对于CRT反应良好的患者,包括局部切除(local excision, LE)和观察等待(Watch & Wait, W&W or Wait & See)策略在内的器官保留策略正在成为可选择的临床治疗方法[6, 7, 8]。在过去的几年中,临床对LE和W&W等保留器官的兴趣有所增加,事实上已有证据[9, 10]证明这种策略不仅降低了TME的发生率,同时也为选定的患者提供了可接受的肿瘤学结果。CRT后约有14%~33%的患者可达到pCR[11, 12],具备施行器官保留策略的指征。与接受根治性手术治疗的患者相比,针对这部分CRT反应极好的完全缓解患者局切或观察等待具备相近的复发率和生存率[8, 13],但避免了创伤较大的手术且保留了器官。这些全新临床策略实践的关键问题是临床完全缓解(clinical complete response, cCR)患者的术前预测精准度如何,因为再分期越准确,每位直肠癌患者的治疗就越有针对性。因此,本文将重点述评影像学在评价直肠癌新辅助治疗疗效中的研究进展,以期提高临床对直肠癌患者新辅助后再分期的术前诊断准确性,为直肠癌患者个体化治疗方案的选择提供依据。

1 形态学成像

       形态学成像一般指以解剖学为基础,显示人体组织器官形态结构的成像方式,在直肠癌的诊疗过程中常用的形态学成像手段包括经直肠腔内超声(transrectal ultrasound, TRUS)、计算机断层成像(computed tomography, CT)和磁共振成像(magnetic resonance imaging, MRI)等。

       TRUS能够根据肠壁不同层次回声的差异,评估直肠癌原发灶的浸润深度,但由于TRUS受到操作者主观影响较大等原因,既往研究中CRT后T再分期的结果准确性差异较大[14, 15, 16],同时由于其难以对直肠壁外的结构,如肠周淋巴结、壁外血管侵犯(extramural vascular invasion, EMVI)、直肠系膜筋膜(mesorectal fascia, MRF)等进行评价,因此TRUS在直肠癌新辅助后疗效评价中的作用有限。而CT检查具有扫描快、范围广、可行多平面重建等优点,同时也存在软组织分辨力不足,难以判断肠壁各层结构的劣势,更适用于评价直肠癌非区域淋巴结转移及远处转移[17, 18]

       相比之下,目前指南均推荐在没有禁忌证的情况下首选MRI进行疗效评价,尤其在评估患者是否达到cCR,考虑能否施行器官保留策略时[17, 18, 19]。放化疗通常会导致T2WI中肿瘤体积缩小,中等信号的肿瘤区域内出现低信号的纤维化,肠壁粘膜下层由于水肿呈高信号,甚至肠壁各层信号完全正常化等改变[20]。肿瘤体积的变化已被证明是预测肿瘤缓解的有效参数[21, 22, 23],而“裂痕征”(Split scar sign)的出现在预测pCR中展现出了较高的特异度,但敏感度较低[24]。2011年MERCURY研究小组根据病理TRG系统建立了MRI肿瘤退缩分级(magnetic resonance imaging tumor regression grade, mrTRG)系统,尝试通过MRI图像中残余肿瘤信号与低信号纤维化的比例来对治疗效果进行评价[25],但后续研究发现其与病理TRG间的一致性较差且不同研究间尚未就判断标准达成共识,导致mrTRG在观察者间一致性、诊断效能和与病理结果匹配度等方面仍存在挑战[20, 26, 27]

       多项Meta分析结果均显示,无论是超声、CT还是MRI均不能准确评价新辅助治疗后是否存在肿瘤残余[28, 29, 30],提示常规的形态学成像仍难以在新辅助治疗后进行准确再分期。

2 功能学成像

       多参数成像是MRI的优势之一,其中功能成像可在细胞学水平反映肿瘤的生理和生物学特征,从而提高直肠癌患者新辅助治疗后的评效准确性。以水分子无规则扩散为基础的扩散加权成像(diffusion-weighted imaging, DWI)是最常用的功能成像序列之一,肿瘤组织通常有较高的细胞密度,导致水分子扩散受限,在DWI中表现为高信号,有助于在新辅助治疗后识别出残余肿瘤。研究发现,在常规T2WI基础上增加DWI能够提升新辅助再分期的准确性、敏感度和读者间一致性[20]。因此有研究者利用DWI对mrTRG进行了改进,一定程度上提高了新辅助后MRI的诊断准确性[31, 32]。而通过分析对比剂的分布情况反映微循环灌注和毛细血管通透性的动态对比增强(dynamic contrast enhanced, DCE),也可以根据残余肿瘤特殊的强化特点辅助评估新辅助后的治疗反应[33]。基于DCE的定量参数如容积转移常数(Ktrans)、速率常数(Kep)、血管外细胞外容积分数(Ve)等也可以为新辅助治疗后的精准评效提供依据,但由于其受到患者本身血压、全身血流灌注等影响较大,导致其研究结果可重复性欠佳,进而限制了临床应用[34]。已有探索性的研究表明更多更先进的MRI功能成像序列在直肠癌新辅助治疗疗效评估方面也存在应用潜力。例如酰胺质子转移(amide proton transfer, APT)成像技术[35, 36]能够通过表征无活性的治疗反应与有活性的残余肿瘤组织间蛋白质和肽含量的差异,磁共振波谱(magnetic resonance spectroscopy, MRS)[37]能通过测量代谢物和代谢过程来检测形态变化前的早期代谢变化,从不同维度为直肠癌的新辅助治疗疗效评估提供信息,从而提高评价准确性。以18F脱氧葡萄糖(18F-Fluorodeoxy-Glucose)为显像剂的正电子发射断层扫描(positron emission tomography, PET)联合CT(PET/CT)或MRI(PET/MRI)能够将患者的全身解剖与代谢成像进行结合,可用于监测肿瘤新辅助治疗后的代谢变化[38, 39, 40],PET/MRI融合了PET影像的高精度和数据可量化特性,及MRI的极佳软组织分辨率和多序列成像特性,使其在恶性肿瘤、心血管系统疾病和神经系统疾病的诊疗中得到广泛的应用。有研究表明PET/MRI在评估肠壁分层结构、肿瘤浸润范围和腹膜受累范围方面更为精准,对结肠癌和直肠癌的分期诊断具有更高的准确性[41, 42]。此外,PET/MRI结合DWI等功能序列还可以用于评估直肠癌CRT的治疗效果,以及区分治疗后的肿瘤残留和纤维化改变[42]。在最近的一项系统综述中,与PET/CT或MRI相比,18F-FDG PET/MRI在T和N分期方面显示出更好的准确性,有助于临床筛选可获益于器官保留策略的患者[40, 43]。同时,远处转移的存在通常会影响患者手术方式的制订,若利用常规MRI或CT检查,患者通常需要接受多次扫描,但PET/CT或PET/MRI能够一次性显示全身情况,为患者的总体分期提供更有力的证据[42]

3 人工智能

       随着技术的革新,作为人工智能的两大分支,影像组学和深度学习在医学影像领域得到了广泛的关注。利用人工智能方法挖掘出隐藏于图像背后的信息,提取影像医生无法肉眼识别或测量的海量数据,在评估直肠癌新辅助治疗疗效方面也显示了较大的应用潜力[44, 45, 46]

       影像组学的工作流程通常包括影像图像的获取、感兴趣区(region of interest, ROI)的选择及分割、特征的提取及筛选、模型的建立及验证等。影像组学方法能够融合多模态影像的定量特征,结合各种成像方式的优势,提高对新辅助治疗疗效评价的准确性[47, 48, 49]。除了MRI外,联合人工智能方法与PET/MRI影像能够进一步提高影像精度[50, 51]。新辅助治疗前、后影像组学特征的变化情况(即Delta-radiomics)也有助于预测新辅助治疗的疗效[52, 53]。同时,评价对象也不再局限于肿瘤本身,还可以从直肠系膜等邻近结构中提取高通量定量影像组学特征,全方位捕获肿瘤及瘤周异质性,从而帮助提高诊断准确性[54, 55]。深度学习中的分类网络能够帮助判断新辅助治疗疗效[56, 57],而自动识别与分割任务能够自动勾画出瘤床区域,从而减少临床医生日常工作的时间和人力成本,同时也为后续的分类任务打下基础,减少观察者间的主观差异对后续工作的不利影响[58, 59, 60]。此外,利用人工智能模型能够处理高通量数据的能力,融合组织病理学中肿瘤病变的细胞特性和微环境特征的微观结构信息与影像图像中肿瘤组织的宏观空间结构特征,将多维度信息整合,以高精度和稳健性预测对CRT的病理完全反应,为治疗反应的评估提供更多依据[61, 62]

       与影像医生的定性评估相比,通过人工智能进行的逐像素点分析能够较为轻松地区分ROI中的微小病灶存在,尤其是联合MRI、临床及病理因素共同构建预测LARC患者pCR的智能化模型,显示出较好的应用前景。通过人工智能模型结果的帮助,主观评价的准确性能够得到进一步提高,对直肠癌的个体化治疗具有重要的临床意义[63, 64]。然而,人工智能在医学中的临床应用面临很多阻碍,首先就是透明度和可重复性问题。专门针对机器学习发布的《个体预后或诊断的多变量预测模型透明报告》(Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis, TRIPOD)声明[65],以及2020年发布的《人工智能干预试验方案报告标准》(Standard Protocol Items: Recommendations for Interventional Trials–Artificial Intelligence, SPIRIT-AI)[66]、《人工智能试验报告统一标准》(Consolidated Standards of Reporting Trials-Artificial Intelligence, CONSORT-AI)指南[67],提出了解决这些问题的协议和最佳实践指南。但人工智能在医学领域的进一步应用,高质量图像的获取是前提也是基础,无论是CT、MRI、PET/CT、PET/MRI、病理切片等,未来对数据收集和影像检测需要流程标准化、图像质控标准化;另外,还需要克服多中心由于不同影像扫描而产生的参数变化所导致的固有偏差;如何实现直肠等空腔脏器ROI的自动勾画,并开发用户友好的、全自动的分割系统是依据面临且亟待解决的关键问题。

4 小结

       随着治疗手段和成像技术的日益进步,术前精准诊断在直肠癌患者的个体化治疗中扮演的角色日渐重要。传统的形态学成像是影像学评效的基石,但需要更多准确性更高、观察者间一致性更好的征象或诊断标准。而功能成像的可重复性目前仍是制约其发展的重要因素之一,未来随着技术的发展以及不同机构间扫描协议的统一,相信其能够发挥出更大的潜力。人工智能模型能够纳入不同时间、不同维度的高通量信息,有望减少临床工作的时间和人力成本,但与真正临床应用间仍有较大距离。同时,目前新辅助治疗后评效的重点仍局限于肿瘤原发灶本身,但事实上MRI中还有很多能够预测患者预后情况的影像学危险因素,如转移淋巴结的被膜外侵犯[68]、EMVI[69]、侧方淋巴结转移等,未来需要建立一个更加全面的疗效评价体系,为患者个体化的治疗选择提供更有力的依据。

[1]
SAUER R, LIERSCH T, MERKEL S, et al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase Ⅲ trial after a Median follow-up of 11 years[J]. J Clin Oncol, 2012, 30(16): 1926-1933. DOI: 10.1200/JCO.2011.40.1836.
[2]
SAUER R, BECKER H, HOHENBERGER W, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer[J]. N Engl J Med, 2004, 351(17): 1731-1740. DOI: 10.1056/NEJMoa040694.
[3]
TRAKARNSANGA A, GÖNEN M, SHIA J R, et al. Comparison of tumor regression grade systems for locally advanced rectal cancer after multimodality treatment[J/OL]. J Natl Cancer Inst, 2014, 106(10): dju248 [2024-08-26]. https://pubmed.ncbi.nlm.nih.gov/25249540/. DOI: 10.1093/jnci/dju248.
[4]
MACE A G, PAI R K, STOCCHI L, et al. American joint committee on cancer and college of American pathologists regression grade: a new prognostic factor in rectal cancer[J]. Dis Colon Rectum, 2015, 58(1): 32-44. DOI: 10.1097/DCR.0000000000000266.
[5]
HUH J W, KIM H C, KIM S H, et al. Tumor regression grade as a clinically useful outcome predictor in patients with rectal cancer after preoperative chemoradiotherapy[J]. Surgery, 2019, 165(3): 579-585. DOI: 10.1016/j.surg.2018.08.026.
[6]
PUCCIARELLI S, DE PAOLI A, GUERRIERI M, et al. Local excision after preoperative chemoradiotherapy for rectal cancer: results of a multicenter phase Ⅱ clinical trial[J]. Dis Colon Rectum, 2013, 56(12): 1349-1356. DOI: 10.1097/DCR.0b013e3182a2303e.
[7]
PEREZ R O, HABR-GAMA A, LYNN P B, et al. Transanal endoscopic microsurgery for residual rectal cancer (ypT0-2) following neoadjuvant chemoradiation therapy: another word of caution[J]. Dis Colon Rectum, 2013, 56(1): 6-13. DOI: 10.1097/DCR.0b013e318273f56f.
[8]
RENEHAN A G, MALCOMSON L, EMSLEY R, et al. Watch-and-wait approach versus surgical resection after chemoradiotherapy for patients with rectal cancer (the OnCoRe project): a propensity-score matched cohort analysis[J]. Lancet Oncol, 2016, 17(2): 174-183. DOI: 10.1016/S1470-2045(15)00467-2.
[9]
BARINA A, DE PAOLI A, DELRIO P, et al. Rectal sparing approach after preoperative radio- and/or chemotherapy (RESARCH) in patients with rectal cancer: a multicentre observational study[J]. Tech Coloproctol, 2017, 21(8): 633-640. DOI: 10.1007/s10151-017-1665-1.
[10]
HABR-GAMA A, PEREZ R O, NADALIN W, et al. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results[J]. Ann Surg, 2004, 240(4): 711-718. DOI: 10.1097/01.sla.0000141194.27992.32.
[11]
DENG Y H, CHI P, LAN P, et al. Modified FOLFOX6 with or without radiation versus fluorouracil and leucovorin with radiation in neoadjuvant treatment of locally advanced rectal cancer: initial results of the Chinese FOWARC multicenter, open-label, randomized three-arm phase Ⅲ trial[J]. J Clin Oncol, 2016, 34(27): 3300-3307. DOI: 10.1200/JCO.2016.66.6198.
[12]
PEREZ K, SAFRAN H, SIKOV W, et al. Complete neoadjuvant treatment for rectal cancer: the brown university oncology group CONTRE study[J]. Am J Clin Oncol, 2017, 40(3): 283-287. DOI: 10.1097/COC.0000000000000149.
[13]
DOSSA F, CHESNEY T R, ACUNA S A, et al. A watch-and-wait approach for locally advanced rectal cancer after a clinical complete response following neoadjuvant chemoradiation: a systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2017, 2(7): 501-513. DOI: 10.1016/S2468-1253(17)30074-2.
[14]
MAOR Y, NADLER M, BARSHACK I, et al. Endoscopic ultrasound staging of rectal cancer: diagnostic value before and following chemoradiation[J]. J Gastroenterol Hepatol, 2006, 21(2): 454-458. DOI: 10.1111/j.1440-1746.2005.03927.x.
[15]
MEZZI G, ARCIDIACONO P G, CARRARA S, et al. Endoscopic ultrasound and magnetic resonance imaging for re-staging rectal cancer after radiotherapy[J]. World J Gastroenterol, 2009, 15(44): 5563-5567. DOI: 10.3748/wjg.15.5563.
[16]
MARTELLUCCI J, SCHEITERLE M, LORENZI B, et al. Accuracy of transrectal ultrasound after preoperative radiochemotherapy compared to computed tomography and magnetic resonance in locally advanced rectal cancer[J]. Int J Colorectal Dis, 2012, 27(7): 967-973. DOI: 10.1007/s00384-012-1419-5.
[17]
国家卫生健康委员会医政司, 中华医学会肿瘤学分会. 国家卫生健康委员会中国结直肠癌诊疗规范(2023版)[J]. 中华胃肠外科杂志, 2023, 26(6): 505-528. DOI: 10.3760/cma.j.cn441530-20230525-00182.
Department of Medical Administration of National Health Comimission, Chinese Society of Oncology. Chinese protocol of diagnosis and treatment of colorectal cancer of the National Health Commission (2023 edition)[J]. Chin J Gastrointest Surg, 2023, 26(6): 505-528. DOI: 10.3760/cma.j.cn441530-20230525-00182.
[18]
BENSON A B, VENOOK A P, AL-HAWARY M M, et al. Rectal cancer, version 2.2018, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2018, 16(7): 874-901. DOI: 10.6004/jnccn.2018.0061.
[19]
BEETS-TAN R G H, LAMBREGTS D M J, MAAS M, et al. Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting[J]. Eur Radiol, 2018, 28(4): 1465-1475. DOI: 10.1007/s00330-017-5026-2.
[20]
AWIWI M O, KAUR H, ERNST R, et al. Restaging MRI of rectal adenocarcinoma after neoadjuvant chemoradiotherapy: imaging findings and potential pitfalls[J/OL]. Radiographics, 2023, 43(4): e220135 [2024-08-26]. https://pubmed.ncbi.nlm.nih.gov/36927125/. DOI: 10.1148/rg.220135.
[21]
NOUGARET S, ROUANET P, MOLINARI N, et al. MR volumetric measurement of low rectal cancer helps predict tumor response and outcome after combined chemotherapy and radiation therapy[J]. Radiology, 2012, 263(2): 409-418. DOI: 10.1148/radiol.12111263.
[22]
NOUGARET S, FUJII S, ADDLEY H C, et al. Neoadjuvant chemotherapy evaluation by MRI volumetry in rectal cancer followed by chemoradiation and total mesorectal excision: Initial experience[J]. J Magn Reson Imaging, 2013, 38(3): 726-732. DOI: 10.1002/jmri.23905.
[23]
HAN Y B, OH S N, CHOI M H, et al. Clinical impact of tumor volume reduction in rectal cancer following preoperative chemoradiation[J]. Diagn Interv Imaging, 2016, 97(9): 843-850. DOI: 10.1016/j.diii.2016.05.004.
[24]
SANTIAGO I, BARATA M, FIGUEIREDO N, et al. The split scar sign as an indicator of sustained complete response after neoadjuvant therapy in rectal cancer[J]. Eur Radiol, 2020, 30(1): 224-238. DOI: 10.1007/s00330-019-06348-9.
[25]
PATEL U B, TAYLOR F, BLOMQVIST L, et al. Magnetic resonance imaging-detected tumor response for locally advanced rectal cancer predicts survival outcomes: MERCURY experience[J]. J Clin Oncol, 2011, 29(28): 3753-3760. DOI: 10.1200/JCO.2011.34.9068.
[26]
何宏, 陈思宇, 胡富碧. 基于磁共振的局部进展期直肠癌新辅助治疗后肿瘤退缩分级评分方法应用现状[J]. 磁共振成像, 2024, 15(7): 204-209. DOI: 10.12015/issn.1674-8034.2024.07.034.
HE H, CHEN S Y, HU F B. Application status of tumor regression grading method after neoadjuvant chemoradiotherapy based on magnetic resonance imaging for locally advanced rectal cancer[J]. Chin J Magn Reson Imag, 2024, 15(7): 204-209. DOI: 10.12015/issn.1674-8034.2024.07.034.
[27]
JAYAPRAKASAM V S, ALVAREZ J, OMER D M, et al. Watch-and-wait approach to rectal cancer: the role of imaging[J/OL]. Radiology, 2023, 307(1): e221529 [2024-08-26]. https://pubmed.ncbi.nlm.nih.gov/36880951/. DOI: 10.1148/radiol.221529.
[28]
DE JONG E A, BERGE J C E M TEN, DWARKASING R S, et al. The accuracy of MRI, endorectal ultrasonography, and computed tomography in predicting the response of locally advanced rectal cancer after preoperative therapy: a metaanalysis[J]. Surgery, 2016, 159(3): 688-699. DOI: 10.1016/j.surg.2015.10.019.
[29]
MEMON S, LYNCH A C, BRESSEL M, et al. Systematic review and meta-analysis of the accuracy of MRI and endorectal ultrasound in the restaging and response assessment of rectal cancer following neoadjuvant therapy[J]. Colorectal Dis, 2015, 17(9): 748-761. DOI: 10.1111/codi.12976.
[30]
ZHAO R S, WANG H, ZHOU Z Y, et al. Restaging of locally advanced rectal cancer with magnetic resonance imaging and endoluminal ultrasound after preoperative chemoradiotherapy: a systemic review and meta-analysis[J]. Dis Colon Rectum, 2014, 57(3): 388-395. DOI: 10.1097/DCR.0000000000000022.
[31]
PANG X L, XIE P Y, YU L, et al. A new magnetic resonance imaging tumour response grading scheme for locally advanced rectal cancer[J]. Br J Cancer, 2022, 127(2): 268-277. DOI: 10.1038/s41416-022-01801-x.
[32]
GUAN Z, SUN R J, CAO W T, et al. Magnetic resonance imaging tumor response score (mrTRS) predicts therapeutic effect and prognosis of locally advanced rectal cancer after neoadjuvant chemoradiotherapy: a prospective, multi-center study[J]. Radiother Oncol, 2020, 151: 288-295. DOI: 10.1016/j.radonc.2020.08.028.
[33]
LU Q Y, GUAN Z, ZHANG X Y, et al. Contrast-enhanced MRI for T restaging of locally advanced rectal cancer following neoadjuvant chemotherapy and radiation therapy[J]. Radiology, 2022, 305(2): 364-372. DOI: 10.1148/radiol.212905.
[34]
杨澳, 周鹏. 功能MRI定量评估局部进展期直肠癌新辅助放化疗后病理完全缓解研究进展[J]. 磁共振成像, 2024, 15(7): 210-215. DOI: 10.12015/issn.1674-8034.2024.07.035.
YANG A, ZHOU P. Progress of quantitative prediction of the pathologic complete response after neoadjuvant chemoradiotherapy for locally advanced rectal cancer with functional MRI[J]. Chin J Magn Reson Imag, 2024, 15(7): 210-215. DOI: 10.12015/issn.1674-8034.2024.07.035.
[35]
CHEN W C, MAO L T, LI L, et al. Predicting treatment response of neoadjuvant chemoradiotherapy in locally advanced rectal cancer using amide proton transfer MRI combined with diffusion-weighted imaging[J/OL]. Front Oncol, 2021, 11: 698427 [2024-08-26]. https://pubmed.ncbi.nlm.nih.gov/34277445/. DOI: 10.3389/fonc.2021.698427.
[36]
NISHIE A, ASAYAMA Y, ISHIGAMI K, et al. Amide proton transfer imaging to predict tumor response to neoadjuvant chemotherapy in locally advanced rectal cancer[J]. J Gastroenterol Hepatol, 2019, 34(1): 140-146. DOI: 10.1111/jgh.14315.
[37]
KIM M J, LEE S J, LEE J H, et al. Detection of rectal cancer and response to concurrent chemoradiotherapy by proton magnetic resonance spectroscopy[J]. Magn Reson Imaging, 2012, 30(6): 848-853. DOI: 10.1016/j.mri.2012.02.013.
[38]
AIBA T, UEHARA K, NIHASHI T, et al. MRI and FDG-PET for assessment of response to neoadjuvant chemotherapy in locally advanced rectal cancer[J]. Ann Surg Oncol, 2014, 21(6): 1801-1808. DOI: 10.1245/s10434-014-3538-4.
[39]
JOYE I, DEROOSE C M, VANDECAVEYE V, et al. The role of diffusion-weighted MRI and (18)F-FDG PET/CT in the prediction of pathologic complete response after radiochemotherapy for rectal cancer: a systematic review[J]. Radiother Oncol, 2014, 113(2): 158-165. DOI: 10.1016/j.radonc.2014.11.026.
[40]
CRIMÌ F, SPOLVERATO G, LACOGNATA C, et al. 18F-FDG PET/MRI for rectal cancer TNM restaging after preoperative chemoradiotherapy: initial experience[J]. Dis Colon Rectum, 2020, 63(3): 310-318. DOI: 10.1097/DCR.0000000000001568.
[41]
FRAUM T J, LUDWIG D R, HOPE T A, et al. PET/MRI for gastrointestinal imaging: current clinical status and future prospects[J]. Gastroenterol Clin North Am, 2018, 47(3): 691-714. DOI: 10.1016/j.gtc.2018.04.011.
[42]
MIRSHAHVALAD S A, HINZPETER R, KOHAN A, et al. Diagnostic performance of [18F]-FDG PET/MR in evaluating colorectal cancer: a systematic review and meta-analysis[J]. Eur J Nucl Med Mol Imaging, 2022, 49(12): 4205-4217. DOI: 10.1007/s00259-022-05871-0.
[43]
CRIMÌ F, VALEGGIA S, BAFFONI L, et al. [18F] FDG PET/MRI in rectal cancer[J]. Ann Nucl Med, 2021, 35(3): 281-290. DOI: 10.1007/s12149-021-01580-0.
[44]
NIE K, SHI L M, CHEN Q, et al. Rectal cancer: assessment of neoadjuvant chemoradiation outcome based on radiomics of multiparametric MRI[J]. Clin Cancer Res, 2016, 22(21): 5256-5264. DOI: 10.1158/1078-0432.CCR-15-2997.
[45]
LAMBIN P, LEIJENAAR R T H, DEIST T M, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762. DOI: 10.1038/nrclinonc.2017.141.
[46]
LIU Z Y, ZHANG X Y, SHI Y J, et al. Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. Clin Cancer Res, 2017, 23(23): 7253-7262. DOI: 10.1158/1078-0432.CCR-17-1038.
[47]
LI Z Y, WANG X D, LI M, et al. Multi-modal radiomics model to predict treatment response to neoadjuvant chemotherapy for locally advanced rectal cancer[J]. World J Gastroenterol, 2020, 26(19): 2388-2402. DOI: 10.3748/wjg.v26.i19.2388.
[48]
SHIN J, SEO N, BAEK S E, et al. MRI radiomics model predicts pathologic complete response of rectal cancer following chemoradiotherapy[J]. Radiology, 2022, 303(2): 351-358. DOI: 10.1148/radiol.211986.
[49]
CUI Y F, YANG X T, SHI Z Q, et al. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. Eur Radiol, 2019, 29(3): 1211-1220. DOI: 10.1007/s00330-018-5683-9.
[50]
GIANNINI V, MAZZETTI S, BERTOTTO I, et al. Predicting locally advanced rectal cancer response to neoadjuvant therapy with 18F-FDG PET and MRI radiomics features[J]. Eur J Nucl Med Mol Imaging, 2019, 46(4): 878-888. DOI: 10.1007/s00259-018-4250-6.
[51]
CAPELLI G, CAMPI C, BAO Q R, et al. 18F-FDG-PET/MRI texture analysis in rectal cancer after neoadjuvant chemoradiotherapy[J]. Nucl Med Commun, 2022, 43(7): 815-822. DOI: 10.1097/MNM.0000000000001570.
[52]
NARDONE V, REGINELLI A, GRASSI R, et al. Ability of delta radiomics to predict a complete pathological response in patients with loco-regional rectal cancer addressed to neoadjuvant chemo-radiation and surgery[J/OL]. Cancers, 2022, 14(12): 3004 [2024-08-26]. https://pubmed.ncbi.nlm.nih.gov/35740669/. DOI: 10.3390/cancers14123004.
[53]
WANG L K, WU X L, TIAN R X, et al. MRI-based pre-Radiomics and delta-Radiomics models accurately predict the post-treatment response of rectal adenocarcinoma to neoadjuvant chemoradiotherapy[J/OL]. Front Oncol, 2023, 13: 1133008 [2024-08-26]. https://pubmed.ncbi.nlm.nih.gov/36925913/. DOI: 10.3389/fonc.2023.1133008.
[54]
JAYAPRAKASAM V S, PARODER V, GIBBS P, et al. MRI radiomics features of mesorectal fat can predict response to neoadjuvant chemoradiation therapy and tumor recurrence in patients with locally advanced rectal cancer[J]. Eur Radiol, 2022, 32(2): 971-980. DOI: 10.1007/s00330-021-08144-w.
[55]
CHILOIRO G, CUSUMANO D, ROMANO A, et al. Delta radiomic analysis of mesorectum to predict treatment response and prognosis in locally advanced rectal cancer[J/OL]. Cancers, 2023, 15(12): 3082 [2024-08-26]. https://pubmed.ncbi.nlm.nih.gov/37370692/. DOI: 10.3390/cancers15123082.
[56]
ZHANG X Y, WANG L, ZHU H T, et al. Predicting rectal cancer response to neoadjuvant chemoradiotherapy using deep learning of diffusion kurtosis MRI[J]. Radiology, 2020, 296(1): 56-64. DOI: 10.1148/radiol.2020190936.
[57]
JANG B S, LIM Y J, SONG C, et al. Image-based deep learning model for predicting pathological response in rectal cancer using post-chemoradiotherapy magnetic resonance imaging[J]. Radiother Oncol, 2021, 161: 183-190. DOI: 10.1016/j.radonc.2021.06.019.
[58]
JIN C, YU H, KE J, et al. Predicting treatment response from longitudinal images using multi-task deep learning[J/OL]. Nat Commun, 2021, 12(1): 1851 [2024-08-26]. https://pubmed.ncbi.nlm.nih.gov/33767170/. DOI: 10.1038/s41467-021-22188-y.
[59]
KE J, JIN C, TANG J H, et al. A longitudinal MRI-based artificial intelligence system to predict pathological complete response after neoadjuvant therapy in rectal cancer: A multicenter validation study[J/OL]. Dis Colon Rectum, 2023, 66(12): e1195-e1206 [2024-08-26]. https://pubmed.ncbi.nlm.nih.gov/37682775/. DOI: 10.1097/DCR.0000000000002931.
[60]
XIA S J, LI Q Y, ZHU H T, et al. Fully semantic segmentation for rectal cancer based on post-nCRT MRl modality and deep learning framework[J/OL]. BMC Cancer, 2024, 24(1): 315 [2024-08-26]. https://pubmed.ncbi.nlm.nih.gov/38454349/. DOI: 10.1186/s12885-024-11997-1.
[61]
FENG L L, LIU Z Y, LI C F, et al. Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study[J/OL]. Lancet Digit Health, 2022, 4(1): e8-e17 [2024-08-26]. https://pubmed.ncbi.nlm.nih.gov/34952679/. DOI: 10.1016/S2589-7500(21)00215-6.
[62]
WAN L J, SUN Z, PENG W J, et al. Selecting candidates for organ-preserving strategies after neoadjuvant chemoradiotherapy for rectal cancer: development and validation of a model integrating MRI radiomics and pathomics[J]. J Magn Reson Imaging, 2022, 56(4): 1130-1142. DOI: 10.1002/jmri.28108.
[63]
JIA L L, ZHENG Q Y, TIAN J H, et al. Artificial intelligence with magnetic resonance imaging for prediction of pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer: A systematic review and meta-analysis[J/OL]. Front Oncol, 2022, 12: 1026216 [2024-08-26]. https://pubmed.ncbi.nlm.nih.gov/36313696/. DOI: 10.3389/fonc.2022.1026216.
[64]
SHEN H, JIN Z, CHEN Q Y, et al. Image-based artificial intelligence for the prediction of pathological complete response to neoadjuvant chemoradiotherapy in patients with rectal cancer: a systematic review and meta-analysis[J]. Radiol Med, 2024, 129(4): 598-614. DOI: 10.1007/s11547-024-01796-w.
[65]
HAIBE-KAINS B, ADAM G A, HOSNY A, et al. Transparency and reproducibility in artificial intelligence[J/OL]. Nature, 2020, 586(7829): E14-E16 [2024-08-26]. https://pubmed.ncbi.nlm.nih.gov/33057217/. DOI: 10.1038/s41586-020-2766-y.
[66]
RIVERA S C, LIU X X, CHAN A W, et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI Extension[J/OL]. BMJ, 2020, 370: m3210 [2024-08-26]. https://pubmed.ncbi.nlm.nih.gov/32907797/. DOI: 10.1136/bmj.m3210.
[67]
LIU X X, RIVERA S C, MOHER D, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI Extension[J/OL]. BMJ, 2020, 370: m3164 [2024-08-26]. https://pubmed.ncbi.nlm.nih.gov/33328048/. DOI: 10.1136/bmj.m3164.
[68]
LI Q Y, YANG D, GUAN Z, et al. Extranodal extension at pretreatment MRI and the prognostic value for patients with rectal cancer[J/OL]. Radiology, 2024, 310(3): e232605 [2024-08-26]. https://pubmed.ncbi.nlm.nih.gov/38530176/. DOI: 10.1148/radiol.232605.
[69]
KIM T H, FIRAT C, THOMPSON H M, et al. Extramural venous invasion and tumor deposit at diffusion-weighted MRI in patients after neoadjuvant treatment for rectal cancer[J/OL]. Radiology, 2023, 308(2): e230079 [2024-08-26]. https://pubmed.ncbi.nlm.nih.gov/37581503/. DOI: 10.1148/radiol.230079.

上一篇 四肢冲击伤影像学评估中国专家共识
下一篇 基于多参数磁共振成像特征的深度学习预测直肠癌患者的BRAF基因突变状态
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2