分享:
分享到微信朋友圈
X
特别关注
MRI-ADC联合临床病理特征对结直肠癌微卫星不稳定性状态的研究
魏照坤 康玉洁 彭乐平 张秀玲 张旭 马小梅 贾应梅 熊晟原 王莉莉

Cite this article as: WEI Z K, KANG Y J, PENG L P, et al. Prediction of microsatellite instability in colorectal cancer based on MRI-ADC and clinicopathological features[J]. Chin J Magn Reson Imaging, 2025, 16(1): 48-53, 88.本文引用格式:魏照坤, 康玉洁, 彭乐平, 等. MRI-ADC联合临床病理特征对结直肠癌微卫星不稳定性状态的研究[J]. 磁共振成像, 2025, 16(1): 48-53, 88. DOI:10.12015/issn.1674-8034.2025.01.008.


[摘要] 目的 探讨MRI表观弥散系数(apparent diffusion coefficient, ADC)结合临床病理特征预测结直肠癌微卫星不稳定(microsatellite instability, MSI)状态应用价值。材料与方法 回顾性分析经病理证实的144例结直肠癌患者的临床病理资料,所有患者术前均行全腹或盆腔MRI检查,并按照免疫组织化学(immunohistochemistry, IHC)结果分成MSI组和微卫星稳定(microsatellite stability, MSS)组,MSI组包括高度MSI(high–frequency MSI, MSI-H)状态和低度MSI(low–frequency MSI, MSI-L)状态病例。采用SPSS软件对患者临床基线资料进行比较,采用二元logistic回归行结直肠癌MSI危险因素分析。纳入多因素回归独立预测因素构建logistic回归诺模图模型。采用受试者工作特征(receiver operating characteristic, ROC)曲线评估ADC模型及ADC-临床病理特征联合模型的诊断效能,计算ROC曲线下面积(area under the curve, AUC),并以DeLong检验进行模型差异比较。使用校准曲线评估模型的预测准确度,使用决策曲线和影响曲线评价预测模型的临床适用性。结果 纳入144名结直肠癌患者,其中MSI组16例,MSS组128例,MSI组患者的ADC值[(1.107±0.335)×10-3 mm2/s]大于MSS组[(0.868±0.262)×10-3 mm2/s],P=0.011,收集的临床病理特征中慢性胃肠炎病史(P<0.001)、D2-40(P=0.009)、临床分期(P<0.001)在MSI组和MSS组间差异具有统计学意义,合并上述4种独立预测因子形成诺模图。ADC模型和ADC-临床病理特征联合模型中,ADC-临床病理特征联合模型预测结直肠癌MSI性能最优,AUC为0.901 [95%置信区间(confidence interval, CI):0.783~1.000],敏感度及特异度分别为87.5%和93.0%。结论 本研究表明,ADC模型和ADC-临床病理特征联合模型对结直肠癌的MSI状态具有很好的预测性能,且ADC-临床病理特征联合模型性能最优。本研究可为临床术前提供安全无创的结直肠癌MSI预测手段。
[Abstract] Objective To investigate the application value of MRI apparent diffusion coefficient (ADC) combined with clinicopathological characteristics in predicting microsatellite instability (MSI) of colorectal cancer.Materials and Methods The clinicopathologic data of 144 patients with colorectal cancer confirmed by pathology were analyzed retrospectively. All patients underwent abdominal or pelvic MRI examination before surgery. According to immunohistochemistry (IHC) results, patients were divided into MSI group and microsatellite stability (MSS) group. The MSI group included cases with high frequency MSI (MSI-H) and low frequency MSI (MSI-L). SPSS software was used to compare the clinical baseline data of patients, and binary logistic regression was used to analyze MSI risk factors for colorectal cancer. Multivariate regression independent predictors were included to construct a nomogram model. Receiver operating characteristic (ROC) was used to evaluate the diagnostic efficacy of ADC model and ADC-clinicopathological combined model, and the area under the curve (AUC) was calculated. DeLong test was used to compare the model differences. Calibration curves were used to evaluate the predictive accuracy of the model, and decision and impact curves were used to evaluate the clinical utility of the predictive model.Results One hundred and forty-four patients with colorectal cancer were included, including 16 patients in MSI group and 128 patients in MSS group. ADC value (1.107 ± 0.335) × 10-3 mm2/s in MSI group was higher than that in MSS group (0.868 ± 0.262) × 10-3 mm2/s, P = 0.011. Among the collected clinicpathological features, the history of chronic gastroenteritis (P < 0.001), D2-40 (P = 0.009), clinical stage (P < 0.001), showed statistically significant differences between the MSI group and the MSS group. The above four independent predictors were combined to form a nomogram. Among the ADC model and the ADC-clinicopathologic feature combined model, the ADC-clinicopathologic feature combined model predicted the MSI performance of colorectal cancer better. The AUC was 0.901 [95% (confidence interval, CI): 0.783 to 1.000], and the sensitivity and specificity were 87.5% and 93.0%, respectively.Conclusions This study shows that the ADC model and the ADC-clinicopathological features combined model have good predictive performance for MSI status of colorectal cancer, and the ADC-clinicopathological features combined model has the best performance. This study can provide a safe and non-invasive method for predicting MSI of colorectal cancer before clinical operation.
[关键词] 结直肠癌;微卫星不稳定状态;临床病理特征;表观弥散系数;磁共振成像
[Keywords] colorectal cancer;microsatellite instability;clinicopathological features;apparent diffusion coefficient;magnetic resonance imaging

魏照坤 1   康玉洁 2   彭乐平 1   张秀玲 1   张旭 3   马小梅 1   贾应梅 1   熊晟原 1   王莉莉 1*  

1 甘肃省人民医院放射科,兰州 730000

2 甘肃省肿瘤医院放射科,兰州 730000

3 甘肃省人民医院内镜诊疗中心,兰州 730000

通信作者:王莉莉,E-mail:wanglilihq@163.com

作者贡献声明:魏照坤设计本研究的方案,起草和撰写稿件,对稿件重要内容进行了修改;王莉莉、康玉洁起草和撰写稿件,获取、分析及解释本研究的数据,对稿件的重要内容进行了修改;彭乐平、张秀玲、张旭、贾应梅、马小梅、熊晟原获取及分析本研究的数据,对稿件重要内容进行了修改;王莉莉、马小梅获得甘肃省青年科技基金计划基金项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 甘肃省青年科技基金计划项目 21JR7RA639,20JR5RA143
收稿日期:2024-04-15
接受日期:2025-01-10
中图分类号:R445.2  R735.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.01.008
本文引用格式:魏照坤, 康玉洁, 彭乐平, 等. MRI-ADC联合临床病理特征对结直肠癌微卫星不稳定性状态的研究[J]. 磁共振成像, 2025, 16(1): 48-53, 88. DOI:10.12015/issn.1674-8034.2025.01.008.

0 引言

       根据全球癌症统计数据,结直肠癌发病率排名第三,死亡率中排名第二,约占癌症病例和死亡人数的十分之一[1]。结直肠的癌变源于染色体不稳定性或遗传不稳定性,是一种由于脱氧核糖核酸(deoxyribonucleic acid, DNA)错配修复系统(deficient mismatch repair, dMMR)缺陷,因DNA错配修复(mismatch repair, MMR)蛋白表达缺失或编码基因突变而导致的微卫星不稳定(microsatellite instability, MSI)状态,在大约15%的结直肠癌患者中可见,而85%的结直肠癌患者具有成熟的错配修复系统(mismatch repair-proficient, pMMR),为微卫星稳定(microsatellite stability, MSS)状态[2]。MSI状态高表达型结直肠癌多见于Ⅱ期,其次是Ⅲ期[3],病灶转移率较低[4]。MSI结直肠癌具有不同的临床特征:肿瘤级别低、年轻患者多见[5]。MSI结直肠癌具有一系列特定的生物学行为,包括免疫细胞浸润强、淋巴结转移较少以及血管生成较多等[4, 6],已有研究表明,MSI结直肠癌预后较好[7]。结直肠癌的MSI状态常用侵入性方法,如聚合酶链反应和免疫组织化学来获得病理结果,这些方法既耗时又昂贵,术前标本不能充分反映肿瘤异质性,检出率低[8],术后组织标本检测存在滞后性,因此,术前无创、经济和个体化MSI检测技术预测结直肠癌患者的MSI状态具有重要意义[9]。近年来,相关学者通过氟代脱氧葡萄糖(flurodeoxyglucose, FDG)正电子发射计算机体层成像(positron emission tomography/computed tomography, PET/CT)放射组学特征[10, 11]、多期增强CT放射组学[12]、静脉期能谱CT多参数[13]、MRI多参数成像模型及MRI多参数联合模型[9, 14, 15, 16, 17, 18, 19, 20],预测结直肠癌微卫星状态已展现很好的预测价值,但对于磁共振表观弥散系数(apparent diffusion coefficient, ADC)参数联合临床病理特征预测微卫星状态的研究未见报道。因此,本研究的目的是基于ADC值和更全面的临床病理特征,建立ADC-临床病理联合模型预测结直肠癌微卫星状态。

1 材料与方法

1.1 研究对象

       回顾性分析2020年7月至2022年8月甘肃省人民医院经病理证实的800例结直肠癌病例,按照纳排标准筛查后纳入144例病例的ADC值和临床病理资料。纳入标准:(1)术前行全腹或盆腔MRI检查;(2)经活检或手术病理确诊结直肠癌;(3)病理结果包含分化程度、大体类型、病理类型及病理分期,免疫组化分析包含血小板-内皮细胞粘附分子CD31、平足蛋白(podoplanin)D2-40、神经特异性蛋白S-100和核单克隆抗体Ki-67等;(4)有完整的病史资料,包括患者年龄、性别、高血压史、糖尿病史、吸烟史、饮酒史、家族史、慢性胃肠炎病史及临床分期。排除标准:MRI图像呼吸、运动、金属等伪影重,影响图像质量,不能准确评估肿瘤的T分期和有无淋巴转移。本研究遵守《赫尔辛基宣言》,经甘肃省人民医院伦理委员会批准,免除受试者知情同意,批准文号:2023-725。

1.2 使用设备及图像采集

       所有患者均采用3.0 T MRI扫描仪(Skyra, Siemens)及18通道相控阵线圈扫描全腹或盆腔,检查前嘱咐患者排空膀胱和肠管,禁食水4 h,训练患者呼吸,避免扫描出现呼吸运动伪影,从而影响图像质量。患者取仰卧位,足先进,检查序列包含T2WI冠状位、轴位、矢状位,T1WI轴位、T2WI脂肪抑制轴位、DWI轴位。各序列扫描参数详见表1

表1  扫描序列及扫描参数
Tab. 1  Scanning sequence and scanning parameters

1.3 图像分析

       由2名从事影像诊断20年以上具有副高以上放射科腹部亚专业组医生独立进行肿瘤实性区域ADC值测量。为保证ADC值的准确性,尽量保持感兴趣区(region of interest, ROI)范围一致,尽可能避开肿瘤边缘,避免部分容积效应影响,测量肿瘤实性部分。每个患者测值3次取平均值,最后将两位医师测量结果再次取平均值得到最终ADC值(图1A、2A)。

图1  男,57岁,MSI结直肠癌患者。1A:腹部轴位ADC图,红箭示ROI;1B~1E:免疫组化(IHC ×200)中微卫星不稳定状态蛋白MLH1(1B)和PMS2(1C)未表达(蓝色),蛋白MSH2(1D)和MSH6(1E)表达(棕色)。
图2  男,63岁,MSS结直肠癌患者。2A:腹部轴位ADC图,红箭示ROI;2B~2E:免疫组化(IHC ×200)微卫星稳定状态蛋白MLH1(2B)、PMS2(2C)、MSH2(2D)和MSH6(2E)表达。MSI:微卫星不稳定;ADC:表观弥散系数;ROI:感兴趣区。
Fig. 1  Male, 57 years old, MSI group patients. 1A: The image of abdominal axial ADC, red arrows show ROI; 1B-1E: In immunohistochemistry (IHC ×200), the microsatellite unstable state proteins MLH1 (1B) and PMS2 (1C) are not expressed (blue), the proteins MSH2 (1D) and MSH6 (1E) are expressed (brown).
Fig. 2  Male, 63 years old, MSS group patients. 2A: The image of abdominal axial ADC, red arrows show ROI; 2B-2E: In immunohistochemistry (IHC ×200), microsatellite stable state proteins MLH1 (2B), PMS2 (2C), MSH2 (2D) and MSH6 (2E) expression. MSI: microsatellite instability; ADC: apparent diffusion coefficient; ROI: region of interest.

1.4 病理学检查结果评估

       对入组患者的术后标本行病理及免疫组化检测分析。免疫组化采用BenCHMARK-XT machineand Mul-timer系统(Roche公司,瑞士),UltraView-DA染色,数据在电子病例系统记录并可查询,检测MMR蛋白包括PMS2、MSH2、MLH1及MSH6[21]图1、2),若编码上述蛋白的相关基因出现突变,或者MMR蛋白缺失为MSI;根据不稳定标志物种类数将微卫星状态分为3类:不稳定标志物种类数=0为MSS,不稳定标志物种类数≥2为高度MSI(high-frequency MSI, MSI-H),不稳定标志物种类数≥1且<2为低度MSI(low-frequency MSI, MSI-L)。MSI-H状态患者和MSI-L患者归为MSI组,MSS的患者归为MSS组。

1.5 统计学分析

       所有统计分析均使用IBM SPSS Statistics for Windows(版本26)和R软件(版本4.3.1,https://www.r-project.org)进行,图形绘制使用R软件。使用Shapiro-Wilk检验对所有定量数据进行正态性检验。符合正态分布的定量参数采用均数±标准差(x¯±s)表示,组间比较使用独立样本t检验。非正态分布的数据以中位数(四分位距)表示,组间比较使用Mann-Whitney U检验。分类变量以频数和百分比表示,组间比较使用卡方检验或Fisher精确检验。对于等级资料,组间比较使用非参数秩和检验。采用二元logistic回归向前法行结直肠癌MSI危险因素分析。纳入多因素回归独立预测因素构建诺模图模型。采用受试者工作特征(receiver operating characteristic, ROC)曲线评估ADC模型及ADC-临床病理特征联合模型的诊断效能,计算其曲线下面积(area under the curve, AUC),并以DeLong检验进行模型差异比较。使用校准曲线评估模型的预测准确度,使用决策曲线和影响曲线评价预测模型的临床适用性。所有统计学分析均为双尾分析,P<0.05为差异有统计学意义。

2 结果

2.1 人口统计学资料、临床资料评分结果

       本研究最终纳入144例结直肠癌患者病例,其中:男92例、女52例,年龄23~83岁,中位年龄61岁。MSI阳性组16例、MSI阴性组128例,两组受试者性别、年龄、高血压史、糖尿病史、吸烟史、饮酒史及家族史差异无统计学意义(P>0.05),慢性胃肠炎病史差异有统计学意义(P<0.001)。两组受试者临床相关资料评估方面,在平足蛋白、临床分期指标差异具有统计学意义(P=0.009、P<0.001)。详见表2

表2  结直肠癌患者基本情况及临床相关情况
Tab. 2  Basic information and clinical related information of colorectal cancer patients

2.2 测量结果、分组统计分析

       两位医师测量的ADC值结果显示,MSI组的ADC值为(1.107±0.335)×10-3 mm2/s,MSS组的ADC值为(0.868±0.262)×10-3 mm2/s,MSI组患者的ADC值大于MSS组,两组间差异有统计学意义(P=0.011)。两位医师测量得的各参数ADC值组内相关系数为0.885 [95%置信区间(confidence interval, CI):0.830~0.924],大于0.750表明测量结果具有良好的重复性。本研究收集的临床病理特征中慢性胃肠炎病史(P<0.001)、平足蛋白(D2-40)(P=0.009)和临床分期(P<0.001)在MSI组和MSS组间差异有统计学意义。详见表2

2.3 模型构建、模型评价结果

2.3.1 模型构建

       多因素logistic采用向后-条件回归分析进行模型构建。对临床变量、ADC参数及临床病理特征进行MSI危险因素分析构建诺模图(图3)。模型构建完成后,在独立的测试集上评估了模型的性能,ADC模型的AUC为0.745(95% CI:0.596~0.893),敏感度为75.0%,特异度76.6%;ADC-临床病理特征联合模型的AUC为0.901(95% CI:0.783~1.000),敏感度及特异度分别为87.5%,和93.0%(表3和图4)。慢性胃肠炎病史、D2-40和ADC预测结直肠癌MSI状态的OR值分别为0.031、8.771和13.518,P值分别为0.005、0.024和0.011,均<0.05(表4)。结果显示ADC模型和ADC-临床病理特征联合模型中,ADC-临床病理特征联合模型预测结直肠癌MSI性能最优,所构建的模型具有较高的预测性能。

图3  纳入多因素回归独立预测因素构建ADC-临床病理特征联合诺模图。
图4  ADC与ADC-临床病理特征联合模型特征受试者工作特征曲线。
图5  ADC-临床病理特征联合模型校准曲线。ADC:表观弥散系数。
Fig. 3  The ADC-clinicopathological nomogram was constructed by incorporating multiple regression independent predictors.
Fig. 4  ADC and ADC-clinicopathological features combined model feature subject operating characteristic curve.
Fig. 5  The calibration curve with ADC-clinicopathological model. ADC: apparent diffusion coefficient.
表3  ADC和ADC联合临床病理特征的预测性能
Tab. 3  Predictive performance of ADC and combined ADC clinicopathological features
表4  ADC联合临床病理特征预测结直肠癌MSI的多因素logistic回归分析
Tab. 4  Multivariate logistic regression analysis of ADC combined with clinicopathological features in predicting MSI of colorectal cancer

2.3.2 模型评价结果

       校准曲线结果显示ADC-临床病理特征联合模型具有较好的拟合优度,准确度良好(图5)。决策曲线和影响曲线结果显示ADC-临床病理特征联合模型对临床预测的净获益率良好,具有很好的临床实用价值(图6)。

图6  ADC-临床病理特征联合模型对临床预测的决策曲线和影响曲线。ADC:表观弥散系数。
Fig. 6  The clinical decision curve and clinical impact curve with ADC-clinicopathological model. ADC: apparent diffusion coefficient.

3 讨论

       本研究首次对ADC值和临床病理特征对结直肠癌患者MSI状态的相关性进行研究,结果表明结直肠癌微卫星状态与ADC值、慢性胃肠炎病史、D2-40和临床分期存在相关性,与ADC值呈正相关关系。本研究通过ADC-临床病理特征联合模型,预测结直肠癌MSI性能显著提高。据我们所知,这是第一项使用ADC结合临床病理特征研究预测结直肠癌MSI状态的研究。本研究可以为临床术前提供无创、经济和个体化MSI检测技术,对预测结直肠癌患者的MSI状态具有重要意义。

3.1 临床病理特征预测结直肠癌MSI状态

       RASHTAK等[22]研究发现结直肠癌中炎症标志物与预后相关,本研究中胃肠炎性病史与MSI状态相关,与此研究保持了一致性,这进一步为临床诊断提供了诊断依据。在GALON等[23]研究下证实肿瘤淋巴细胞浸润已被证明与dMMR结直肠癌的预后有关,本研究中D2-40为淋巴管内皮标记物,提示淋巴管内的侵犯,D2-40阳性表达提示肿瘤恶性程度越高[24],与MSI相关。临床分期临床病理特征中,MSI状态高表达型结直肠癌多见于Ⅱ期,其次是Ⅲ期[3]。CD31代表肿瘤的增殖程度,提示脉管侵犯。S-100在神经源性肿瘤和其他恶性间充质肿瘤表达,结直肠癌中MSI和MSS都表达阳性,研究中MSI-H的S-100染色的细胞数量高于MSS间质和上皮[25]。Ki-67的表达反映了肿瘤的增殖率,值越高代表肿瘤细胞越多[26]

3.2 ADC预测结直肠癌MSI状态

       ADC作为DWI序列测量水分子运动的量化指标,已证实与肿瘤患者良恶性及肿瘤病理性质等具有密切关联。一般情况下,肿瘤病变恶性程度高、组织结构越紧密,其内部水分子的弥散运动受到的限制越大,ADC值就越低[21]。本研究发现结直肠癌微卫星状态与ADC值呈正相关关系,使用ADC评价结直肠癌MSI状态是非常有价值的。

3.3 ADC联合临床病理特征模型的临床应用价值

       微卫星不同状态结直肠癌患者,由于其独特的病因和临床病理特征,两者在临床病理学、治疗方式、预后方面有着显著差异[27, 28],MSI较MSS患者预后较好,且不易发生淋巴结扩散和转移。随着肿瘤免疫学的不断发展,免疫治疗与新辅助免疫治疗已在临床获得成功[29, 30],MSI比MSS结直肠癌患者更具免疫原性,对免疫治疗的反应更好[31-32],MSI Ⅱ期患者对5-氟尿嘧啶化疗不敏感[33],对PD-1免疫治疗敏感[34]。因此了解结直肠癌微卫星状态对于制订治疗方案及评估预后具有重要的临床应用价值。本研究的决策曲线和影响曲线显示ADC联合临床病理特征模型对临床预测的净获益率,显示具有很好的临床实用价值,也进一步证明了本研究的必要性。

3.4 不足与展望

       第一,本次研究为单中心研究,纳入了2020至2022两年内144例有MRI图像和微卫星结果的结直肠癌,样本量较小,选择存在偏移,其他临床病理特征,未发现与MSI状态存在相关性,无法对相关结果进一步验证,在今后的研究中将会在之前的样本中增加样本量,对其他病理特征进行分析,增加新的MRI定量分析技术,将联合模型的预测性能进一步提高;第二,未能根据肿瘤分期、组织学类型及分级、MSI分型等做进一步细化研究,可能对统计学结果造成偏倚,未来的研究将进一步对此方面进行细化,以减少对研究的影响;第三,手动勾画ROI,采取平均值存在差异,我们团队正在基于勾画并提取全肿瘤VOI的影像组学特征,将会更有研究价值。

4 结论

       综上,ADC联合临床病理特征(慢性胃肠炎病史、D2-40、临床分期)相比于ADC,能更有效预测结直肠癌患者MSI状态,构建的诺模图模型可为临床提供更可靠参考价值,同时也体现联合模型预测结直肠癌MSI状态的巨大潜力。

[1]
GÜLŞEN T, ERGENÇ M, ŞENOL Z, et al. Clinicopathological outcomes of microsatellite instability in colorectal cancer[J]. J Cancer Res Ther, 2024, 20(1): 103-111. DOI: 10.4103/jcrt.jcrt_1560_22.
[2]
BAIDOUN F, SAAD A M, ABDEL-RAHMAN O. Prognostic and predictive value of microsatellite instability status among patients with colorectal cancer[J]. J Comp Eff Res, 2021, 10(16): 1197-1214. DOI: 10.2217/cer-2021-0013.
[3]
KAWAKAMI H, ZAANAN A, SINICROPE F A. Microsatellite instability testing and its role in the management of colorectal cancer[J/OL]. Curr Treat Options Oncol, 2015, 16(7): 30 [2024-04-03]. https://pubmed.ncbi.nlm.nih.gov/26031544/. DOI: 10.1007/s11864-015-0348-2.
[4]
DE SMEDT L, LEMAHIEU J, PALMANS S, et al. Microsatellite instable vs stable colon carcinomas: analysis of tumour heterogeneity, inflammation and angiogenesis[J]. Br J Cancer, 2015, 113(3): 500-509. DOI: 10.1038/bjc.2015.213.
[5]
LI J J, XU Q, LUO C, et al. Clinicopathologic characteristics of resectable colorectal cancer with mismatch repair protein defects in Chinese population: Retrospective case series and literature review[J/OL]. Medicine, 2020, 99(24): e20554 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/32541478/. DOI: 10.1097/MD.0000000000020554.
[6]
CERCEK A, DOS SANTOS FERNANDES G, ROXBURGH C S, et al. Mismatch repair-deficient rectal cancer and resistance to neoadjuvant chemotherapy[J]. Clin Cancer Res, 2020, 26(13): 3271-3279. DOI: 10.1158/1078-0432.CCR-19-3728.
[7]
MEI W J, MI M, QIAN J, et al. Clinicopathological characteristics of high microsatellite instability/mismatch repair-deficient colorectal cancer: A narrative review[J/OL]. Front Immunol, 2022, 13: 1019582 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/36618386/. DOI: 10.3389/fimmu.2022.1019582.
[8]
邓康, 陈晓东. 结直肠癌微卫星灶不稳定状态的影像学研究进展[J]. 国际医学放射学杂志, 2024, 47(1): 74-78. DOI: 10.19300/j.2024.Z20758.
DENG K, CHEN X D. Progress in imaging research on microsatellite instability of colorectal cancer[J]. Int J Med Radiol, 2024, 47(1): 74-78. DOI: 10.19300/j.2024.Z20758.
[9]
LI Z B, DAI H, LIU Y X, et al. Radiomics analysis of multi-sequence MR images for predicting microsatellite instability status preoperatively in rectal cancer[J/OL]. Front Oncol, 2021, 11: 697497 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/34307164/. DOI: 10.3389/fonc.2021.697497.
[10]
KIM S, LEE J H, PARK E J, et al. Prediction of microsatellite instability in colorectal cancer using a machine learning model based on PET/CT radiomics[J]. Yonsei Med J, 2023, 64(5): 320-326. DOI: 10.3349/ymj.2022.0548.
[11]
SONG J L, LI Z W, YANG L J, et al. Metabolic activity via 18F-FDG PET/CT is predictive of microsatellite instability status in colorectal cancer[J/OL]. BMC Cancer, 2022, 22(1): 808 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/35869469/. DOI: 10.1186/s12885-022-09871-z.
[12]
BIAN X L, SUN Q, WANG M, et al. Preoperative prediction of microsatellite instability status in colorectal cancer based on a Multiphasic enhanced CT radiomics nomogram model[J/OL]. BMC Med Imaging, 2024, 24(1): 77 [2024-04-28]. https://pubmed.ncbi.nlm.nih.gov/38566000/. DOI: 10.1186/s12880-024-01252-1.
[13]
武敬君, 刘爱连, 赵莹, 等. 能谱CT成像碘(水)图纹理分析预测结直肠癌微卫星不稳定状态[J]. 中国医学影像技术, 2019, 35(11): 1683-1688. DOI: 10.13929/j.1003-3289.201905067.
WU J J, LIU A L, ZHAO Y, et al. Texture analysis of iodine-based material decomposition images with spectral CT imaging for predicting microsatellite instability status in colorectal cancer[J]. Chin J Med Imag Technol, 2019, 35(11): 1683-1688. DOI: 10.13929/j.1003-3289.201905067.
[14]
马长军, 田士峰, 陈丽华, 等. T2 mapping联合mDixon-Quant多参数成像定量评估子宫内膜癌微卫星不稳定状态的研究[J]. 磁共振成像, 2022, 13(8): 48-54. DOI: 10.12015/issn.1674-8034.2022.08.009.
MA C J, TIAN S F, CHEN L H, et al. Quantitative assessment of microsatellite instability in endometrial cancer by T2 mapping combined with mDixon-Quant multiparameter imaging[J]. Chin J Magn Reson Imag, 2022, 13(8): 48-54. DOI: 10.12015/issn.1674-8034.2022.08.009.
[15]
任继鹏, 张梦, 刘旺毅, 等. 体素内不相干运动MRI多模型参数评估子宫内膜样腺癌微卫星不稳定状态[J]. 国际医学放射学杂志, 2023, 46(4): 396-401. DOI: 10.19300/j.2023.L20205.
REN J P, ZHANG M, LIU W Y, et al. Assessing microsatellite instability of endometrial adenocarcinoma with multimodal intravoxel incoherentmotion MRI[J]. Int J Med Radiol, 2023, 46(4): 396-401. DOI: 10.19300/j.2023.L20205.
[16]
马文婷, 朱袁慧, 魏照坤, 等. 动态对比增强MRI及弥散加权成像参数预测结直肠癌微卫星不稳定[J]. 中国医学影像技术, 2023, 39(10): 1526-1530. DOI: 10.13929/j.issn.1003-3289.2023.10.017.
MA W T, ZHU Y H, WEI Z K, et al. Dynamic contrast enhanced-MRI and diffusion weighted imaging parameters for predicting microsatellite instability of colorectal cancer[J]. Chin J Med Imag Technol, 2023, 39(10): 1526-1530. DOI: 10.13929/j.issn.1003-3289.2023.10.017.
[17]
MENG X, TIAN S F, ZHANG Q H, et al. Improved differentiation between stage I-II endometrial carcinoma and endometrial polyp with combination of APTw and IVIM MR imaging[J]. Magn Reson Imag, 2023, 102: 43-48. DOI: 10.1016/j.mri.2023.04.001.
[18]
王莉莉, 雷建凯, 李生虎, 等. 基于磁共振扩散峰度成像的直肠癌微卫星不稳定状态研究[J]. 磁共振成像, 2023, 14(8): 73-78. DOI: 10.12015/issn.1674-8034.2023.08.012.
WANG L L, LEI J K, LI S H, et al. Microsatellite instability of rectal cancer based on magnetic resonance diffusion kurtosis imaging[J]. Chin J Magn Reson Imag, 2023, 14(8): 73-78. DOI: 10.12015/issn.1674-8034.2023.08.012.
[19]
ZHANG W, YIN H K, HUANG Z X, et al. Development and validation of MRI-based deep learning models for prediction of microsatellite instability in rectal cancer[J]. Cancer Med, 2021, 10(12): 4164-4173. DOI: 10.1002/cam4.3957.
[20]
LEFEBVRE T L, UENO Y, DOHAN A, et al. Development and validation of multiparametric MRI-based radiomics models for preoperative risk stratification of endometrial cancer[J]. Radiology, 2022, 305(2): 375-386. DOI: 10.1148/radiol.212873.
[21]
蓝洋, 刘锋, 葛佳, 等. 结直肠癌中MMR蛋白表达与MSI的一致性分析[J]. 临床与实验病理学杂志, 2022, 38(9): 1120-1122. DOI: 10.13315/j.cnki.cjcep.2022.09.021.
LAN Y, LIU F, GE J, et al. Consistency analysis of MMR protein expression and MSI in colorectal cancer[J]. Chin J Clin Exp Pathol, 2022, 38(9): 1120-1122. DOI: 10.13315/j.cnki.cjcep.2022.09.021.
[22]
RASHTAK S, RUAN X Y, DRULINER B R, et al. Peripheral neutrophil to lymphocyte ratio improves prognostication in colon cancer[J/OL]. Clin Colorectal Cancer, 2017, 16(2): 115-123.e3 [2024-04-03]. https://pubmed.ncbi.nlm.nih.gov/28365393/. DOI: 10.1016/j.clcc.2017.01.008.
[23]
GALON J, COSTES A, SANCHEZ-CABO F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome[J]. Science, 2006, 313(5795): 1960-1964. DOI: 10.1126/science.1129139.
[24]
KOREHISA S, IKEDA T, OKANO S, et al. A novel histological examination with dynamic three-dimensional reconstruction from multiple immunohistochemically stained sections of a PD-L1-positive colon cancer[J]. Histopathology, 2018, 72(4): 697-703. DOI: 10.1111/his.13400.
[25]
BAUER K, MICHEL S, REUSCHENBACH M, et al. Dendritic cell and macrophage infiltration in microsatellite-unstable and microsatellite-stable colorectal cancer[J]. Fam Cancer, 2011, 10(3): 557-565. DOI: 10.1007/s10689-011-9449-7.
[26]
周涛. Ⅱ、Ⅲ期直肠癌Ki-67及微卫星不稳定的表达对预后的影响[J]. 医学信息, 2021, 34(23): 66-68. DOI: 10.3969/j.issn.1006-1959.2021.23.018.
ZHOU T. Effect of ki-67 and microsatellite instability on prognosis in stage ⅡandⅢRectal cancer[J]. J Med Inf, 2021, 34(23): 66-68. DOI: 10.3969/j.issn.1006-1959.2021.23.018.
[27]
TURNER K M, DELMAN A M, WIMA K, et al. Microsatellite instability is associated with worse overall survival in resectable colorectal liver metastases[J]. Am J Surg, 2023, 225(2): 322-327. DOI: 10.1016/j.amjsurg.2022.08.007.
[28]
TAIEB J, SVRCEK M, COHEN R, et al. Deficient mismatch repair/microsatellite unstable colorectal cancer: Diagnosis, prognosis and treatment[J]. Eur J Cancer, 2022, 175: 136-157. DOI: 10.1016/j.ejca.2022.07.020.
[29]
PIETRANTONIO F, LONARDI S, CORTI F, et al. Nomogram to predict the outcomes of patients with microsatellite instability-high metastatic colorectal cancer receiving immune checkpoint inhibitors[J/OL]. J Immunother Cancer, 2021, 9(8): e003370 [2024-04-03]. https://pubmed.ncbi.nlm.nih.gov/34429334/. DOI: 10.1136/jitc-2021-003370.
[30]
HU H B, KANG L, ZHANG J W, et al. Neoadjuvant PD-1 blockade with toripalimab, with or without celecoxib, in mismatch repair-deficient or microsatellite instability-high, locally advanced, colorectal cancer (PICC): a single-centre, parallel-group, non-comparative, randomised, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2022, 7(1): 38-48. DOI: 10.1016/S2468-1253(21)00348-4.
[31]
OOKI A, SHINOZAKI E, YAMAGUCHI K. Immunotherapy in colorectal cancer: current and future strategies[J]. J Anus Rectum Colon, 2021, 5(1): 11-24. DOI: 10.23922/jarc.2020-064.
[32]
MANZ S M, LOSA M, FRITSCH R, et al. Efficacy and side effects of immune checkpoint inhibitors in the treatment of colorectal cancer[J/OL]. Therap Adv Gastroenterol, 2021, 14: 17562848211002018 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/33948110/. DOI: 10.1177/17562848211002018.
[33]
MANZOOR S, SABER-AYAD M, MAGHAZACHI A A, et al. MLH1 mediates cytoprotective nucleophagy to resist 5-Fluorouracil-induced cell death in colorectal carcinoma[J]. Neoplasia, 2022, 24(2): 76-85. DOI: 10.1016/j.neo.2021.12.003.
[34]
OVERMAN M J, MCDERMOTT R, LEACH J L, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study[J]. Lancet Oncol, 2017, 18(9): 1182-1191. DOI: 10.1016/S1470-2045(17)30422-9.

上一篇 酰胺质子转移加权成像与扩散加权成像评价直肠癌肿瘤出芽等级的价值
下一篇 基于MRI深度迁移学习影像组学术前预测直肠癌脉管浸润的研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2