分享:
分享到微信朋友圈
X
临床研究
构建并外部验证XGBoost模型鉴别乳腺非肿块病变良恶性
杨文 杨蔚 周晓平 杨妍 张宁妹 尹清云 张朝林 刘召弟

Cite this article as: YANG W, YANG W, ZHOU X P, et al. Development and external validation of an XGBoost model for differentiating the benign and malignant nature of non-mass breast lesions[J]. Chin J Magn Reson Imaging, 2025, 16(1): 118-126, 145.本文引用格式:杨文, 杨蔚, 周晓平, 等. 构建并外部验证XGBoost模型鉴别乳腺非肿块病变良恶性[J]. 磁共振成像, 2025, 16(1): 118-126, 145. DOI:10.12015/issn.1674-8034.2025.01.018.


[摘要] 目的 本研究旨在构建一个基于临床和影像学特征的极端梯度提升(extreme gradient boosting, XGBoost)模型,以鉴别乳腺非肿块病变的良恶性。材料与方法 收集2018年1月至2024年7月2个机构,2种乳腺X线设备检查的有病理结果的首诊乳腺非肿块病变480个。患者被分为建模组[n=310,数字乳腺X线摄影(digital mammography, DM)检查]、内部验证组(n=108,DM检查),和外部验证组[n=62,数字乳腺体层合成摄影(digital breast tomosynthesis, DBT)检查]。记录患者术前乳腺X线(DM或DBT),MRI以及临床特征。采用XGBoost算法和多因素逻辑回归分析,分别构建XGBoost模型和逻辑回归(logistic regression, LR)模型。使用受试者工作特征(receiver operating characteristic, ROC)曲线评估模型的诊断效能。结果 在建模组中,患者以7∶3随机分为训练集(n=217)和测试集(n=93)。训练集、测试集、训练集的内部验证组及训练集的外部验证组中,恶性非肿块病灶分别为159(73%)、58(62%)、73(68%)和43(69%)。XGBoost模型的诊断效能明显优于LR模型,在独立的训练集、测试集、训练集的内部验证组及训练集的外部验证组中均表现出良好的诊断效能,曲线下面积(area under the curve, AUC)在0.884~0.913之间。XGBoost模型在四个队列中也表现出良好的校准能力和临床净获益。结论 XGBoost模型能够准确鉴别乳腺非肿块病变的良恶性,具有推广应用的潜力。
[Abstract] Objective To develop an extreme gradient boosting (XGBoost) model based on clinical and imaging features to differentiate between benign and malignant non-mass breast lesions.Materials and Methods Data were collected from January 2018 to July 2024 from two institutions, focusing on 480 non-mass breast lesions with pathological results obtained from two types of mammography equipment. Patients were categorized into a modeling group [n = 310, digital mammography (DM) examination], an internal validation group (n = 108, DM examination), and an external validation group [n = 62, digital breast tomosynthesis (DBT) examination]. Preoperative breast X-ray (DM or DBT), MRI, and clinical characteristics were recorded. The XGBoost algorithm and multivariate logistic regression (LR) analysis were employed to develop the XGBoost and LR models, respectively. Diagnostic performance was assessed using receiver operating characteristic (ROC) curves.Results In the modeling group, patients were randomly split in a 7∶3 ratio into a training set (n = 217) and a test set (n = 93). The proportion of malignant non-mass lesions in the training set, test set, internal validation group of the training set, and external validation group of the training set, were 159 (73%), 58 (62%), 73 (68%) and 43 (69%), respectively. The XGBoost model outperformed the LR model in diagnostic accuracy, demonstrating superior performance across the independent training, test, and internal, external validation sets of the training set, with area under the curve (AUC) ranging from 0.884 to 0.913. Additionally, the XGBoost model exhibited good calibration and clinical net benefit in all four cohorts.Conclusions The XGBoost model accurately differentiates between benign and malignant non-mass breast lesions, indicating its potential for widespread clinical application.
[关键词] 非肿块强化;乳腺癌;极端梯度提升;机器学习;磁共振成像;乳腺X线摄影
[Keywords] non-mass enhancement;breast cancer;extreme gradient boosting;machine learning;magnetic resonance imaging;mammography

杨文 1   杨蔚 2*   周晓平 1   杨妍 3   张宁妹 4   尹清云 5   张朝林 6   刘召弟 7  

1 宁夏医科大学第一临床医学院,银川 750004

2 宁夏医科大学总医院放射科,银川 750004

3 32752部队信息技术中心,襄阳 441000

4 宁夏医科大学总医院病理科,银川 750004

5 宁夏医科大学总医院肿瘤内科,银川 750004

6 宁夏医科大学总医院肿瘤外科,银川 750004

7 石嘴山市第一人民医院放射科,石嘴山 753200

通信作者:杨蔚,E-mail:yangwei_0521@163.com

作者贡献声明:杨蔚设计本研究的方案,对稿件重要内容进行了修改;杨文起草和撰写稿件、获取、分析、解释本研究的数据;周晓平、杨妍、张宁妹、尹清云、张朝林、刘召弟获取、分析或解释本研究的数据,对稿件重要内容进行了修改;杨蔚获得宁夏回族自治区重点研发计划项目和宁夏回族自治区自然科学基金项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 宁夏回族自治区重点研发计划项目 2022BEG03166 宁夏回族自治区自然科学基金项目 2024AAC02070
收稿日期:2024-09-13
接受日期:2025-01-10
中图分类号:R445.2  R737.9 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.01.018
本文引用格式:杨文, 杨蔚, 周晓平, 等. 构建并外部验证XGBoost模型鉴别乳腺非肿块病变良恶性[J]. 磁共振成像, 2025, 16(1): 118-126, 145. DOI:10.12015/issn.1674-8034.2025.01.018.

0 引言

       根据乳腺影像报告和数据系统(the breast imaging reporting and data system, BI-RADS),乳腺的非肿块样强化(non-mass enhancement, NME)病变是指在乳腺磁共振成像(magnetic resonance imaging, MRI)中表现为不具有占位空间的,或大、或小的强化区域。NME病变约占乳腺病变的18%,其中43%为恶性[1],主要以导管原位癌(ductal carcinoma in situ, DCIS)为主,其次为浸润性癌;良性病变主要为乳腺炎和腺病[2]。乳腺NME良恶性病灶的表现形式存在部分重叠,尤其当乳腺背景实质性增强(background parenchymal enhancement, BPE)表现为非对称或局限性强化的形态学特征时,其良性病变易被误判为恶性而进行非必要的活检[3]。相关研究认为,MRI对NME病灶的特异性相对较低,约为72%[4],但NME病灶的簇环状增强和节段性分布与恶性肿瘤显著相关[5];乳腺X线对钙化极其敏感,51%的恶性病灶存在可疑钙化[6]。超声虽然经济、无辐射,但其对非肿块性病变的敏感性差[7],甚至需要MRI引导下的穿刺活检。因此,目前对于此类病变的定性诊断标准仍存在较大争议,亟须寻找一种无创准确定性乳腺NME病变良恶性的方式,并在独立患者队列中验证模型的性能,从而降低漏诊、误诊率,减少过度治疗。

       随着人工智能的发展,机器学习(machine learning, ML)在医学领域显示出强大的潜力和广泛的适用性,它强大的算力和非线性模式,特别适合处理大型、高纬度和复杂的数据集[8, 9]。在ML中,极端梯度提升(extreme gradient boosting, XGBoost)是一种基于梯度提升决策树(gradient boosting decision tree, GBDT)的集成学习算法,每棵新决策树的训练旨在纠正其前任模型的错误,它通过多个弱分类器(决策树)的组合来提高预测性能[10]。与逻辑回归(logistic regression, LR)、随机森林(random forest, RF)和支持向量机(support vector machine, SVM)相比,XGBoost表现出色,取得了优异的结果[11]。而目前尚未见通过对比XGBoost和LR等其他机器学习模型来鉴别乳腺NME病变良恶性相关研究。

       本研究联合患者的乳腺X线及MRI特征,创新性地将多因素逻辑回归分析构建的LR模型与通过XGBoost算法开发的XGBoost模型进行了全面比较,开发一种鉴别乳腺NME病变良恶性的高效能模型,并通过多中心,多设备的验证以推广应用,提高临床诊断率。

1 材料与方法

1.1 研究对象

       本研究包含了2个机构(宁夏医科大学总医院及石嘴山市第一人民医院)及两种乳腺X线设备[数字乳腺X线机(digital mammography, DM)和数字乳腺断层X线机(digital breast tomosynthesis, DBT)]的多中心外部验证研究,遵守《赫尔辛基宣言》,通过了宁夏医科大学总医院伦理委员会批准(伦理编号:KYLL-2022-0251)和石嘴山市第一人民医院伦理委员会批准(伦理编号:20230126)。本研究中,回顾性研究的患者免签知情同意书,前瞻性研究的患者均签署了知情同意书。回顾性地收集宁夏医科大学总医院2018年1月至2022年12月符合条件的首诊女性乳腺NME病灶患者作为建模组。前瞻性招募2023年1月至2024年7月在宁夏医科大学总医院及石嘴山市第一人民医院就诊的患者分别作为内部验证组和外部验证组。所有NME病变均需有病理证实或随访结果。随访为良性病变定义为在2~3年内影像学表现稳定、病灶缩小和/或NME程度减弱,或经放射科专家确认在随访MRI中消失的NME病变。建模组纳入标准:(1)在动态对比增强(dynamic contrast-enhanced, DCE)MRI中新发的NME病变;(2)乳腺X线(DM或DBT)和MRI检查在同一机构进行。排除标准:(1)影像资料不完整,或图像质量欠佳无法分析(如病灶显示欠清和/或存在较大伪影),或乳腺X线和MRI检查时间间隔超过45天[12];(2)病理资料不完整;(3)同时性双乳癌或患乳多灶;(4)既往乳腺癌等相关病史(乳腺癌、放疗、化疗或激素治疗史)。验证组纳入标准:年龄与建模组相匹配的可疑乳腺NME病变初诊女性患者。排除标准:(1)影像资料不完整,或图像质量欠佳无法分析(如病灶显示欠清和/或存在较大伪影),或乳腺X线和MRI检查时间间隔超过45天;(2)病理资料不完整;(3)同时性双乳癌或患乳多灶。最终,480个病灶纳入研究,其中恶性病灶333个,良性病灶147个。患者的年龄为22~78(46±9)岁。406个病灶通过手术病理证实,44个病灶通过粗针穿刺活检证实,21个病灶通过微创旋切术证实,9个通过随访观察确认。患者纳入、排除流程图见图1

       样本量的确定依据如下:(1)既往类似的研究中[13, 14],与本研究接近的样本量得到了较好的研究结果;(2)使用G*power(3.1.9.7)软件估算最低样本量,效度、显著性水平及检验效能依次为0.80、0.05及0.80,得出良性和恶性NME病灶的最低样本量分别为15和33,本研究样本量大于估算结果,因此本研究的样本量具有足够的统计检验力。

图1  患者纳入和排除流程图。NME:非肿块样强化;DM:数字乳腺X线摄影;DBT:数字乳腺体层合成摄影;LR:逻辑回归;XGBoost:极端梯度提升;ROC:受试者工作特征。
Fig. 1  Patient inclusion and exclusion flowchart. NME: non-mass-like enhancement; DM: digital mammography; DBT: digital breast tomosynthesis; LR: logistic regression; XGBoost: extreme gradient boosting; ROC: receiver operating characteristic.

1.2 影像检查

       为了确保图像质量和真实性,所有患者均在有创性操作之前接受了乳腺X线和MRI检查。宁夏医科大学总医院就诊的患者行DM检查,设备为美国GE DR(Healthcare, Milwaukee, WI)全数字化乳腺X线机;石嘴山市第一人民医院就诊的患者行DBT检查,设备为德国Siemens Mammomat Inspiration数字乳腺断层X线机。DM检查:患者立位,行双侧乳腺头尾位(cranio-caudal, CC)及内外斜位(medio-lateral oblique, MLO)扫描。电流为30~70 mA,电压为25~35 kV。DBT检查:患者立位,进行双侧乳腺CC和MLO扫描。X线管先以0°为中心预曝光,以确定乳腺检查中正确的曝光参数,而后在-25°~25°范围内扫描乳腺,每旋转2°自动曝光一次,再经计算机重建得到层厚为1 mm的,且与平板探测器平面平行的断层图像。断层图像的层数取决于受检乳腺的厚度。最后应用计算机后处理将所有断层图像重建出与DM类似的二维图像。

       MRI检查:患者俯卧,使用GE 1.5 T MR机(Medical Systems, Milwaukee, WI, USA)、8通道专用乳腺表面线圈(宁夏医科大学总医院)及德国Siemens AVANTO 1.5 T MR成像仪、8通道专用乳腺表面线圈(石嘴山市第一人民医院)。行横断位扩散加权成像(diffusion-weighed imaging, DWI)[b值 0和1000 s/mm2, TR 4100~5700 ms,TE 60~90 ms,层厚4 mm,FOV 340 mm×340 mm,矩阵136×136]及横断位DCE-MRI(翻转角度10~20°,TR 5~15 ms,TE 2~5 ms,层厚2 mm,FOV 340 mm×340 mm,矩阵448×352)扫描。对比剂注射前先行蒙片扫描,随后以0.2 mmol/kg钆喷酸葡胺注射液(Gd-DTPA,商品名马根维显,拜耳医药保健股份有限公司生产)经肘静脉以2.5 mL/s快速团注,并连续采集7个时相,每个时相54~56 s,最后采用10~20 mL生理盐水冲管。

1.3 影像分析

       两名分别具有23年(主任医师)和9年(住院医师)工作经验的放射科乳腺影像诊断医师,根据美国放射学院(the American College of Radiology, ACR)第5版 BI-RADS标准[15],独立盲审患者乳腺X线和MRI结果并记录。若评估结果不一致,则通过商量达成共识。乳腺X线检查假阴性[16]被定义为:乳腺X线未发现或怀疑病灶存在,而MRI上确实存在,后经病理或随访证实为良性或恶性病灶。BPE水平是在乳腺DCE-MRI的第二期图像上评估对侧正常乳腺腺体的强化程度[17],分为极少/轻度、中度和重度。将扫描原始数据输入GE AW 4.4工作站的FUNCTOOL软件。依据相关文献[18],在横断位DCE-MRI上测量病灶的最大径线。在DCE-MRI,将感兴趣区(regions of interest, ROI)手动放置在病灶最可疑的增强部分,软件自动生成时间-强度曲线(time-signal intensity curve, TIC),根据BI-RADS 2013标准,分为三种类型:流出型(Ⅰ型)、平台型(Ⅱ型)和流入型(Ⅲ型)。从对应的最大上升斜率(maximum slope of increase, MSI)和信号增强比(signal enhancement ratio, SER)伪彩图中,获得ROI的MSI和SER值。对于表观扩散系数(apparent diffusion coefficient, ADC)测量,参考DCE-MRI,ROI放置在DWI图像上信号强度最高的实性成分区域,从对应的ADC伪彩图中获得ROI的ADC值。两位放射科医师分别完成病灶大小、MSI、SER和ADC值的测量,两者的平均值作为病灶的大小、MSI、SER和ADC值用于统计分析。选择ROI应避开囊变、坏死和出血的区域。腋窝淋巴结阳性被定义为短径>1 cm的淋巴结[19]

1.4 模型构建

       将建模组310名患者以7∶3随机分为训练集(n=217)和测试集(n=93)。在训练集中,通过逻辑回归分析,明确非肿块型乳腺癌的独立风险因素,并联合临床,乳腺X线,MRI特征构建LR模型。在应用XGBoost算法之前,先将训练集中的连续变量标准化,分类变量独立热编码,以提高XGBoost模型的训练效果和泛化能力。应用XGBoost算法对恶性NME病灶相关特征进行重要性排序。为了防止过度拟合,我们应用R软件“grid search”包来降低维度,筛选出重要特征子集,以识别恶性NME病灶最稳定的特征,通过五折交叉验证,构建XGBoost模型。通过绘制受试者工作特征(receiver operating characteristic, ROC)曲线下面积(area under the curve, AUC)评估两模型的诊断效能。应用DeLong检验比较两模型AUC的差异,筛选出最优模型。计算模型的准确性、敏感度、特异度、阳性预测值、阴性预测值。最优模型的诊断效能分别在独立的回顾性测试集和前瞻性内、外部验证组中验证。

1.5 统计学分析

       使用SPSS 25.0软件(IBM Corp., Armonk, NY, USA)和R 4.1.1(R Development Core Team, Vienna, Austria)软件进行数据分析。根据是否符合正态性分布,连续变量以均值±标准差(或中位数和上、下四分位数)表示;分类变量以例数(百分比)表示。两组间连续变量比较采用独立样本t检验或Mann-Whitney U检验,分类变量采用卡方检验。使用校准曲线和决策曲线(the decision curve analysis, DCA)评估模型的校准能力和临床净收益;Hosmer-Lemeshow检验评估模型预测与实际结果之间的一致性。采用Kappa检验或组内相关系数(intra-class correlation coefficient, ICC)评估观察者间一致性。以ICC>0.75或Kappa>0.60为一致性良好[12, 20]。应用Shapley Additive explanation(SHAP)值解释XGBoost模型中特征与恶性NME病灶之间的关系。P<0.05被认为差异有统计学意义。

2 结果

2.1 一般资料

       本研究共收集480例患者的480个NME病灶,其中恶性NME病灶333个,分别为48个导管原位癌、255个浸润性导管癌、7个浸润性小叶癌和 23个其他类型乳腺癌。良性NME病灶147个,分别为69个浆细胞性乳腺炎、32个小叶肉芽肿性乳腺炎、21个乳腺导管扩张症、7个硬化性腺病、4例腺病、5个非典型导管增生和9个随访证实的良性病变。两名观察者在测量影像特征上具有良好的一致性,ICC均>0.75、Kappa均>0.60。

2.2 建模组和内、外部验证组的基线特征比较

       建模组310个病灶,恶性217个,良性93个;内部验证组108个病灶,恶性73个,良性35个;外部验证组62个病灶,恶性43个,良性19个。三组之间比较:建模组与内部验证组NME病灶分布,及建模组与外部验证组在T2WI信号强度的差异具有统计学意义(P=0.011、0.019);非肿块乳腺癌发生率、年龄、绝经状态、病灶大小、DM密度、DM表现、钙化状态、BPE、病灶内部强化特征、ADC值、TIC类型、MSI、SER,以及腋窝淋巴结状态方面均保持平衡,差异不具有统计学意义(P均>0.05)(表1)。

表1  建模组与内部、外部验证组的基线特征比较
Tab. 1  Comparison of baseline characteristics between modelling group and internal, external validation group

2.3 建模组中,训练集与测试集的基线特征比较

       在建模组中,以7∶3将患者随机分为训练集(n=217)和测试集(n=93),两组间恶性非肿块乳腺病变发生率、年龄、DM密度和BPE的差异具有统计学意义(P均<0.05);其余差异不具有统计学意义(表2)。

表2  建模组中训练集与测试集的基线特征比较
Tab. 2  Comparison of baseline features between the training and test sets in the modelling set

2.4 恶性NME病灶的独立风险因素并构建LR模型

       在训练集中,恶性NME病灶159个,良性NME病灶58个。单因素,多因素逻辑回归分析表明:年龄 [比值比(odds ratio, OR)=1.092,95% CI:1.052~1.133,P<0.001],钙化状态(OR=2.237,95% CI:1.013~4.940,P=0.046),NME病灶分布(OR=1.654,95% CI:1.117~2.448,P=0.012),NME病灶内部强化方式(OR=1.643,95% CI:1.028~2.626,P=0.038),ADC值(OR=0.175,95% CI:0.032~0.960,P=0.045),TIC(OR=1.959,95% CI:1.124~3.413,P=0.018),SER(OR=1.010,95% CI:1.004~1.017,P=0.002)是恶性NME病灶的独立风险因素。联合上述独立风险因素,构建LR模型,AUC为0.825,敏感度90.71%,特异度62.34%,阳性预测值81.41%,阴性预测值78.69%,准确率80.65%(表3表4图2)。

图2  多因素logistic回归分析恶性NME病灶独立分析因素的OR值。OR:比值比;CI:置信区间;NME:非肿块样强化;ADC:表观扩散系数;TIC:时间-信号强度曲线;SER:信号增强比。
Fig. 2  Multifactor logistic regression analysis is used to identify independent factors for malignant NME lesions with their corresponding OR values. OR: odds ratio; CI: confidence interval; NME: non-mass-like enhancement; ADC: apparent diffusion coefficient; TIC: time-intensity curve; SER: signal enhancement ratio.
表3  单因素和多因素logistic回归分析恶性非肿块病灶的独立风险因素
Tab. 3  Independent risk factors for malignant non-mass lesions analysed by univariate and multivariate logistic regressions
表4  LR模型和XGBoost模型在训练集中的诊断效能
Tab. 4  Diagnostic efficacy of LR model and XGBoost model in the training set

2.5 基于XGBoost算法的恶性NME病灶重要特征子集并构建XGBoost模型

       在训练集中,基于XGBoost算法,得出与恶性NME病灶相关特征的重要性排序(图3A)。通过R软件的“grid search”包,筛选出恶性NME病灶的重要特征子集,依次为年龄、钙化状态、NME病灶内部强化方式和NME病灶分布(图3B)。联合重要特征子集构建XGBoost模型。该模型的AUC值为0.913,准确率为85.25%,敏感度为90.71%,特异度为75.32%,阳性预测值为86.99%,阴性预测值为81.69%(表4)。

图3  恶性NME病灶相关重要特征筛选。3A:基于XGBoost算法进行恶性NME病灶相关特征的重要性排序;3B:XGBoost联合grid search筛选恶性NME病灶相关的重要特征子集。NME:非肿块样强化;XGBoost:极端梯度提升;DM:数字乳腺X线机;BPE:背景实质性增强;MSI:最大上升斜率;ADC:表观扩散系数;TIC:时间-信号强度曲线;SER:信号增强比。
Fig. 3  Selection of important features associated with malignant NME lesions. 3A: Ranking of features associated with malignant NME lesions based on the XGBoost algorithm; 3B: XGBoost combined with grid search to screen for a subset of important features associated with malignant NME lesions. NME: non-mass-like enhancement; DM: digital mammography; BPE: background parenchymal enhancement; MSI: maximum slope of increase; ADC: apparent diffusion coefficient; TIC: time-intensity curve; SER: signal enhancement ratio.

2.6 最优模型的选取及验证

       DeLong检验显示,XGBoost模型与LR模型间的AUC差异有统计学意义(Z=2.76,P<0.05),XGBoost模型为最优模型。XGBoost模型在训练集、测试集及内、外部验证组中表现出较好的诊断效能,AUC分别为0.913、0.891、0.901,0.884,准确率分别为85.25%、83.87%、79.63%、83.87%,敏感度分别为90.71%、84.51%、81.48%、85.71%,特异度分别为75.32%,81.82%,74.07%和76.92%(表5图4A),Brier分数分别为0.116、0.117、0.121和0.120。

       XGBoost模型在四组中也具有较好的校准能力,预测和实际结果之间具有良好的一致性,差异无统计学意义(P=0.845、0.145、0.594,0.644)。此外,DCA显示XGBoost模型在四组中均远离“ALL”和“NONE”线,具有较高的临床决策能力(图4B4C)。通过SHAP分析,举例说明该模型的临床应用,即模型预测结果和最终病理结果的一致性(图5)。

图4  评估预测模型在训练组和验证组中的诊断效能。4A~4C:XGBoost模型在不同队列组的ROC曲线、校准曲线及DCA。ROC:受试者工作特征;DCA:决策曲线分析。
Fig. 4  Assessing the diagnostic efficacy of the predictive model in the training and validation groups. 4A-4C: ROC curves, calibration curves and DCA of XGBoost model in different cohort groups. ROC: receiver operating characteristic; DCA: decision curve analysis.
图5  患者,女,46岁,病理证实左乳非特殊性浸润性癌合并导管原位癌。右乳CC位(5A)、左乳CC位(5B)、右乳MLO位(5C)及左乳MLO位(5D)显示双侧乳腺不均匀致密腺体,左乳内下象限节段状分布簇状沙砾样钙化(箭);左乳矢状位压脂T2WI(5E)显示:左乳下象限节段状分布稍高信号影;横断位DCE-MRI(5F)显示左乳内下象限节段状分布NME强化;横断位DWI(5G)显示病灶高信号(箭),参照DCE-MRI,尽量避开囊变、坏死等区域,在DWI图像信号强度最高的实性成分区域,勾画ROI(箭);从对应的ADC伪彩图(5H)中获得ROI的ADC值为0.89×10-3 mm2/s(箭);该病例的SHAP图(5I),蓝色和绿色分别代表特征对预测风险的正向和负向得分。当模型的预测值f(x)小于截断值E[f(x)]时,恶性NME病灶可能性大。患者预测值f(x)为54.8,小于模型的截断值E[f(x)]=59.6,故模型预测恶性可能;术后病理HE染色(5J)提示浸润性癌,术后病理HE染色(5K)提示导管原位癌成分,故预测结果与患者的术后病理一致。CC:头尾位;MLO:内外斜位;DWI:扩散加权成像;DCE-MRI:动态对比增强磁共振成像;NME:非肿块样强化;ROI:感兴趣区;ADC:表观扩散系数;SHAP:沙普利加和解释;HE染色:苏木精-伊红染色法。
Fig. 5  Patient, female, 46 years old, pathologically confirmed non-specific invasive carcinoma combined with ductal carcinoma in situ in the left breast. CC view of the right breast (5A), CC view of the left breast (5B), MLO view of the right breast (5C) and MLO view of the left breast (5D) showing unevenly dense glands bilaterally, with clusters of gravelly calcifications distributed segmentally in the lower quadrant of the inner left breast (arrow); Sagittal compression fat T2WI (5E) shows a slightly high signal shadow in the segmental distribution in the lower quadrant of the left breast; Transverse DCE-MRI (5F) shows NME enhancement in the segmental distribution in the lower quadrant of the left inner breast; Transverse DWI (5G) shows high signal in the lesion (arrow). Referring to DCE-MRI, avoid areas of cystic change and necrosis as much as possible, and outline the ROI (arrow) in the region of the highest signal intensity on the DWI image, which corresponds to the solid component; obtain the ADC value of the ROI from the corresponding ADC pseudocolor map (5H), which is 0.89 × 10-3 mm2/s (arrow); SHAP map of the case (5I), blue and green colors represent positive and negative scores of features on the predicted risk, respectively. Malignant NME lesions are highly probable when the predictive value f(x) of the model is less than the cut-off value E[f(x)]. The patient's predicted value f(x) is 54.8, which is smaller than the model's cut-off value E[f(x)] = 59.6, so the model predicted malignant possibility; Postoperative pathological HE staining (5J) suggested invasive carcinoma, and postoperative pathological HE staining (5K) suggested ductal carcinoma-in-situ component, therefore the prediction is consistent with the patient's postoperative pathology. CC: cranio-caudal position; MLO: mediolateral oblique position; DWI: diffusion-weighed imaging; DCE-MRI: dynamic contrast-enhanced magnetic resonance imaging; NME: non-mass enhancement; ROI: region of interest; ADC: apparent diffusion coefficient; SHAP: shapley additive explanation; HE staining: hematoxylin-eosin staining.
表5  XGBoost模型的诊断效能
Tab. 5  Diagnostic efficacy of XGBoost model

3 讨论

       本研究整合了患者临床及影像学特征,创新性构建并比较LR和XGBoost两种预测模型,筛选出最优模型来鉴别乳腺NME病变的良恶性。结果显示,较LR模型,XGBoost模型对准确鉴别NME病灶良恶性具有较大潜力,其模型性能稳健且泛化性强。作为一种新的非侵入性方法,其诊断准确率较高,可为临床精准决策提供理论依据。

3.1 临床影像特征预测NME病变良恶性的价值分析

       KAYADIBI等[21]发现,NME病变中良性组较恶性组年轻,这与本研究结果相符;可疑钙化是鉴别乳腺非肿块病灶良恶性的重要特征[22]。HADI等[23]在进一步的研究中表明可疑钙化中的微小钙化,特别是簇状分布的多形性钙化,在非肿块型乳腺癌的诊断中有重要意义。MRI高度敏感性是导致非肿块病灶假阳性的主要原因[24],非肿块强化也与外科手术为避免阳性切缘而更大范围切除相关[25]。KIM等[22]研究发现在MRI中被诊断为良性的10个NME病灶,增加乳腺X线检查后,全部升级为恶性,而被诊断为恶性的22个病灶有14个又被正确降级为良性,可见对于MRI上的非肿块病灶,乳腺X线检查显著提高了乳腺MRI上非肿块病灶良、恶性的诊断性能。本研究显示,恶性NME病灶组的簇环状强化及节段性分布显著高于良性NME病灶组,这与相关研究一致[26]。“簇状环状增强”这一概念在2013年第5版MRI BI-RADS中引入,被定义为在增强MRI中,由于导管及周围间质的增强,而表现出围绕导管可见的多个成簇状分布的薄壁环状强化[27]。根据多项研究[4, 22, 28, 29],簇状环状增强与恶性肿瘤发生显著相关。在本研究中,ADC值是恶性非肿块病灶的独立风险因素。DWI在乳腺病变的诊断中发挥了重要作用,从中提取的ADC值是一个与细胞组成密切相关的定量指标,有助于区分良、恶性[30]。本研究在DWI图像上信号强度最高的实性成分区域勾画ROI,获取肿瘤ADC值,代表病灶扩散最受限的区域,也是病灶最活跃,细胞最密集的区域,能够反映病灶的内在特性[31]。而AVENDANO等[32]指出,DWI对NME病变的良恶性的鉴别效能有限,多达30%的NME无法用DWI进行评估,这可能是由于不同研究中的ROI测量方法和不同ADC指标引起。由于多发钙化DCIS病例、部分容积效应等因素,JANSEN等[33]认为TIC在鉴别NME病变的良恶性方面价值十分有限。而吴祺等[34]联合D*值和TIC类型明显提高NME乳腺癌的诊断效能,敏感度和特异度分别为72.5%和85.5%。这与本研究结果相似,可能归因于NME恶性病变形成的血管结构和微环境有关,更易形成新生血管,导致DCE早期即可快速摄取对比剂[35]。本研究中SER是NEM病变良恶性鉴别的危险因素之一。与本研究相似,XIAO等[36]认为SER可作为乳腺癌的微血管生成的补充评估,从而有助于良恶性肿瘤的鉴别。

3.2 不同模型预测NME病变良恶性的价值分析

       LR模型是一种经典的统计学模型,适用于二分类问题,在众多研究中展现了良好的诊断性能[37, 38, 39]。本研究通过多因素逻辑回归分析,识别出与恶性NME病灶相关的7个独立风险因素并构建LR模型,其AUC为0.825。通过XGBoost算法并联合降维处理,最终得到4个关键特征:年龄、可疑钙化、NME病灶的分布及NME病灶的内部强化方式。基于这4个关键特征构建的XGBoost模型显示出AUC为0.913。值得注意的是,应用XGBoost算法提取的4个关键特征完全包含在逻辑回归分析所获得的独立因素中,且XGBoost模型的特异度、阳性预测值、阴性预测值、准确度均高于LR模型,表明在鉴别乳腺NME病变良恶性时,XGBoost模型的准确性及鲁棒性优于LR模型且模型更加简便。这可能源于逻辑回归假设自变量与因变量之间存在线性关系,通过对特征的线性组合进行建模,这一假设在处理高度复杂或非线性关系的数据时可能显得不足。而选择XGBoost算法能够有效捕捉特征之间复杂的非线性关系,提取的关键特征更加稳健。因此,XGBoost模型显著提高鉴别诊断效能[40, 41]。尽管训练集和测试集在恶性非肿块病灶发生率、腺体密度等基线特征上存在差异,这可能是由于回顾性资料自身存在的样本选择偏倚导致,但XGBoost模型在测试集中仍表现出良好的诊断效能、校准能力和净效益。随后,本研究对XGBoost模型的鉴别诊断性能进行前瞻性内部和外部验证,尽管内部验证队列的NME病灶分布和外部验证队列的T2WI信号强度与建模组存在差异,但XGBoost模型在两队列中同样表现出良好的诊断效能(AUC分别为0.901,0.884)、校准能力和净效益。这可能归因于不同医疗中心设备以及患者资料收集时间的差异造成。与本研究相似,WANG等[1]基于最大密度投影,构建人工智能系统,对NME病变的良恶性进行分类,结果表明在不同的MRI扫描仪中获得的数据集均产生了良好的适用性,测试集A和测试集B的AUC值分别为0.859、0.816。因此我们的研究结果表明,XGBoost模型在鉴别乳腺NME病灶良恶性方面诊断效能稳健,仍然具有推广应用的潜力。

3.3 本研究的局限性

       本研究的局限性:样本量较少,且鉴别模型的构建基于回顾性研究,可能对研究结果造成一定的偏倚;未应用影像组学等更先进、敏感的技术提取特征,无法获得更加全面和深入的影像特征,可能影响模型鉴别病灶良恶性的性能。今后的研究需增加样本量并应用放射组学等技术进一步探索模型的稳健性和适用性。

4 结论

       总之,应用患者的临床和影像学特征构建的XGBoost模型能够准确鉴别乳腺非肿块病灶的良恶性,且诊断效能优于LR模型,具有推广应用的潜力。

[1]
WANG L J, CHANG L F, LUO R, et al. An artificial intelligence system using maximum intensity projection MR images facilitates classification of non-mass enhancement breast lesions[J]. Eur Radiol, 2022, 32(7): 4857-4867. DOI: 10.1007/s00330-022-08553-5.
[2]
LIU G, LI Y, CHEN S L, et al. Non-mass enhancement breast lesions: MRI findings and associations with malignancy[J/OL]. Ann Transl Med, 2022, 10(6): 357 [2024-09-12]. https://pubmed.ncbi.nlm.nih.gov/35433999/. DOI: 10.21037/atm-22-503.
[3]
WANG S Q, WANG H, LI Y, et al. The value of DCE- MRI of the breast as a diagnostic tool in assessing amorphous calcifications in screening mammography[J/OL]. Front Oncol, 2023, 13: 1151500 [2024-09-12]. https://pubmed.ncbi.nlm.nih.gov/37182168/. DOI: 10.3389/fonc.2023.1151500.
[4]
LUNKIEWICZ M, FORTE S, FREIWALD B, et al. Interobserver variability and likelihood of malignancy for fifth edition BI-RADS MRI descriptors in non-mass breast lesions[J]. Eur Radiol, 2020, 30(1): 77-86. DOI: 10.1007/s00330-019-06312-7.
[5]
MACHIDA Y, TOZAKI M, SHIMAUCHI A, et al. Two distinct types of linear distribution in nonmass enhancement at breast MR imaging: difference in positive predictive value between linear and branching patterns[J]. Radiology, 2015, 276(3): 686-694. DOI: 10.1148/radiol.2015141775.
[6]
CEN D Z, XU L, LI N N, et al. BI-RADS 3-5 microcalcifications can preoperatively predict breast cancer HER2 and Luminal a molecular subtype[J]. Oncotarget, 2017, 8(8): 13855-13862. DOI: 10.18632/oncotarget.14655.
[7]
HOWELL A, ANDERSON A S, CLARKE R B, et al. Risk determination and prevention of breast cancer[J/OL]. Breast Cancer Res, 2014, 16(5): 446 [2024-09-12]. https://pubmed.ncbi.nlm.nih.gov/25467785/. DOI: 10.1186/s13058-014-0446-2.
[8]
BENZEKRY S, MASTRI M, NICOLÒ C, et al. Machine-learning and mechanistic modeling of metastatic breast cancer after neoadjuvant treatment[J/OL]. PLoS Comput Biol, 2024, 20(5): e1012088 [2024-09-12]. https://pubmed.ncbi.nlm.nih.gov/38701089/. DOI: 10.1371/journal.pcbi.1012088.
[9]
MAO J J, LIU L L, SHEN Q, et al. Integrating single-cell transcriptomics and machine learning to predict breast cancer prognosis: a study based on natural killer cell-related genes[J/OL]. J Cell Mol Med, 2024, 28(15): e18549 [2024-09-12]. https://pubmed.ncbi.nlm.nih.gov/39098994/. DOI: 10.1111/jcmm.18549.
[10]
CLIFT A K, DODWELL D, LORD S, et al. Development and internal-external validation of statistical and machine learning models for breast cancer prognostication: cohort study[J/OL]. BMJ, 2023, 381: e073800 [2024-09-12]. https://pubmed.ncbi.nlm.nih.gov/37164379/. DOI: 10.1136/bmj-2022-073800.
[11]
ZHENG G Y, PENG J X, SHU Z Y, et al. Predicting pathological complete response to neoadjuvant chemotherapy in breast cancer patients: use of MRI radiomics data from three regions with multiple machine learning algorithms[J/OL]. J Cancer Res Clin Oncol, 2024, 150(3): 147 [2024-09-12]. https://pubmed.ncbi.nlm.nih.gov/38512406/. DOI: 10.1007/s00432-024-05680-y.
[12]
周晓平, 杨蔚, 尹清云, 等. 乳腺X线及MRI特征联合临床病理预测乳腺导管原位癌伴微浸润[J]. 磁共振成像, 2024, 15(5): 102-110. DOI: 10.12015/issn.1674-8034.2024.05.017.
ZHOU X P, YANG W, YIN Q Y, et al. Combining the X-ray and MRI characteristics with the clinical pathology to predict ductal carcinoma in situ with microinvasion of breast[J]. Chin J Magn Reson Imag, 2024, 15(5): 102-110. DOI: 10.12015/issn.1674-8034.2024.05.017.
[13]
YIN L, WEI X, ZHANG Q, et al. Multimodal ultrasound assessment of mass and non-mass enhancements by MRI: Diagnostic accuracy in idiopathic granulomatous mastitis and breast cancer[J/OL]. Breast, 2024, 78: 103797 [2024-09-12]. https://pubmed.ncbi.nlm.nih.gov/39418768/. DOI: 10.1016/j.breast.2024.103797.
[14]
车树楠, 李静, 薛梅, 等. 集成磁共振成像对乳腺良恶性病变的鉴别诊断价值[J]. 中华肿瘤杂志, 2021, 43(8): 872-877. DOI: 10.3760/cma.j.cn112152-20210322-00254.
CHE S N, LI J, XUE M, et al. The value of synthetic MRI in differential diagnosis of benign and malignant breast lesions[J]. Chin J Oncol, 2021, 43(8): 872-877. DOI: 10.3760/cma.j.cn112152-20210322-00254.
[15]
SPAK D A, PLAXCO J S, SANTIAGO L, et al. BI-RADS® fifth edition: a summary of changes[J]. Diagn Interv Imaging, 2017, 98(3): 179-190. DOI: 10.1016/j.diii.2017.01.001.
[16]
WECSLER J, JEONG Y J, RAGHAVENDRA A S, et al. Factors associated with MRI detection of occult lesions in newly diagnosed breast cancers[J]. J Surg Oncol, 2020, 121(4): 589-598. DOI: 10.1002/jso.25855.
[17]
WATT G P, THAKRAN S, SUNG J S, et al. Association of breast cancer odds with background parenchymal enhancement quantified using a fully automated method at MRI: the IMAGINE study[J/OL]. Radiology, 2023, 308(3): e230367 [2024-09-12]. https://pubmed.ncbi.nlm.nih.gov/37750771/. DOI: 10.1148/radiol.230367.
[18]
YANG X P, DONG M S, LI S, et al. Diffusion-weighted imaging or dynamic contrast-enhanced curve: a retrospective analysis of contrast-enhanced magnetic resonance imaging-based differential diagnoses of benign and malignant breast lesions[J]. Eur Radiol, 2020, 30(9): 4795-4805. DOI: 10.1007/s00330-020-06883-w.
[19]
WANG Q, LIN Y Y, DING C, et al. Multi-modality radiomics model predicts axillary lymph node metastasis of breast cancer using MRI and mammography[J]. Eur Radiol, 2024, 34(9): 6121-6131. DOI: 10.1007/s00330-024-10638-2.
[20]
LIU K H, YANG W, TIAN H P, et al. Association between programmed cell death ligand-1 expression in patients with cervical cancer and apparent diffusion coefficient values: a promising tool for patient's immunotherapy selection[J]. Eur Radiol, 2024, 34(10): 6726-6737. DOI: 10.1007/s00330-024-10759-8.
[21]
KAYADIBI Y, SARACOGLU M S, KURT S A, et al. Differentiation of malignancy and idiopathic granulomatous mastitis presenting as non-mass lesions on MRI: radiological, clinical, radiomics, and clinical-radiomics models[J]. Acad Radiol, 2024, 31(9): 3511-3523. DOI: 10.1016/j.acra.2024.03.025.
[22]
KIM Y, JUNG H K, PARK A Y, et al. Diagnostic value of mammography for accompanying non-mass enhancement on preoperative breast MRI[J]. Acta Radiol, 2022, 63(8): 1032-1042. DOI: 10.1177/02841851211030771.
[23]
HADI Q, MASROOR I, HUSSAIN Z. Mammographic criteria for determining the diagnostic accuracy of microcalcifications in the detection of malignant breast lesions[J/OL]. Cureus, 2019, 11(10): e5919 [2024-09-12]. https://pubmed.ncbi.nlm.nih.gov/31788377/. DOI: 10.7759/cureus.5919.
[24]
DEN DEKKER B M, BAKKER M F, DE LANGE S V, et al. Reducing false-positive screening MRI rate in women with extremely dense breasts using prediction models based on data from the DENSE trial[J]. Radiology, 2021, 301(2): 283-292. DOI: 10.1148/radiol.2021210325.
[25]
BAHL M, BAKER J A, KINSEY E N, et al. MRI predictors of tumor-positive margins after breast-conserving surgery[J/OL]. Clin Imaging, 2019, 57: 45-49 [2024-09-12]. https://pubmed.ncbi.nlm.nih.gov/31128385/. DOI: 10.1016/j.clinimag.2019.05.006.
[26]
ZHOU J, LI M, LIU D Q, et al. Differential diagnosis of benign and malignant breast papillary neoplasms on MRI with non-mass enhancement[J/OL]. Acad Radiol, 2023, 30(Suppl 2): S127-S132 [2024-09-12]. https://pubmed.ncbi.nlm.nih.gov/36906443/. DOI: 10.1016/j.acra.2023.02.010.
[27]
CHADASHVILI T, GHOSH E, FEIN-ZACHARY V, et al. Nonmass enhancement on breast MRI: review of patterns with radiologic-pathologic correlation and discussion of management[J]. AJR Am J Roentgenol, 2015, 204(1): 219-227. DOI: 10.2214/AJR.14.12656.
[28]
KUBOTA K, MORI M, FUJIOKA T, et al. Magnetic resonance imaging diagnosis of non-mass enhancement of the breast[J]. J Med Ultrason, 2023, 50(3): 361-366. DOI: 10.1007/s10396-023-01290-2.
[29]
WANG X, JING L X, YAN L X, et al. A conditional inference tree model for predicting cancer risk of non-mass lesions detected on breast ultrasound[J]. Eur Radiol, 2024, 34(7): 4776-4788. DOI: 10.1007/s00330-023-10504-7.
[30]
CHEN Y H, WANG J D, ZHANG X X, et al. Correlation between apparent diffusion coefficient and pathological characteristics of patients with invasive breast cancer[J/OL]. Ann Transl Med, 2021, 9(2): 143 [2024-09-12]. https://pubmed.ncbi.nlm.nih.gov/33569445/. DOI: 10.21037/atm-20-7746.
[31]
刘开惠, 杨蔚, 田海萍, 等. 基于临床、病理、DWI定量参数构建列线图预测宫颈癌程序性死亡受体配体1阳性表达: 不同ROI选择的比较[J]. 磁共振成像, 2023, 14(10): 98-104, 115. DOI: 10.12015/issn.1674-8034.2023.10.017.
LIU K H, YANG W, TIAN H P, et al. Nomogram based on clinical, pathological, and DWI quantitative parameters for predicting the programmed death-ligand 1 positive expression in cervical cancer: Comparison of different ROI options[J]. Chin J Magn Reson Imag, 2023, 14(10): 98-104, 115. DOI: 10.12015/issn.1674-8034.2023.10.017.
[32]
AVENDANO D, MARINO M A, LEITHNER D, et al. Limited role of DWI with apparent diffusion coefficient mapping in breast lesions presenting as non-mass enhancement on dynamic contrast-enhanced MRI[J/OL]. Breast Cancer Res, 2019, 21(1): 136 [2024-09-12]. https://pubmed.ncbi.nlm.nih.gov/31801635/. DOI: 10.1186/s13058-019-1208-y.
[33]
JANSEN S A, FAN X B, KARCZMAR G S, et al. DCEMRI of breast lesions: is kinetic analysis equally effective for both mass and nonmass-like enhancement?[J]. Med Phys, 2008, 35(7): 3102-3109. DOI: 10.1118/1.2936220.
[34]
吴祺, 王卓, 宁宁, 等. IVIM联合动态增强MRI在非肿块强化腺病与乳腺癌中的鉴别诊断价值[J]. 磁共振成像, 2023, 14(2): 37-43, 49. DOI: 10.12015/issn.1674-8034.2023.02.007.
WU Q, WANG Z, NING N, et al. Differential diagnostic value of IVIM combining with dynamic enhanced MRI in non-mass enhancement adenosis and breast cancer[J]. Chin J Magn Reson Imag, 2023, 14(2): 37-43, 49. DOI: 10.12015/issn.1674-8034.2023.02.007.
[35]
NIE T T, FENG M W, YANG K, et al. Correlation between dynamic contrast-enhanced MRI characteristics and apparent diffusion coefficient with Ki-67-positive expression in non-mass enhancement of breast cancer[J/OL]. Sci Rep, 2023, 13(1): 21451 [2024-09-12]. https://pubmed.ncbi.nlm.nih.gov/38052920/. DOI: 10.1038/s41598-023-48445-2.
[36]
XIAO J, RAHBAR H, HIPPE D S, et al. Dynamic contrast-enhanced breast MRI features correlate with invasive breast cancer angiogenesis[J/OL]. NPJ Breast Cancer, 2021, 7(1): 42 [2024-09-12]. https://pubmed.ncbi.nlm.nih.gov/33863924/. DOI: 10.1038/s41523-021-00247-3.
[37]
YANG W, YANG Y, ZHANG C L, et al. A clinicopathological-imaging nomogram for the prediction of pathological complete response in breast cancer cases administered neoadjuvant therapy[J/OL]. Magn Reson Imaging, 2024, 111: 120-130 [2024-09-12]. https://pubmed.ncbi.nlm.nih.gov/38703971/. DOI: 10.1016/j.mri.2024.05.002.
[38]
FITZPATRICK D, PIRIE K, REEVES G, et al. Combined and progestagen-only hormonal contraceptives and breast cancer risk: a UK nested case-control study and meta-analysis[J/OL]. PLoS Med, 2023, 20(3): e1004188 [2024-09-12]. https://pubmed.ncbi.nlm.nih.gov/36943819/. DOI: 10.1371/journal.pmed.1004188.
[39]
ZHANG X Y, ZHAO L G, NGO L H, et al. Prediagnostic plasma proteomics profile for hepatocellular carcinoma[J]. J Natl Cancer Inst, 2024, 116(8): 1343-1355. DOI: 10.1093/jnci/djae079.
[40]
ZHANG W, DANG R Y, LIU H Y, et al. Machine learning-based investigation of regulated cell death for predicting prognosis and immunotherapy response in glioma patients[J/OL]. Sci Rep, 2024, 14: 4173 [2024-09-12]. https://pubmed.ncbi.nlm.nih.gov/38378721/. DOI: 10.1038/s41598-024-54643-3.
[41]
LIU H W, ZHANG W, ZHANG Y H, et al. Mime: a flexible machine-learning framework to construct and visualize models for clinical characteristics prediction and feature selection[J/OL]. Comput Struct Biotechnol J, 2024, 23: 2798-2810 [2024-09-12]. https://pubmed.ncbi.nlm.nih.gov/39055398/. DOI: 10.1016/j.csbj.2024.06.035.

上一篇 心脏磁共振四维血流成像评价高血压性心脏病患者早期左心室舒张功能障碍的可行性研究
下一篇 胰腺神经内分泌肿瘤的CT和MRI特征对预测其病理分级的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2