分享:
分享到微信朋友圈
X
特别关注
肿瘤及直肠系膜IVIM参数预测直肠癌同时性肝转移的价值研究
陈婕 陈建有 李振辉 蒋洁智 李志林 艾丛慧 马益 谭静

Cite this article as: CHEN J, CHEN J Y, LI Z H, et al. The value of IVIM parameters in predicting synchronous liver metastasis of rectal cancer in tumor and mesorectal[J]. Chin J Magn Reson Imaging, 2025, 16(1): 36-41, 67.本文引用格式:陈婕, 陈建有, 李振辉, 等. 肿瘤及直肠系膜IVIM参数预测直肠癌同时性肝转移的价值研究[J]. 磁共振成像, 2025, 16(1): 36-41, 67. DOI:10.12015/issn.1674-8034.2025.01.006.


[摘要] 目的 通过体素内不相干运动(intravoxel incoherent motion, IVIM)研究肿瘤及直肠系膜对直肠癌同时性肝转移(synchronous rectal liver metastasis, SRLM)的预测价值。材料与方法 回顾性分析经病理确诊为直肠癌的112例患者资料。其中42例为SRLM,将患者分为SRLM组(n=42)和非SRLM组(n=70)。在肿瘤最大层面勾画3个感兴趣区(region of interest, ROI),分别位于肿瘤、近肿瘤区直肠系膜(ROI距肿瘤<5 mm)和远肿瘤区直肠系膜(ROI距肿瘤>10 mm),测量IVIM参数表观扩散系数(apparent diffusion coefficient, ADC)、纯扩散系数(pure diffusion coefficient, D)、灌注相关扩散系数(pseudo-diffusion coefficient, D*)、灌注分数(perfusion fraction, f)。采用Mann-Whitney U检验和Wilcoxon检验分别比较两组间和各组内参数差异是否有统计学意义,并采用受试者工作特征(receive operating characteristic, ROC)曲线评价组间差异有统计学意义参数的预测效能。结果 与非SRLM组相比,SRLM组远肿瘤区ADC、D、f增高(P<0.001),近肿瘤区D、f增高(P<0.05),肿瘤参数差异均无统计学意义(P>0.05)。组内比较后两组远肿瘤区ADC均低于对应近肿瘤区参数和肿瘤参数(P<0.05),D均低于对应近肿瘤区参数和肿瘤参数(P<0.001),但近肿瘤区ADC、D与对应肿瘤参数差异无统计学意义(P>0.05)。远肿瘤区f虽低于近肿瘤区f,但在SRLM组中差异无统计学意义(P>0.05)。远肿瘤区ADC、D、f预测SRLM的曲线下面积(area under the curve, AUC)分别为0.769(95% CI:0.675~0.862)、0.745(95% CI:0.644~0.845)、0.733(95% CI:0.635~0.831)。结论 远肿瘤区直肠系膜IVIM参数ADC、f、D,可作为预测发生SRLM的影像学指标,对及时明确SRLM、发现隐匿性和高风险肝转移患者有重要的临床意义。
[Abstract] Objective Through the study of intravoxel incoherent motion (IVIM), this research investigates the predictive value of tumor and mesorectum parameters for synchronous rectal liver metastasis (SRLM) in rectal cancer.Materials and Methods A retrospective analysis was conducted on data from 112 patients with pathologically confirmed rectal cancer, including 42 patients with SRLM. The patients were divided into the SRLM group (n = 42) and the non-SRLM group (n = 70). On the maximum cross-sectional image of the tumor, three regions of interest (ROI) were delineated: one in the tumor, one in the near-tumor area (ROI < 5 mm from the tumor), and one in the distant-tumor area (ROI > 10 mm from the tumor). IVIM parameters apparent diffusion coefficient (ADC), pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) were measured The Mann-Whitney U test and the Wilcoxon test were used to compare the statistical significance of parameter differences between and within the groups, respectively. The predictive performance of parameters showing statistically significant differences between groups was evaluated using receiver operating characteristic (ROC) curves.Results Compared with the non- SRLM group, the SRLM group showed significantly increased parameters ADC, D, and f in the distant tumor area (P < 0.001), and increased D and f in the near tumor area (P < 0.05). However, the differences in tumor parameters were not statistically significant (P > 0.05). After intragroup comparison, the ADC values in the distal tumor regions of both groups were significantly lower than those in the corresponding proximal tumor regions and tumor parameters (P < 0.05), and the D values were significantly lower than those in the corresponding proximal tumor regions and tumor parameters (P < 0.001). Yet, ADC and D in the near tumor area showed no statistically significant differences compared to the corresponding tumor parameters (P > 0.05). Although the parameter f in the distant tumor area was lower than in the near tumor area, this difference was not statistically significant in the SRLM group (P > 0.05). The parameters ADC, D, and f in the distant tumor area predicted the area under the curve (AUC) for predicting SRLM using the ADC, D, and f parameters of the mesorectum distal to the tumor were 0.769 (95% CI: 0.675 to 0.862), 0.745 (95% CI: 0.644 to 0.845), and 0.733 (95% CI: 0.635 to 0.831), respectively.Conclusions The IVIM parameters ADC, f, and D in the distant tumor area of the mesorectum can serve as imaging biomarkers to predict the likelihood of SRLM in rectal cancer. Their assessment is of significant clinical importance for the timely diagnosis of SRLM and for identifying patients with occult and high-risk Liver metastases.
[关键词] 直肠癌;肝转移;直肠系膜;磁共振成像;体素内不相干运动;预测
[Keywords] rectal cancer;liver metastasis;mesorectum;magnetic resonance imaging;intravoxel incoherent motion;prediction

陈婕    陈建有    李振辉    蒋洁智    李志林    艾丛慧    马益    谭静 *  

云南省肿瘤医院(昆明医科大学第三附属医院)放射科,昆明 650118

通信作者:谭静,E-mail:2323338133@qq.com

作者贡献声明:谭静设计本研究方案,对稿件重要的内容进行了修改;陈婕起草和撰写稿件,获取、分析和解释本研究的数据;李振辉,陈建有,李志林,蒋洁智,艾聪慧,马益获取分析和解释本研究数据,对稿件重要的内容进行了修改;李振辉获得了云南省科技计划项目基础研究专项资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 云南省科技计划项目基础研究专项 202201AT070010
收稿日期:2024-08-04
接受日期:2024-11-10
中图分类号:R445.2  R735.37 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.01.006
本文引用格式:陈婕, 陈建有, 李振辉, 等. 肿瘤及直肠系膜IVIM参数预测直肠癌同时性肝转移的价值研究[J]. 磁共振成像, 2025, 16(1): 36-41, 67. DOI:10.12015/issn.1674-8034.2025.01.006.

0 引言

       直肠癌同时性肝转移(synchronous rectal liver metastasis, SRLM)指在直肠癌确诊前或确诊时即发现的肝转移,发病率为15%~25%,是直肠癌患者最主要的死亡原因之一[1, 2]。若能早期明确有无SRLM,筛出隐匿性或高风险肝转移患者,对临床及时干预治疗至关重要[3]

       近年来,各种MRI技术,尤其是基于影像组学的方法,在预测SRLM方面取得了显著进展。然而,现有研究主要集中于原发灶或肝脏本身[4, 5, 6],对直肠系膜这一关键区域的研究较为缺乏。直肠系膜是包绕直肠脏层腹膜和壁层腹膜之间的脂肪层,内含丰富的血管、淋巴、神经和结缔组织,是肿瘤浸润及转移的重要路径[7, 8, 9]。体素内不相干运动(intravoxel incoherent motion, IVIM)是磁共振扩散加权成像(diffusion weighted imaging, DWI)的高级模型,采用多个b值进行非线性拟合,能同时获取组织微循环灌注效应与纯水分子扩散信息,已广泛应用在各系统肿瘤预测预后与疗效评价研究中[10, 11, 12]。本研究旨在通过IVIM技术对比SRLM组和非SRLM组患者肿瘤及周围直肠系膜特征,为预测发生SRLM提供新的影像学指标。

1 材料与方法

1.1 研究对象

       回顾性分析2018年8月至2019年8月在我院经肠镜下取材病检证实为直肠癌的患者资料。纳入标准:(1)同时进行直肠癌常规MRI和IVIM扫描;(2)MRI检查前未接受任何直肠癌相关治疗;(3)肿瘤位于腹膜反折以下;(4)确诊直肠癌的同期行肝脏磁共振平扫加增强,间隔时间不超过2周。排除标准:(1)IVIM图像磁敏感伪影严重影响肿瘤及直肠系膜观察;(2)直肠系膜内无足够空间放置感兴趣区(region of interest, ROI)。本研究遵守《赫尔辛基宣言》,经云南省肿瘤医院伦理委员会批准,免除受试者知情同意,批准文号:KYLX2024-168。

1.2 MRI检查方法

       采用3.0 T超导磁共振扫描仪(Ingenia, Philips, Netherlands)和16通道相控阵体部线圈。患者检查前需排空肠道,扫描前15~20 min肌肉注射盐酸消旋山莨菪碱10 mg。患者取头先进,仰卧位,行常规MRI和IVIM扫描。常规序列包括:(1)T1WI轴位,TR 250 ms,TE 4.6 ms,层厚5 mm,层间距1 mm;依据肠管走形的T2WI矢状位,TR 4080 ms,TE 100 ms,层厚4 mm,层间距0.4 mm;平行于肛提肌的T2WI冠状位,TR 2425 ms,TE 100 ms,层厚3 mm,层间距0.3 mm;垂直于病灶长轴高分辨T2WI轴位,参数TR 3832 ms,TE 100 ms,层厚3 mm,层间距0.3 mm;动态增强MRI(dynamic contrast-enhanced MRI, DCE-MRI)序列,TR 40 ms,TE 2 ms,层厚3 mm,层间距0 mm。IVIM序列为单次激发平面回波成像(spin-shot echo planar imaging, SE-EPI)轴位,FOV、层厚、层间距以及扫描层面均与上述高分辨T2WI轴位保持一致,b值包括(0、20、50、80、100、150、200、500、800、1000、1500 s/mm2),时间8 min 36 s。

1.3 图像处理与分析

       将IVIM图像导入IMAgenGINE医学影像重建及处理软件(江苏融视)进行分析。由两位具有8年以上腹盆腔MRI诊断工作经验的放射科主治医师分别对图像进行勾画,记录两位医师测得的各项参数并取平均值进行分析。以高分辨T2WI轴位为参考,在b值=1000 s/mm2的图像上进行肿瘤和直肠系膜ROI勾画(图1)。肿瘤勾画1个ROI,选取肿瘤最大层面,且肿瘤实性成分最大的区域,避开出血、坏死、囊变区域。直肠系膜内勾画2个ROI,第1个ROI为近肿瘤区(ROI距肿瘤<5 mm)。第2个ROI为远肿瘤区(ROI距肿瘤>10 mm,若无可用空间,则放置在相邻上或下层面),同时避开肿瘤浸润、血管、可疑淋巴结或癌结节播散区域,每个ROI面积约20 mm2(18~25 mm2[13]。软件中自动复制3个ROI到其他参数图像相同位置上,基于IVIM双指数模型公式Sb/S0=(1–f)×exp(–b×D)+f×exp(–b×D*)计算生成代表单纯水分子的扩散效应的纯扩散系数D、代表毛细血管灌注效应的灌注相关扩散系数D*、代表灌注效应占总体扩散运动百分比的灌注分数f。选择出b值为1000 s/mm2和0 s/mm2的图像,生成ADC图,基于单指数模型公式Sb/S0=exp(-b×ADC)计算生成表观扩散系数ADC值,代表组织内水分子的扩散运动(包括纯水分子和毛细血管内灌注效应)。研究所需参数分别为肿瘤参数(ADC瘤、D瘤、D*瘤、f瘤)、近肿瘤区参数(ADC近、D近、D*近、f近)、远肿瘤区参数(ADC远、D远、D*远、f远)。

图1  男,60岁,直肠癌患者。1A:T2WI显示肿瘤累积3/4以上的肠圈,且后壁明显,呈等高信号;1B:扩散加权成像(DWI;b=1000 s/mm2)显示肿瘤呈高信号,分别在肿瘤(绿)、近肿瘤区直肠系膜(黄)、远肿瘤区直肠系膜(红)勾画感兴趣区(ROI);1C~1F:IMAgenGINE软件自动生成的纯扩散系数(D)图、灌注相关扩散系数(D*)图、灌注分数(f)图、表观扩散系数(ADC)图,并根据图1B自动勾画ROI。
Fig. 1  A 60-year-old male with rectal cancer. 1A: T2WI shows tumor accumulates more than 3/4 of the intestinal loop, and the posterior wall is clearly visible, showing equal high signal intensity. 1B: Diffusion weighted imaging (DWI; b = 1000 s/mm2) shows the rectum with high signal intensity, with regions of interest (ROI) outlined in the tumor (green), peritumoral mesentery (yellow), and distant mesentery (red). 1C-1F: IMAgenGINE software-generated pure diffusion coefficient (D) map, perfusion-related incoherent microcirculation (D*) map, perfusion fraction (f) map, and apparent diffusion coefficient (ADC) map with ROI automatically outlined based on 1B.

1.4 统计学分析

       使用SPSS 27.0软件(IBM公司,美国)和易侕软件(EmpowerXYS单机版6.0,斯录欣上海信息科技有限公司,中国)进行统计学分析。采用组内相关系数(intra-class correlation coefficient, ICC)评估观察者间的一致性。采用Kolmogorov Smirnov对定量资料进行数据正态性分布检验,符合正态分布的数据用(x¯±s)表示,不符合分布的数据用中位数(上、下四分位数)表示;分类变量用频数表示。两独立样本用t检验或Mann-Whitney U检验比较不同组间参数差异,配对样本t检验或Wilcoxon检验比较同组内参数差异。绘制受试者工作特征(receive operating characteristic, ROC)曲线,评估组间差异有统计学意义参数的预测效能。用DeLong检验比较各参数曲线下面积(area under the curve, AUC)差异是否有统计学意义。P<0.05为差异具有统计学意义。

1.5 SRLM诊断标准

       SRLM诊断标准采用《中国结直肠癌肝转移诊断和综合治疗指南(2023)》[14],确诊直肠癌的患者,常规行肝脏超声和腹部增强CT等影像检查筛查转移瘤。以上检查高度怀疑但不能确诊者可加行血清甲胎蛋白(alpha-fetal protein, AFP)、肝脏超声造影和肝脏MRI平扫及增强检查,有条件时可用肝细胞特异性对比剂行增强MRI检查。所有入组患者均行超声造影和腹部MRI平扫及增强检查证实是否发生SRLM。

2 结果

2.1 患者基本临床资料

       本研究纳入直肠癌病例112例,其中SRLM组42例,非SRLM组70例。患者临床资料详见表1

表1  同时性肝转移组和非同时性肝转移组直肠癌患者基本临床资料
Tab. 1  Basic clinical data of rectal cancer patients in the synchronous liver metastasis group and non-synchronous liver metastasis group

2.2 观察者间一致性评价

       两名医生在各项参数观察者间一致性较高(ICC>0.75),参数ADC瘤、D瘤、D*瘤、f瘤、ADC近、D近、D*近、f近、ADC远、D远、D*远、f远分别为0.955(95% CI:0.829~0.989)、0.898(95% CI:0.645~0.974)、0.978(95% CI:0.915~0.995)、0.827(95% CI:0.448~0.954)、0.958(95% CI:0.840~0.989)、0.963(95% CI:0.858~0.991)、0.858(95% CI:0.530~0.963)、0.987 (95% CI:0.949~0.997)、0.986(95% CI:0.944~0.996)、0.942(95% CI:0.784~0.985)、0.949(95% CI:0.808~0.987),下一步使用两位医师测量数据的平均值进行统计分析。

2.3 SRLM组和非SRLM组的组间比较

       因样本量超过50例,选择Kolmogorov-Smirnov检验对参数正态性分布进行分析。结果表明,参数值均不符合正态分布,因此采用Mann-Whitney U检验进行组间比较。

       与非SRLM组相比,SRLM组ADC远、D远、f远均增高(P<0.001);D近、f近增高(P<0.05);肿瘤参数ADC瘤、D瘤、D*瘤、f瘤差异均无统计学意义(P>0.05);D*包括D*近、D*远、D*瘤差异均无统计学意义(P>0.05),详见表2

表2  同时性肝转移组和非同时性肝转移组组间参数比较
Tab. 2  Comparison of parameters between synchronous liver metastasis group and non-synchronous liver metastasis group in colorectal cancer patients

2.4 SRLM组和非SRLM组的组内参数比较

       Wilcoxon检验分别在SRLM组内和非SRLM组内进行参数比较后发现ADC和D结果相似,具体表现:ADC远低于ADC近和ADC瘤(P<0.05),ADC近和ADC瘤差异无统计学意义(P>0.05)。D远低于D近和D瘤(P<0.001),D近与D瘤差异无统计学意义(P>0.05);f瘤低于f远和f近(P<0.001),f远低于f近,但在SRLM组中,该差异无统计学意义(P>0.05),详见表3

表3  同时性肝转移组和非同时性肝转移组组内参数比较
Tab. 3  Comparison of intratumoral parameters between synchronous liver metastasis group and non-synchronous liver metastasis group in colorectal cancer patients

2.5 参数预测SRLM的效能

       ROC曲线分析显示,组间比较差异有统计学意义的参数的AUC分别为ADC远0.769(95% CI:0.675~0.862)、D远0.745(95% CI:0.644~0.845)、f远0.733(95% CI:0.635~0.831)、D近0.614(95% CI:0.504~0.724)、f近0.630(95% CI:0.523~0.737)。详见图2。ADC远、D远、f远间预测效能差异无统计学意义P>0.05(P=0.308~0.753),但与D近、f近差异均具有统计学意义P<0.05(P=0.004~0.031)。ADC远、D远、f远的AUC临界值分别为0.517、0.464、0.402。

图2  组间比较差异有统计学意义的参数ROC曲线图。
Fig. 2  ROC curves of parameters with statistically significant differences between groups.

3 讨论

       本研究通过IVIM技术首次探讨直肠癌患者肿瘤和直肠系膜对SRLM的预测价值。结果表明,SRLM组直肠系膜部分参数明显增高,且远肿瘤区直肠系膜参数ADC远、D远、f远具有较高的诊断效能,可为预测SRLM提供新的影像学指标。

3.1 肿瘤周围直肠系膜参数与SRLM分析

       直肠系膜包绕直肠,由大量脂肪组织构成,这种疏松结缔组织有利于肿瘤扩散[15, 16]。本研究结果显示,SRLM组远肿瘤区直肠系膜参数ADC远、D远、f远高于非SRLM组(P<0.001),近肿瘤区直肠系膜参数D近、f近也高于非SRLM组(P<0.05),可能是SRLM组直肠系膜的微观结构在某些方面发生了变化所致。BÄUERLE等[17]和LU等[13]发现直肠系膜的正常结构由大脂肪细胞和小的细胞间隙组成,这种特性可能会显著限制水分子扩散。导致正常直肠系膜的水分子扩散受限程度比正常肠壁和肿瘤更严重。SRLM组肿瘤侵袭力更强,考虑可能已有部分肿瘤细胞随着血液循环到达近肿瘤区和远肿瘤区直肠系膜取代正常的脂肪细胞,导致ADC和D数值增高。先前研究显示mrEMVI阳性组的近肿瘤区D值和远肿瘤区D值均高于mrEMVI阴性组,而mrEMVI阳性是直肠癌远处转移独立预测因子[18, 19],故本研究考虑ADC和D数值增高可能与SRLM有关系。组内比较显示,ADC远、D远均小于对应参数ADC瘤、D瘤和ADC近、D近,可能原因是肿瘤细胞扩散至远肿瘤区直肠系膜较近肿瘤区少,所以扩散受限程度依然明显高于肿瘤和近肿瘤区直肠系膜。而近肿瘤区直肠系膜受肿瘤细胞影响较大,扩散受限却明显减轻,ADC近、D近和对应参数ADC瘤、D瘤差异无统计学意义的结果也支持了上述观点。

       血管生成是肿瘤扩散和转移的基础。直肠系膜内包含了直肠上动、静脉和直肠中动、静脉丰富的分支,能形成密集的血管网,利于肿瘤的扩散和转移[19, 20]。并且有研究表明直肠肿瘤周围直肠系膜比起正常直肠壁周围直肠系膜的血管,会急剧增加多种异常特征,包括高密度的血管、扩大的血管腔和增强的微血管功能[19, 20, 21]。组内比较f瘤低于f远和f近(P<0.001),表明肿瘤周围直肠系膜的血液灌注高于肿瘤本身。SRLM组直肠系膜f远增高、f近也高于非SRLM组,究其原因为SRLM组肿瘤侵袭性更强。相较于非SRLM组,可能较多肿瘤细胞会通过血液系统扩散到近肿瘤区直肠系膜,也扩散至范围更广的直肠系膜,进而诱导更多微血管产生或(和)功能增强导致有效灌注增加[22, 23, 24]。丰富的血液灌注也意味着肿瘤细胞可能更容易通过血管进入循环系统,从而增加转移的机会。在进行组内比较时,尽管近肿瘤区肠系膜f高于远肿瘤区肠系膜,但SRLM组中,这种差异并无统计学意义,进一步证实了该观点。组间比较D*值差异均无统计学意义,可能是D*与f虽然都反映组织灌注特性,但侧重点不同:D*值主要反映微循环灌注中毛细血管的平均长度,其表现受血流速度和毛细血管几何形态的影响较大,且D*值易受到噪声干扰,导致其数值波动较大,稳定性不足;而f值则代表组织内毛细血管的密集度,并与毛细血管的血容量密切相关,因此f值能够更准确地反映肿瘤血管的有效灌注情况[25, 26, 27]

3.2 肿瘤参数与SRLM分析

       肿瘤参数(ADC、D、D*、f)组间比较差异均无统计学意义。可能原因如下:(1)ROI勾画仅选取了肿瘤整体小部分区域,无法全面反映肿瘤内部的异质性[28];(2)仅用参数值一项信息比较,缺乏多维度的分析,未利用影像组学等技术深度挖掘肿瘤内部特征,未能识别与肿瘤肝转移相关信息。

3.3 参数预测SRLM能力

       本研究中SRLM预测效能较好的参数值均位于远肿瘤区直肠系膜内,最高预测效能参数为ADC远(AUC=0.769),与其他研究[29, 30, 31]中基于原发肿瘤和肝脏的影像组学模型预测效能(AUC在0.72~0.86)相比仍有改进空间。若结合临床因素建模或通过组学挖掘信息能否提高预测效能需进一步探讨。

3.4 本研究的局限性

       本研究局限性:首先,病例数较少,尤其SRLM仅入组42例,并且未纳入异时性肝转移患者;其次,IVIM和T2WI层厚为3 cm,ROI勾画无法避开小于3 cm的血管、淋巴结等,容易造成测量误差;最后,b值选择会对结果有一定影响,但国际上还未统一标准。

4 结论

       综上所述,SRLM和非SRLM患者肿瘤周围直肠系膜微观结构存在差异,IVIM技术能够有效反映这种变化,特别是远肿瘤区直肠系膜的IVIM参数ADC、f、D,可以作为预测SRLM的影像学指标,对临床及时明确SRLM,发现隐匿性和高风险肝转移患者有重要意义。

[1]
QIN H, WU Y Q, LIN P, et al. Ultrasound image-based radiomics: an innovative method to identify primary tumorous sources of liver metastases[J]. J Ultrasound Med, 2021, 40(6): 1229-1244. DOI: 10.1002/jum.15506.
[2]
刘明璐, 沈浮, 陆建平. 高分辨T2WI影像组学列线图对直肠癌同时性肝转移的预测价值[J]. 中国医学计算机成像杂志, 2021, 27(2): 121-126. DOI: 10.3969/j.issn.1006-5741.2021.02.008.
LIU M L, SHEN F, LU J P. The predictive value of radiomics nomogram based on high-resolution T2WI for synchronous liver metastases in patients with rectal cancer[J]. Chin Comput Med Imag, 2021, 27(2): 121-126. DOI: 10.3969/j.issn.1006-5741.2021.02.008.
[3]
LV Y, FENG Q Y, WEI Y, et al. Benefits of multi-disciplinary treatment strategy on survival of patients with colorectal cancer liver metastasis[J/OL]. Clin Transl Med, 2020, 10(3): e121 [2024-11-10]. https://doi.org/10.1002/ctm2.121. DOI: 10.1002/ctm2.121.
[4]
申洋, 管政, 梁红, 等. 基于MRI影像组学预测同时性结直肠癌肝转移灶的化疗疗效[J]. 实用放射学杂志, 2023, 39(3): 416-419, 432. DOI: 10.3969/j.issn.1002-1671.2023.03.018.
SHEN Y, GUAN Z, LIANG H, et al. MRI-based radiomics signature to predict the response of chemotherapy in synchronous liver metastasis of colorectal carcinoma[J]. J Pract Radiol, 2023, 39(3): 416-419, 432. DOI: 10.3969/j.issn.1002-1671.2023.03.018.
[5]
LI Y, GONG J, SHEN X G, et al. Assessment of primary colorectal cancer CT radiomics to predict metachronous liver metastasis[J/OL]. Front Oncol, 2022, 12: 861892 [2024-11-10]. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.861892/full. DOI: 10.3389/fonc.2022.861892.
[6]
GRANATA V, FUSCO R, DE MUZIO F, et al. Radiomics and machine learning analysis based on magnetic resonance imaging in the assessment of colorectal liver metastases growth pattern[J/OL]. Diagnostics, 2022, 12(5): 1115 [2024-11-10]. https://www.ncbi.nlm.nih.gov/pubmed/35626271. DOI: 10.3390/diagnostics12051115.
[7]
OHYA H, WATANABE J, SUWA H, et al. Near-infrared imaging using indocyanine green for laparoscopic lateral pelvic lymph node dissection for clinical stage Ⅱ/Ⅲ middle-lower rectal cancer: a propensity score-matched cohort study[J]. Dis Colon Rectum, 2022, 65(7): 885-893. DOI: 10.1097/DCR.0000000000002156.
[8]
DUMONT F, BARRETEAU T, SIMON G, et al. Laparoscopic extraperitoneal approach to bilateral pelvic lymph node dissection in low rectal cancer: technique with video and 3D modeling[J]. Ann Surg Oncol, 2022, 29(1): 109-111. DOI: 10.1245/s10434-021-10728-1.
[9]
贾玉萍, 李盼盼, 吴瑞, 等. 直肠系膜淋巴结影像与病理定位方法的研究现状[J]. 磁共振成像, 2022, 13(8): 162-165. DOI: 10.12015/issn.1674-8034.2022.08.037.
JIA Y P, LI P P, WU R, et al. Research status of mesenteric lymph node imaging and pathologic localization[J]. Chin J Magn Reson Imag, 2022, 13(8): 162-165. DOI: 10.12015/issn.1674-8034.2022.08.037.
[10]
张天奇, 王芊婷, 李明洋, 等. 基于IVIM多参数MRI影像组学术前预测直肠癌T分期[J]. 放射学实践, 2022, 37(9): 1085-1091. DOI: 10.13609/j.cnki.1000-0313.2022.09.006.
ZHANG T Q, WANG Q T, LI M Y, et al. Preoperative prediction of T-stage of rectal cancer based on IVIM multiparameter MRI radiomics[J]. Radiol Pract, 2022, 37(9): 1085-1091. DOI: 10.13609/j.cnki.1000-0313.2022.09.006.
[11]
ZHOU B J, ZHOU Y M, TANG Y B, et al. Intravoxel incoherent motion MRI for rectal cancer: correlation of diffusion and perfusion characteristics with clinical-pathologic factors[J]. Acta Radiol, 2023, 64(3): 898-906. DOI: 10.1177/02841851221100081.
[12]
DING X, SUN D Q, GUO Q C, et al. The value of diffusion kurtosis imaging and intravoxel incoherent motion quantitative parameters in predicting synchronous distant metastasis of rectal cancer[J/OL]. BMC Cancer, 2022, 22(1): 920 [2024-11-10]. https://doi.org/10.1186/s12885-022-10022-7. DOI: 10.1186/s12885-022-10022-7.
[13]
LU B L, CHEN Y, WEN Z Q, et al. Quantitative assessment of the microstructure of the mesorectum with different prognostic statuses by intravoxel incoherent motion diffusion-weighed magnetic resonance imaging[J/OL]. BMC Gastroenterol, 2022, 22(1): 481 [2024-8-21]. https://doi.org/10.1186/s12876-022-02555-9. DOI: 10.1186/s12876-022-02555-9.
[14]
中国医师协会外科医师分会, 中华医学会外科学分会胃肠外科学组, 中华医学会外科学分会结直肠外科学组, 等. 中国结直肠癌肝转移诊断和综合治疗指南(2023版)[J]. 中华消化外科杂志, 2023, 22(1): 1-28. DOI: 10.3760/cma.j.cn115610-20221228-00762.
Chinese College of Surgeons; Chinese Society of Gastrointestinal Surgery; Chinese Society of Colorectal Surgery, et al. Chinese guidelines for diagnosis and comprehensive treatment of colorectal liver metastases (2023 edition)[J]. Chin J Dig Surg, 2023, 22(1): 1-28. DOI: 10.3760/cma.j.cn115610-20221228-00762.
[15]
COFFEY J C, BYRNES K G, WALSH D J, et al. Update on the mesentery: structure, function, and role in disease[J]. Lancet Gastroenterol Hepatol, 2022, 7(1): 96-106. DOI: 10.1016/S2468-1253(21)00179-5.
[16]
COFFEY J C, O'LEARY D P. The mesentery: structure, function, and role in disease[J]. Lancet Gastroenterol Hepatol, 2016, 1(3): 238-247. DOI: 10.1016/S2468-1253(16)30026-7.
[17]
BÄUERLE T, SEYLER L, MÜNTER M, et al. Diffusion-weighted imaging in rectal carcinoma patients without and after chemoradiotherapy: a comparative study with histology[J]. Eur J Radiol, 2013, 82(3): 444-452. DOI: 10.1016/j.ejrad.2012.10.012.
[18]
MASSUCCO P, FONTANA A P, BALBO MUSSETTO A, et al. MRI-detected extramural vascular invasion (mrEMVI) as the best predictive factor to identify candidates to total neoadjuvant therapy in locally advanced rectal cancer[J]. J Surg Oncol, 2022, 125(6): 1024-1031. DOI: 10.1002/jso.26818.
[19]
PAUL S, ARYA S, MOKUL S, et al. Extramural vascular invasion as an independent prognostic marker in locally advanced rectal cancer: propensity score match pair analysis[J]. Abdom Radiol (NY), 2022, 47(11): 3671-3678. DOI: 10.1007/s00261-022-03608-z.
[20]
王娟, 高庆坤, 王云帆, 等. 对直肠系膜的再认识[J]. 中华胃肠外科杂志, 2022, 25(4): 321-326. DOI: 10.3760/cma.j.cn441530-20220228-00068.
WANG J, GAO Q K, WANG Y F, et al. A new insights of mesorectum[J]. Chin J Gastrointest Surg, 2022, 25(4): 321-326. DOI: 10.3760/cma.j.cn441530-20220228-00068.
[21]
YANG X Y, LIU Y Y, CHEN Y, et al. Evaluation of mesorectal microcirculation with quantitative dynamic contrast-enhanced MRI[J]. AJR Am J Roentgenol, 2020, 215(6): 1370-1376. DOI: 10.2214/AJR.19.22116.
[22]
宋华传, 王继洲. 结直肠癌肝转移手术切缘问题研究进展[J]. 中国实用外科杂志, 2023, 43(2): 216-220, 225. DOI: 10.19538/j.cjps.issn1005-2208.2023.02.18.
SONG H C, WANG J Z. Advances in resection margin of colorectal liver metastases[J]. Chin J Pract Surg, 2023, 43(2): 216-220, 225. DOI: 10.19538/j.cjps.issn1005-2208.2023.02.18.
[23]
QIU B X, SU X H, QIN X X, et al. Application of machine learning techniques in real-world research to predict the risk of liver metastasis in rectal cancer[J/OL]. Front Oncol, 2022, 12: 1065468 [2024-8-22]. https://doi.org/10.3389/fonc.2022.1065468. DOI: 10.3389/fonc.2022.1065468.
[24]
LI Z F, KANG L Q, LIU F H, et al. Radiomics based on preoperative rectal cancer MRI to predict the metachronous liver metastasis[J]. Abdom Radiol, 2023, 48(3): 833-843. DOI: 10.1007/s00261-022-03773-1.
[25]
MEYER H J, HÖHN A K, WOIDACKI K, et al. Associations between IVIM histogram parameters and histopathology in rectal cancer[J]. Magn Reson Imaging, 2021, 77: 21-27. DOI: 10.1016/j.mri.2020.12.008.
[26]
YUAN J, GONG Z G, LIU K, et al. Correlation between diffusion kurtosis and intravoxel incoherent motion derived (IVIM) parameters and tumor tissue composition in rectal cancer: a pilot study[J]. Abdom Radiol, 2022, 47(4): 1223-1231. DOI: 10.1007/s00261-022-03426-3.
[27]
翁晓燕, 蒋恒, 季立标, 等. IVIM参数与ADC值评估直肠腺癌分化程度的比较[J]. 磁共振成像, 2020, 11(7): 535-539. DOI: 10.12015/issn.1674-8034.2020.07.012.
WENG X Y, JIANG H, JI L B, et al. Comparison between IVIM parameters and ADC value in rectal cancer for estimate histological grade[J]. Chin J Magn Reson Imag, 2020, 11(7): 535-539. DOI: 10.12015/issn.1674-8034.2020.07.012.
[28]
LI H, CHEN G W, LIU Y S, et al. Assessment of histologic prognostic factors of resectable rectal cancer: comparison of diagnostic performance using various apparent diffusion coefficient parameters[J/OL]. Sci Rep, 2020, 10(1): 11554 [2022-06-05]. https://doi.org/10.1038/s41598-020-68328-0. DOI: 10.1038/s41598-020-68328-0.
[29]
WESDORP N J, VAN GOOR V J, KEMNA R, et al. Advanced image analytics predicting clinical outcomes in patients with colorectal liver metastases: A systematic review of the literature[J/OL]. Surg Oncol, 2021, 38: 101578 [2024-07-30]. https://doi.org/10.1016/j.suronc.2021.101578. DOI: 10.1016/j.suronc.2021.101578.
[30]
TAGHAVI M, TREBESCHI S, SIMÕES R, et al. Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases[J]. Abdom Radiol, 2021, 46(1): 249-256. DOI: 10.1007/s00261-020-02624-1.
[31]
LIANG M, CAI Z T, ZHANG H M, et al. Machine learning-based analysis of rectal cancer MRI radiomics for prediction of metachronous liver metastasis[J]. Acad Radiol, 2019, 26(11): 1495-1504. DOI: 10.1016/j.acra.2018.12.019.

上一篇 CT反转与MRI在直肠癌直肠系膜筋膜中的应用比较研究
下一篇 酰胺质子转移加权成像与扩散加权成像评价直肠癌肿瘤出芽等级的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2