分享:
分享到微信朋友圈
X
临床研究
氨己烯酸治疗婴儿痉挛症颅脑MRI异常表现及分析
符念霞 宋建勋 向超 李晨曦 段祺 郭啸林 矫秉轩 边祥兵 娄昕 吕晋浩

Cite this article as: FU N X, SONG J X, XIANG C, et al. Analysis of brain MRI abnormalities in infantile spasms treated with vigabatrin[J]. Chin J Magn Reson Imaging, 2025, 16(1): 104-110.本文引用格式:符念霞, 宋建勋, 向超, 等. 氨己烯酸治疗婴儿痉挛症颅脑MRI异常表现及分析[J]. 磁共振成像, 2025, 16(1): 104-110. DOI:10.12015/issn.1674-8034.2025.01.016.


[摘要] 目的 总结氨己烯酸(vigabatrin, VGB)治疗婴儿痉挛症过程中相关颅脑MRI异常的特点。材料与方法 回顾性分析2019年7月至2023年5月就诊于解放军总医院第一医学中心,口服VGB治疗并出现颅脑影像学改变的婴儿痉挛症患儿,分析其基线影像学特点及随访影像学特点。结果 共收集32例婴儿痉挛症患儿,年龄(10.34±0.86)个月。颅脑MRI表现:21例累及双侧丘脑、脑干(背侧)、苍白球、小脑齿状核,呈对称性分布;9例累及双侧海马,1例累及单侧海马,1例累及双侧壳核及尾状核头。各序列对病变的检出率为:磁共振扩散加权成像(diffusion weighted imaging, DWI)序列100.0%,表观扩散系数(apparent diffusion coefficient, ADC)序列50.0%,T2WI序列46.9%,T2液体衰减反转恢复(fluid attenuated inversion recovery, FLAIR)序列25.0%,T1WI序列25.0%。经过回归分析结果显示,典型与不典型VGB相关头颅MRI异常(vigabatrin-associated brain abnormalities on MRI, VABAM)的表现与性别、年龄、病因、VGB峰值剂量、MRI检查时VGB剂量、新发临床症状等多种临床因素无关,P值分别为0.888、0.924、0.955、0.360、0.058、0.636。10例患儿随访时1例原异常信号完全消失,5例减轻,1例变化不大,3例异常信号较前明显。发现MRI异常时,2例新出现锥体外系为主的症状,停药后患儿临床症状消失。结论 颅脑MRI丘脑、脑干(背侧)、苍白球、小脑齿状核的对称性DWI异常信号可出现在VGB治疗婴儿痉挛症过程中,部分可累及海马,多为可逆性的。DWI对病变的检出率高。
[Abstract] Objective To summarize the MRI features of brain abnormalities associated with the use of vigabatrin (VGB) in the treatment of infantile spasms.Materials and Methods To retrospectively analyze the baseline imaging characteristics and follow-up imaging characteristics of children with infantile spasticity who admitted in the First Medical Center of the Chinese People's Liberation Army (PLA) and were treated with VGB and presented with cephalometric imaging changes from July 2019 to May 2023.Results A total of 32 children with infantile spasticity were collected, with a mean age of (10.34 ± 0.86) months. Cerebral MRI showed that 21 cases involved bilateral thalamus, brainstem (dorsal), basal ganglia (pallidum), and dentate nucleus of the cerebellum in a symmetrical distribution. Nine cases involved bilateral hippocampus, one case involved unilateral hippocampus, and one case involved bilateral shell nuclei and head of caudate nucleus. The positive detection rates of lesions were 100.0% in diffusion weighted imaging (DWI) sequence, 50.0% in apparent diffusion coefficient (ADC) sequence, 46.9% in T2 sequence, 25.0% in fluid attenuated inversion recovery (FLAIR) sequence and 25.0% in T1 sequence. After regression analysis, the results showed that the presentation of typical versus atypical VGB-associated brain abnormalities on MRI (VABAM) was independent of a variety of clinical factors, such as gender, age, etiology, peak VGB dose, VGB dosage during MRI examinations, and new onset of symptoms. The corresponding P values for these factors were 0.888, 0.924, 0.955, 0.360, 0.058, and 0.636. At the follow-up of 10 children, 1 case of the original abnormal signal completely disappeared, 5 cases were reduced, 1 case had little change, and 3 cases of the abnormal signals were more obvious than before. At the time of detection of MRI abnormalities, two cases had new extrapyramidal predominant symptoms, and the children's clinical symptoms disappeared after discontinuation of the drug.Conclusions Symmetrical DWI abnormal signals in the thalamus, brainstem (dorsal), pallidum, and cerebellopontine dentate nucleus on cranial MRI can be seen during aminocaproic acid treatment for infantile spasticity, and some of them can involve the hippocampus, mostly reversible. DWI has a high detection rate for lesions.
[关键词] 氨己烯酸;婴儿痉挛症;磁共振成像;不良反应
[Keywords] vigabatrin;infantile spasms;magnetic resonance imaging;adverse effects

符念霞 1, 2   宋建勋 2   向超 3   李晨曦 1   段祺 1   郭啸林 1   矫秉轩 1   边祥兵 1   娄昕 1   吕晋浩 1*  

1 解放军总医院第一医学中心放射诊断科,北京 100853

2 深圳市宝安区人民医院MR室,深圳 518101

3 湘西土家族苗族自治州民族中医院放射科,吉首 416000

通信作者:吕晋浩,E-mail:lvjinhao@hotmail.com

作者贡献声明:吕晋浩设计了本研究方案,对稿件重要的内容进行了修改,获得国家自然科学基金项目和国家重点研发计划项目的资助;符念霞起草和撰写稿件,获取、统计分析本研究的数据;宋建勋、向超、李晨曦、段祺、郭啸林、矫秉轩、边祥兵、娄昕获取、分析或解释本研究数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82271952 国家重点研发计划项目 2022YFC2410005
收稿日期:2024-08-17
接受日期:2025-01-10
中图分类号:R445.2  R742.1 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.01.016
本文引用格式:符念霞, 宋建勋, 向超, 等. 氨己烯酸治疗婴儿痉挛症颅脑MRI异常表现及分析[J]. 磁共振成像, 2025, 16(1): 104-110. DOI:10.12015/issn.1674-8034.2025.01.016.

0 引言

       婴儿痉挛症是一类各种原因导致的癫痫性脑病,临床表现为脑电图高峰失律,成串痉挛发作以及精神运动发育迟滞[1]。促肾上腺皮质激素、氨己烯酸(vigabatrin, VGB)和皮质类固醇是婴儿痉挛症的主要推荐药物[2, 3],可以单独使用或联合使用;VGB是美国食品和药物管理局(Food and Drug Administration, FDA)明确批准用于治疗婴儿痉挛症的首个抗癫痫药物[4]。VGB通过不可逆地抑制γ-氨基丁酸(γ-aminobutyric acid, GABA)转氨酶以增加中枢GABA水平发挥抗癫痫作用[5, 6, 7]。视网膜损害和视野缺损为VGB最常见的副作用[8, 9],其他副作用还包括头晕、头痛、嗜睡、运动功能障碍等[10, 11]。尽管有这些不良反应,但是VGB已被证明可有效治疗婴儿痉挛症,因此在儿科癫痫病学中仍发挥着重要作用。

       VGB治疗婴儿痉挛症后可出现头颅MRI异常,称之为VGB相关头颅MRI异常(vigabatrin-associated brain abnormalities on MRI, VABAM)[12, 13]。VABAM是VGB治疗的不良反应之一[14],文献报道发生率为22%~32%[15];然而临床工作中并非所有服用VGB治疗的患儿都会行常规颅脑MRI检查,且大多数VABAM不伴随临床症状,故VABAM的真实发病率可能被低估了。但由于目前国内报道极少,这就导致多数医生对其认识不足,VABAM常被误诊为代谢性脑病,进而引发过度检查及治疗;另外,部分VABAM患儿可能会出现新的神经系统异常症状[15],包括锥体外系症状、原有发作频率加重、嗜睡等,在这种情况下,必须及时并迅速调整治疗方案,以此避免不良结局的出现。既往文献显示VABAM的表现大多数是丘脑、脑干(背侧为主)、基底节(苍白球为主)、小脑齿状核的双侧对称性异常信号[4, 15, 16, 17],且扩散加权成像(diffusion weighted imaging, DWI)呈高信号[18],是完全可逆性的颅脑改变。但是实际上部分VABAM也可出现不典型表现[16],例如异常信号出现在颅脑的其他位置或者仅单侧发生,目前尚未见国内文献对此总结和分析,导致相关认识不足;另外,VABAM的可逆性改变具体表现如何也缺乏详细分析。因此,本研究旨在总结VGB治疗痉挛症患儿过程中颅脑MRI异常改变及其变化规律,以提高临床及影像科医生对VABAM影像学特点及变化规律的认识,从而避免不必要的检查和治疗。

1 材料与方法

1.1 研究对象

       回顾性纳入2019年7月至2023年5月因婴儿痉挛症就诊于解放军总医院第一医学中心服用VGB治疗患儿的临床及颅脑MR检查资料。纳入标准:(1)临床确诊为婴儿痉挛;(2)患儿发病年龄为2个月至2岁;(3)有确切添加VGB治疗史;(4)服用VGB后至少进行了1次头颅MRI检查。排除标准:(1)使用VGB后颅脑MRI检查的时间超过1年或少于30天[15];(2)颅脑MRI图像质量差。本研究严格遵守《赫尔辛基宣言》,经解放军总医院第一医学中心伦理委员会批准,免除受试者知情同意,批准文号:S2024-566-01。

1.2 检查方法

       所有患者MR检查分别使用解放军总医院第一医学中心的6台MR扫描仪,包括2台GE Discovery MR750W 3.0 T、2台联影(1台uMR770 3.0 T、1台uMR560 1.5 T)、1台Philips Signa HDxt 3.0 T、1台西门子Skyra 3.0 T。8~24多通道头颅接收线圈。3.0 T扫描参数:轴面T1WI,TR 1750 ms,TE 24 ms,FOV 240 mm × 180 mm,矩阵320×256,层厚6.0 mm,层间距1.5 mm;轴面T2WI,TR 5111 ms,TE 121 ms,FOV 240 mm × 180 mm,矩阵384×384,层厚6.0 mm,层间距1.5 mm;轴面DWI,TR 3000 ms,TE 66 ms,b值 = 0、1000 s/mm2,FOV 240 mm×240mm,矩阵160 × 160,层厚6.0 mm,层间距1.5 mm;冠状面T2液体衰减反转恢复(fluid attenuated inversion recovery, FLAIR),TR 8529 ms,TE 162 ms,FOV 240 mm × 240 mm,矩阵288×224,层厚6.0 mm,层间距0.5 mm;矢状面T1WI FLAIR,TR 1750 ms,TE 24 ms,FOV 240 mm × 240 mm,矩阵320×192,层厚5.0 mm,层间距1.5 mm。1.5 T扫描参数:轴面T1WI,TR 500 ms,TE 12 ms,FOV 230 mm×200 mm,矩阵288 × 202,层厚6.0 mm,层间距1.2 mm;轴面T2WI,TR 4234 ms,TE 105 ms,FOV 230 mm×200 mm,矩阵384 × 307,层厚6.0 mm,层间距1.2 mm;轴面DWI,TR 4000 ms,TE 83 ms,b值=0、1000 s/mm2,FOV 230 mm × 200 mm,矩阵128×128,层厚6.0 mm,层间距1.2 mm;冠状面T2 FLAIR,TR 8000 ms,TE 116 ms,FOV 230 mm × 200 mm,矩阵256 × 192,层厚6.0 mm,层间距1.2 mm;矢状面T1WI,TR 500 ms,TE 13 ms,FOV 230 mm×200 mm,矩阵288 × 202,层厚5.0 mm,层间距 1 mm。

1.3 图像评估

       所有患者图像由两名高年资影像医师采取双盲法进行判读,对于存在争议的病例,由第三名高年资影像医师同前两名医师进行商议后给出同一意见。三名影像医师分别具有8年、12年工作经验的主治医师和28 年的工作经验的主任医师。影像判断的内容包括:有无异常信号,异常信号位置,是否对称分布及各序列信号的特点。

       根据异常信号分布位置及分布是否对称性,我们将VABAM分为典型组和不典型组:典型的VABAM定义为双侧丘脑、脑干(背侧)、苍白球、小脑齿状核对称性T2WI高信号和或DWI高信号,典型位置以外的部位(如海马、壳核、尾状核)的信号异常或典型位置的单侧信号异常被定义为不典型VABAM[16]

1.4 统计学分析

       采用SPSS 27.0统计软件包。对数据进行正态分布检验,符合正态分布的均数用(x¯±s)表示,偏态分布数据以中位数表示,计数资料以频数表示。采用二元logistic回归分析方法分析多种临床因素与VABAM表现的关系。P<0.05为差异有统计学意义。

2 结果

2.1 临床基本信息

       共收集32例在VGB治疗期间发现颅脑MRI异常的患儿,临床均为婴儿痉挛症,其中男18例,女14例,年龄(10.34±0.86)个月。初次癫痫起病的年龄为(3.81±0.43)个月。VGB最大剂量为(1 084.38±313.07)mg/d。病因学方面,本研究中3例为先天性原因,3例获得性原因,余26例为原因不明。发现颅脑MRI异常时,2例患儿出现烦躁不安、手足舞动等锥体外系症状,余30例患儿未发现新增临床症状及体征。

2.2 典型与不典型VABAM的特点

       32例患儿中,21例为典型的VABAM表现,11例为不典型VABAM表现。典型的VABAM表现为:丘脑、脑干(背侧)、苍白球、小脑齿状核对称性的异常信号,T1WI序列呈等或稍低信号,T2WI序列呈高或稍高信号,T2-FLAIR序列呈稍高或等信号,DWI序列呈高信号,表观扩散系数(apparent diffusion coefficient, ADC)序列呈稍低信号(图1)。11例为不典型VABAM表现,其中9例累及海马(图2A~2E),1例累及基底节壳核及尾状核头(图2F~2G),均表现为DWI对称性高信号;另外1例为不典型部位不对称分布(图2H);在所有累及海马的10例患者中,同时存在典型位置异常信号。

图1  典型VABAM特点图及部分随访结果。1A~1H为同一患儿(男,9个月),双侧丘脑(红箭)对称性异常信号,T1WI(1A)呈稍低信号、T2WI(1B)呈高信号,T2-FLAIR(1C)呈稍高信号,DWI(1D)呈高信号,ADC(1E)呈低信号;DWI示双侧苍白球(1F,红箭)、脑干背侧(1G,红箭)、小脑齿状核(1H,红箭)高信号。1I~1P为同一患儿(女,7个月)。DWI显示双侧丘脑(1I,红箭)、苍白球(1J,红箭)、脑干背侧(1K,红箭)、小脑齿状核(1L,白箭)对称性高信号;停用氨己烯酸19天后DWI显示双侧丘脑(1M)、苍白球(1N)、脑干背侧(1O)异常信号范围较前缩小,并且小脑齿状核(1P)异常信号已完全消失。VABAM:氨己烯酸相关头颅MRI 异常;ADC:表观扩散系数;DWI:扩散加权成像。
Fig. 1  Typical VABAM characteristics and partial follow-up scans. 1A-1H represent the same child (male, 9 months) exhibiting symmetrical abnormal signal in the bilateral thalami (red arrows). On T1WI (1A), a slightly decreased signal is observed, while T2WI (1B) shows a high signal. T2-FLAIR (1C) reveals a slightly increased signal, and diffusion-weighted imaging (DWI) (1D) presents a high signal, with apparent diffusion coefficient (ADC) (1E) exhibiting a low signal. DWI shows high signals in the bilateral globus pallidus (1F, red arrows), dorsal brainstem (1G, red arrows), and dentate nuclei of the cerebellum (1H, red arrows). 1I-1P depict the same child (female, 7 months). DWI shows symmetrical high signals in the bilateral thalami (1I, red arrows), globus pallidus (1J, red arrows), dorsal brainstem (1K, red arrows), and dentate nuclei of the cerebellum (1L, white arrows). Notably, 19 days after cessation of amixine, DWI shows a reduction in the abnormal signal range of bilateral thalami (1M), globus pallidus (1N), and dorsal brainstem (1O). Furthermore, the abnormal signal in the cerebellar dentate nucleus (1P) has completely resolved. VABAM: vigabatrin-associated brain abnormalities on MRI; ADC: apparent diffusion coefficient; DWI: diffusion weighted imaging.
图2  不典型VABAM表现图。2A~2C为同一患儿(男,16个月),双侧海马(红箭)对称性异常信号,T2WI(2A)及DWI(2B)呈高信号,ADC(2C)呈低信号;脑干(白箭)异常信号。另一患儿女,6个月,DWI(2D)显示双侧海马(红箭)及脑干(白箭)对称性高信号;维持氨己烯酸剂量不变,20天后复查DWI(2E)异常信号较前明显。另一患儿,男,16个月,T2WI(2F)及DWI(2G)显示尾状核头(红箭)、壳核(白箭)对称性高信号。另一患儿,男,10个月,DWI显示右侧海马(2H,红箭)高信号。VABAM:氨己烯酸相关头颅MRI 异常;ADC:表观扩散系数;DWI:扩散加权成像。
Fig. 2  Atypical VABAM performance features. 2A-2C is the same patient (a boy aged 16 months). Bilateral hippocamphal (red arrow) asymmetry signal, T2WI (2A) and DWI (2B) shows high signal, ADC (1C) shows low signal. Abnormal signals in the brain stem (white arrow) can be observed . 2D-2E are another child who is a girl aged 6 months. DWI (1D) indicates high signal symmetry in both hippocampus (red arrow) and brainstem (white arrow). The dose of vigabatrin remain unchanged, and the abnormal signal of DWI (1E) is more obvious than before after 20 days. 1F-1G are another child who is a boy aged 16 months, the caudate nucleus and putamen signals on T2WI (1F) and DWI (1G). 1H shows another child with 10 months. DWI shows a high signal in the right hippocampus (red arrow). VABAM: vigabatrin-associated brain abnormalities on MRI; ADC: apparent diffusion coefficient; DWI: diffusion weighted imaging.

2.3 不同MR序列检出VABAM的结果

       VABAM阳性检出率由高到低依次为:DWI序列100.0%,ADC序列50.0%,T2WI序列46.9%,T2-FLAIR序列25.0%,T1WI序列25.0%(图3)。

图3  不同影像序列对VABAM检出率。VABAM:氨己烯酸相关头颅MRI异常。FLAIR:液体衰减反转恢复;DWI:扩散加权成像;ADC:表观扩散系数。
Fig. 3  VABAM detection rates in various image sequences. VABAM: vigabatrin-associated brain abnormalities on MRI. FLAIR: fluid attenuated inversion recovery; DWI: diffusion weighted imaging; ADC: apparent diffusion coefficient.

2.4 典型与不典型VABAM的独立影响因素

       经过二元logistic回归分析结果显示,典型与不典型VABAM的表现与性别、年龄、病因、VGB峰值剂量、MRI检查时VGB剂量、新发临床症状等多种临床因素无关(表1)。

表1  典型与不典型VABAM与多种临床因素的多元线性回归分析
Tab. 1  Multiple linear regression analysis of of typical and atypical VABAM with multiple clinical factors

2.5 随访结果

       10例患儿行头颅MRI复查,1例2次MRI间隔时间为2年,原异常信号完全消失;5例2次MRI间隔时间12~20天,MR上显示病灶范围较前缩小(图1M~1P),其中3例患儿复查时VGB已停止口服,2例患儿VGB剂量减少,1例患儿剂量维持不变;1例MRI变化不大(VGB减量),3例MRI表现进展(维持用药不变),表现为病灶范围较前增大(图2E)。出现锥体外系症状的2例VABAM患儿,在停止VGB使用后,临床症状消失。

3 讨论

       本研究通过MRI分析了VGB治疗婴儿痉挛症过程中的颅脑影像改变及动态变化。研究结果显示,VABAM主要是累及深部脑结构,典型表现为双侧丘脑、脑干(背侧)、基底节(苍白球)、小脑齿状核对称性异常信号,也可出现不对称分布、累及海马等不典型表现,这种改变几乎是可逆的。典型与不典型VABAM的表现与性别、年龄、病因、VGB峰值剂量、MRI检查时VGB剂量、新发临床症状等多种临床因素无关。DWI有助于提高VABAM的检出。目前国内对VABAM的研究国内文献报道较少,本研究提出的不典型VABAM表现,尚未见其他国内文献报道。但该问题值得临床关注,当遇到此类深部脑结构MRI异常表现,需结合临床患儿是否服用VGB,避免过度检查及治疗。

3.1 典型与不典型VABAM的模式特征

       VABAM主要发生于两岁以下的患者中,可能是未成熟的髓鞘容易受到VGB毒性的影响[19]。在国外的研究中大多数认为VABAM的表现是丘脑、脑干(背侧为主)、基底节(苍白球为主)、小脑齿状核的双侧对称性异常信号[4, 15, 16, 17]。本文中65.6%患儿为典型的VABAM表现,34.4%为不典型VABAM表现。10例患者在典型的VABAM表现的基础上同时伴随海马异常信号,在1例患者的随访中,海马信号的变化与典型位置的信号变化一致;此外,累及海马的患者临床上无新发的痉挛或其他症状,与感染、炎症或代谢不符合,提示海马的异常信号主要是与VGB相关的改变可能性大,这一结果与国内外研究一致[16, 20]。在我们研究中,观察到海马的异常信号总是与丘脑同步,推测海马体与间脑结构存在解剖学联系。本文中VABAM累及的部位均为深部脑结构,这种分布特征可能反映了髓鞘成熟的阶段性变化和未成熟大脑中GABA代谢的区域性变化[21]

       目前也有个别文献报道过VABAM累及壳核[16],但仅在1名患者中观察到,且该患者缺乏后续随访的MRI检查,因此壳核受累是否发生于VGB使用过程中尚存在一定争议。本研究中1名壳核、尾状核受累的患儿在VGB减量后,MRI改变有所减轻,提示颅脑这种改变与VGB相关的改变可能性大。但是该患者缺乏VGB治疗前的MRI检查,且仅在1名患者中观察到不典型位置的特征,所以使用VGB过程中颅脑是否可以累及尾状核、壳核,仍需大量数据进一步证实。

3.2 DWI序列检出VABAM阳性率的分析

       VABAM的病理生理机制尚不清楚。一些动物及尸检研究中发现这可能是脱髓鞘过程与相关的髓鞘水肿、细胞毒性水肿和深部脑结构的微空泡形成有关[22, 23, 24, 25]。VGB通过不可逆地抑制GABA转氨酶,导致GABA在中枢神经系统的浓度增加诱发髓鞘内水肿。DWI能敏感反映细胞毒性损伤,因此在所有序列中对病变的显示最清晰、检出率最高[17]。对于服用VGB的婴儿痉挛症患者尽量完善DWI扫描,提高VABAM的阳性检出率,帮助早期诊断和调整用药剂量,以避免出现临床症状。

3.3 典型与不典型VABAM的独立影响因素

       既往研究多认为VABAM的发生与VGB的峰值剂量有关[26, 27];本文经过回归分析发现,典型与不典型VABAM的表现与性别、年龄、病因、VGB峰值剂量、MRI检查时VGB剂量、新发临床症状等多种临床因素无关(P>0.05),这一研究结果与既往的部分研究一致[16],提示常规剂量VGB也可发生VABAM,因此对于所有接受VGB治疗的患儿均有必要行常规MRI检查并密切关注其临床症状,当患儿有新发临床症状或MRI异常时应及时减量或者停药。

3.4 VABAM的随访结果分析

       VABAM通常是可逆的,一般在停用VGB 3个月后消失[16, 22, 28]。由于本文是回顾性研究,且多数患儿无新增临床表现,同时小年龄组患儿需要镇静后才能配合MRI检查,故大部分患儿未行MRI复查。本文中1例患者停用VGB 2年后复查,原异常信号完全消失;5例患者VGB减量、减停后,脑内异常信号范围较前缩小,提示VABAM的可逆性病程,这一表现与文献报道一致[18, 20, 29];1例患者VGB减量16天后复查MRI异常信号无明显变化,3例患者维持VGB剂量不变,分别在18、20、33天复查,MRI异常信号较前进展,推测MRI信号异常的严重程度和信号消退的时间可能存在个体差异[21]。以上患者没有出现新的临床症状,因此认为这种改变是无症状的VABAM。文献中报道大多数患儿为无症状性VABAM,极少数为症状性VABAM表现为发育倒退、锥体外系症状、多动性运动障碍等[30];本文中30例患儿为无症状性VABAM,2例婴儿出现锥体外系症状,与文献报道一致。有文献报道VGB与促肾上腺皮质激素(adreno-cortico-tropic-hormone, ACTH)联合治疗婴儿痉挛症时,容易出现症状性VABAM[31, 32]。本研究中2例出现症状性VABAM,1例与ACTH联合使用,另外1例未合并使用但也出现了症状性VABAM。在停止VGB使用后,2名患者锥体外系临床症状消失。

3.5 VABAM的鉴别诊断

       VABAM需与其他引起基底节、丘脑、脑干异常信号的疾病鉴别,主要是Leigh病、缺氧缺血性脑病等遗传代谢性脑病[4, 33]。Leigh病常表现为壳核、尾状核和中脑的对称性T2WI高信号,扩散受限,且病变范围超出苍白球、丘脑和小脑齿状核[34];且此类患者临床可有代谢性酸中毒、高乳酸血症等临床症状亦有助于鉴别。缺氧缺血性脑病的影像学特征取决于损伤的年龄和严重程度[35],苍白球、丘脑、脑干被盖扩散受限,脑干损伤范围更广泛,尾状核和大脑皮层通常也会受到影响;同时患者有严重心脏骤停病史。临床工作中遇到此类深部脑结构MRI异常表现,需结合临床患儿是否服用VGB,避免过度检查及治疗。

3.6 本研究的不足

       我们的研究存在一定局限性:(1)由于是回顾性分析,缺少接受VGB之前的头颅MRI资料,没有对VABAM患者进行3个月至1年之内的随访以观察信号的变化;(2)病例数较少,缺乏对照组;(3)部分患者外院服用VGB及其他药物病史不详。未来可以进行一些前瞻性的研究,接受VGB治疗的婴儿痉挛症患者发生VABAM与未发生VABAM之间的相关研究,包括年龄、VGB剂量、治疗持续时间,以促进VGB更好地用于治疗婴儿痉挛症患者。

4 结论

       VABAM主要是累及深部脑结构,典型表现为双侧丘脑、脑干(背侧)、基底节(苍白球)、小脑齿状核对称性异常信号,也可出现不对称分布、累及海马等不典型部位。这种改变几乎是可逆的。DWI有助于提高VABAM的检出。

[1]
ZUBERI S M, WIRRELL E, YOZAWITZ E, et al. ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: Position statement by the ILAE Task Force on Nosology and Definitions[J]. Epilepsia, 2022, 63(6): 1349-1397. DOI: 10.1111/epi.17239.
[2]
TIBUSSEK D, KLEPPER J, KORINTHENBERG R, et al. Treatment of Infantile Spasms: Report of the Interdisciplinary Guideline Committee Coordinated by the German-Speaking Society for Neuropediatrics[J]. Neuropediatrics, 2016, 47(3): 139-150. DOI: 10.1055/s-0036-1572411.
[3]
甘靖, 屈艺, 罗蓉. 婴儿痉挛症治疗进展[J]. 中华实用儿科临床杂志, 2014, 29(24): 1889-1889. DOI: 10.3760/cma.j.issn.2095-428X.2014.24.013.
GAN J, QU Y, LUO R. Progress in the treatment of infantile spasms[J]. Chin J Appl Clin Pediatr, 2014, 29(24) : 1889-1889. DOI: 10.3760/cma.j.issn.2095-428X.2014.24.013.
[4]
CORRÊA D G, TELLES B, FREDDI T A L. The vigabatrin-associated brain abnormalities on MRI and their differential diagnosis[J]. Clin Radiol, 2024, 79(2): 94-101. DOI: 10.1016/j.crad.2023.11.010.
[5]
D'ALONZO R, RIGANTE D, MENCARONI E, et al. West Syndrome: A Review and Guide for Paediatricians[J]. Clin Drug Investig, 2018, 38(2): 113-124. DOI: 10.1007/s40261-017-0595-z.
[6]
IKEDA A, TOMIYASU M, ESPOSITO S, et al. Elevation of brain gamma-aminobutyric acid levels is associated with vigabatrin-associated brain abnormalities on magnetic resonance imaging[J/OL]. Epilepsy Res, 2022, 181: 106881 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/35183975/. DOI: 10.1016/j.eplepsyres.2022.106881.
[7]
WALTERS D C, ARNING E, BOTTIGLIERI T, et al. Metabolomic analyses of vigabatrin (VGB)-treated mice: GABA-transaminase inhibition significantly alters amino acid profiles in murine neural and non-neural tissues[J]. Neurochem Int, 2019, 125: 151-162. DOI: 10.1016/j.neuint.2019.02.015.
[8]
PREZIOSO G, CHIARELLI F, MATRICARDI S. Efficacy and safety of vigabatrin in patients with tuberous sclerosis complex and infantile epileptic spasm syndrome: a systematic review[J]. Expert Rev Neurother, 2023, 23(7): 661-671. DOI: 10.1080/14737175.2023.2216385.
[9]
黄露露, 邹丽萍. 氨己烯酸相关性视网膜毒性研究进展[J]. 中华儿科杂志, 2016, 54(10): 789-789. DOI: 10.3760/cma.j.issn.0578-1310.2016.10.020.
HUANG L L, ZOU L P. Research progress of amino-hexenoic acid associated retinal toxicity[J]. Chin J Pediatr, 2016, 54(10): 789-789. DOI: 10.3760/cma.j.issn.0578-1310.2016.10.020.
[10]
BISWAS A, YOSSOFZAI O, VINCENT A, et al. Vigabatrin-related adverse events for the treatment of epileptic spasms: systematic review and meta-analysis[J]. Expert Rev Neurother, 2020 , 20(12): 1315-1324. DOI: 10.1080/14737175.2020.1840356.
[11]
GOLEC W, SOŁOWIEJ E, STRZELECKA J, et al. Vigabatrin-new data on indications and safety in paediatric epilepsy[J]. Neurol Neurochir Pol, 2021, 55(5): 429-439. DOI: 10.5603/PJNNS.a2021.0063.
[12]
刘霜君, 刘明, 张仲斌, 等. 氨己烯酸治疗婴儿痉挛症过程中引起可逆性头颅磁共振成像改变[J]. 中华实用儿科临床杂志, 2020, 35(12): 894-898. DOI: 10.3760/cma.j.cn101070-20190424-00348.
LIU S J, LIU M, ZHANG Z B, et al. Reversible abnormalitie in brain magnetic resonance imaging of children with infantile spasms during treatments with Vigabatrin[J]. Chin J Appl Clin Pediatr, 2020, 35(12): 894-898. DOI: 10.3760/cma.j.cn101070-20190424-00348.
[13]
REYES VALENZUELA G, CRESPO A, PRINCICH J, et al. Vigabatrin-associated brain abnormalities on MRI and other neurological symptoms in patients with West syndrome[J]. Epilepsy Behav, 2022 , 129: 1-8.
[14]
KIM D D, SHARMA A K, SHARMA M, et al. Teaching NeuroImages: Reversible neuroimaging findings during treatment of infantile spasms with vigabatrin[J]. Neurology, 2020 , 95(16): 2314-2315. DOI: 10.1212/WNL.0000000000010370.
[15]
XU Y, WAN L, HE W, et al. Risk of vigabatrin-associated brain abnormalities on MRI: A retrospective and controlled study[J]. Epilepsia, 2022, 63(1): 120-129. DOI: 10.1016/j.yebeh.2022.108606.
[16]
HARINI C, YUSKAITIS C J, LIBENSON M H, et al. Hippocampal involvement with vigabatrin-related MRI signal abnormalities in patients with infantile spasms: A novel finding[J]. J Child Neurol, 2021, 36(7): 575-582. DOI: 10.1177/0883073820985395.
[17]
刘一欧, 王思瑜, 周文静, 等. 弥散成像技术对氨己烯酸相关头颅MRI异常检测的优势[J]. 癫痫杂志, 2024, 10(1): 21-25. DOI: 10.7507/2096-0247.202310011.
LIU Y O, WANG S Y, ZHOU W J, et al. The advantage of diffusion weighted imagin technique in the toxicity detection of vigabatrin[J]. Journal of Epilepsy, 2024, 10(1): 21-25. DOI: 10.7507/2096-0247.202310011.
[18]
TIERRADENTRO-GARCÍA L O, ZANDIFAR A, STERN J, et al. Magnetic resonance imaging-based distribution and reversibility of lesions in pediatric vigabatrin-related brain toxicity[J]. Pediatr Neurol, 2023, 148: 86-93. DOI: 10.1016/j.pediatrneurol.2023.08.012.
[19]
CRAFT J F, CARDENAS A M. Vigabatrin-associated reversible MRI abnormalities in an infant with tuberous sclerosis[J]. J Radiol Case Rep, 2021, 15(2): 1-6. DOI: 10.3941/jrcr.v15i2.3918.
[20]
陈姚瑶, 徐丹, 李小丽, 等. 氨己烯酸相关头颅磁共振异常六例临床分析[J]. 国际儿科学杂志, 2024, 51(6): 407-410. DOI: 10.3760/cma.j.issn.1673-4408.2024.06.011.
CHEN Y Y, XU D, LI X L, et al. Clinical analysis of 6 cases of aminohexenoic acid-related abnormal head magnetic resonance imaging[J]. Int J Pediatr, 2024, 51(6): 407-410. DOI: 10.3760/cma.j.issn.1673-4408.2024.06.011.
[21]
DRACOPOULOS A, WIDJAJA E, RAYBAUD C, et al. Vigabatrin-associated reversible MRI signal changes. in patients with infantile spasms[J]. Epilepsia, 2010, 51(7): 1297-1304. DOI: 10.1111/j.1528-1167.2010.02564.x.
[22]
HUSSAIN S A, TSAO J, LI M, et al. Risk of vigabatrin-associated brain abnormalities on MRI in the treatment of infantile spasms is dose-dependent[J]. Epilepsia, 2017, 58(4): 674-682. DOI: 10.1111/epi.13712.
[23]
RASMUSSEN A D, RICHMOND E, WEGENER K M, et al. Vigabatrin-induced CNS changes in juvenile rats: Induction, progression and recovery of myelin-related changes[J]. Neurotoxicology, 2015, 46: 137-144. DOI: 10.1016/j.neuro.2014.12.008.
[24]
PEARL P L, PODURI A, PRABHU S P, et al. White matter spongiosis with vigabatrin therapy for infantile spasms[J]. Epilepsia, 2018, 59(4): 40-44. DOI: 10.1111/epi.14032.
[25]
HORTON M, RAFAY M, DEL BIGIO M R. Pathological evidence of vacuolar myelinopathy in a child following vigabatrin administration[J]. J Child Neurol, 2009, 24(12): 1543-1546. DOI: 10.1177/0883073809348796.
[26]
朱思齐. 氨己烯酸治疗儿童结节性硬化症相关癫痫的疗效及安全性研究进展[J]. 国际儿科学杂志, 2023, 50(5): 302-305. DOI: 10.3760/cma.j.issn.1673-4408.2023.05.003.
ZHU S Q. Progress on efficacy and safety of aminhexoic acid in pediatric tuberous sclerosis related epilepsy[J]. Int J Pediatr, 2023, 50(5): 302-305. DOI: 10.3760/cma.j.issn.1673-4408.2023.05.003.
[27]
彭赢月, 徐宝元. 氨己烯酸治疗婴儿痉挛症致可逆性头颅磁共振成像改变1例[J]. 安徽医学, 2024, 45(2): 264-265. DOI: 10.3969/j.issn.1000-0399.2024.02.029.
PENG Y Y, XU B Y. Reversible cranial magnetic resonance imaging changes in 1 case[J]. Anhui Med J, 2024, 45(2): 264-265. DOI: 10.3969/j.issn.1000-0399.2024.02.029.
[28]
朱红敏, 邓小龙, 吴革菲, 等. 氨己烯酸治疗婴儿痉挛症致可逆性头颅MRI异常二例报道及文献复习[J]. 中华神经医学杂志, 2020, 19(6): 613-615. DOI: 10.3760/cma.j.cn115354-20200323-00215.
ZHU H M, DENG X L, WU G F, et al. Vigabatrin-associated brain abnormalities on MR imaging in treatment of infantile spasm: a report of two cases and literature review[J]. Chin J Neuromed, 2020, 19(6): 613-615. DOI: 10.3760/cma.j.cn115354-20200323-00215.
[29]
杨晓平, 王慧芬, 王慧芳, 等. 氨己烯酸治疗婴儿痉挛症致头颅磁共振成像异常1例[J]. 中华神经科杂志, 2023, 56(4): 438-441. DOI: 10.3760/cma.j.cn113694-20220731-00585.
YANG X P, WANG H F, WANG H F, et al. Vigabatrin-associated brain. abnormalities on magnetic resonance imaging in the treatment of infantile spasms:a case report[J]. Chin J Neurol, 2023, 56(4): 438-441. DOI: 10.3760/cma.j.cn113694-20220731-00585.
[30]
BHALLA S, SKJEI K. Fulminant vigabatrin toxicity during combination therapy with adrenocorticotropic hormone for infantile spasms: Three cases and review of the literature[J]. Epilepsia, 2020 , 61(10): 159-164. DOI: 10.1111/epi.16663.
[31]
WAN L, HE W, WANG Y Y, et al. Vigabatrin-associated brain abnormalities on MRI in tuberous. sclerosis complex patients with infantile spasms: are they preventable?[J]. Ther Adv Neurol Disord, 2022, 15: 1-13. DOI: 10.1177/17562864221138148.
[32]
LOTAN E, BLUVSTEIN J, ZAN E. Vigabatrin toxicity in a patient with infantile spasms treated with concomitant hormonal therapy[J]. Isr Med Assoc J, 2020, 22(7): 461-462.
[33]
MOHAMMAD S S, ANGITI R R, BIGGIN A, et al. Magnetic resonance imaging pattern recognition in childhood bilateral basal ganglia disorders[J]. Brain Commun, 2020, 2(2): 1-59. DOI: 10.1093/braincomms/fcaa178.
[34]
SENTHILVELAN S, SEKAR S S, KESAVADAS C, et al. Neuromitochondrial disorders: Genomic basis and an algorithmic approach to imaging diagnostics[J]. Clin Neuroradiol, 2021, 31(3): 559-574. DOI: 10.1007/s00062-021-01030-4.
[35]
HUANG B Y, CASTILLO M. Hypoxiceischemic brain injury: imaging findings from birth to adulthood[J]. RadioGraphics, 2008, 28(2): 417-439. DOI: 10.1148/rg.282075066.

上一篇 基于双中心MRI-DWI的深度学习模型预测急性缺血性卒中静脉溶栓治疗的预后价值
下一篇 心脏磁共振四维血流成像评价高血压性心脏病患者早期左心室舒张功能障碍的可行性研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2