分享:
分享到微信朋友圈
X
临床研究
MAGiC技术联合超高b值DWI对宫颈癌宫旁浸润诊断的价值
陈婷婷 陈志健 张丽 陈敏兰 彭晓澜 苏裕盛

Cite this article as: CHEN T T, CHEN Z J, ZHANG L, et al. The application value of magnetic resonance image complication sequence combined with ultra-high b-value diffusion-weighted imaging in the diagnosis of parametrial infiltration in cervical cancer[J]. Chin J Magn Reson Imaging, 2025, 16(1): 140-145.本文引用格式:陈婷婷, 陈志健, 张丽, 等. MAGiC技术联合超高b值DWI对宫颈癌宫旁浸润诊断的价值[J]. 磁共振成像, 2025, 16(1): 140-145. DOI:10.12015/issn.1674-8034.2025.01.021.


[摘要] 目的 探讨磁共振集成(magnetic resonance image complication, MAGiC)序列联合超高b值磁共振扩散加强成像(ultra-high b-value diffusion weighted imaging, uh-DWI)在宫颈癌宫旁浸润诊断中的价值。材料与方法 回顾性分析宁德师范学院附属宁德市医院2022年8月至2024年4月经手术病理证实的40例宫颈癌患者,根据病理结果是否有宫旁浸润分为浸润阴性(阴性组)和浸润阳性(阳性组),所有受试者均行MAGiC和uh-DWI序列,并测量肿瘤纵向弛豫值(T1值)、横向弛豫值(T2值)、质子密度(proton density, PD)值和超高b值表观扩散系数(ultra-high apparent diffusion coefficient, ADCuh)。使用Mann-Whiney U检验比较阴性组与阳性组各参数值。使用受试者工作特征(receiver operating characteristic, ROC)曲线评价各单一定量参数,并将差异有统计学意义的参数联合评价宫颈癌宫旁浸润的诊断效能。结果 阳性组T1值、T2值均低于阴性组,差异有统计学意义(P<0.001),PD值在两组间差异无统计学意义(P=0.141),阳性组ADCuh值低于阴性组(P<0.001),T1、T2和ADCuh区分宫颈癌宫旁浸润的ROC曲线下面积(area under the curve, AUC)分别为0.899(95% CI:0.762~0.972)、0.962(95% CI:0.849~0.997)、0.934(95% CI:0.809~0.988),敏感度、特异度分别为86.36%、77.80%,100.00%、77.78%和77.27%、94.44%。三者联合鉴别宫旁浸润的AUC最高,为0.985,敏感度为100.00%,特异度为95.40%。结论 MAGiC联合uh-DWI有助于判断宫颈癌宫旁浸润,综合运用多参数各优势并联合有差异的参数可获得良好的宫旁浸润的诊断效能。
[Abstract] Objective To explore the diagnostic value of magnetic resonance image complication (MAGiC) sequence combined with ultra-high b-value diffusion weighted imaging (uh-DWI) in parametrial infiltration of cervical cancer.Materials and Methods Prospectively analyzed 40 patients with surgically and pathologically proven cervical cancer from Ningde Normal University Affiliated Ningde Municipal Hospital from August 2022 to April 2024. Patients were divided into two groups based on pathological results: parametrial infiltration negative group and positive group. Both groups underwent MAGiC and ultra-high b-value DWI (uh-DWI), and tumor longitudinal relaxation values (T1), transverse relaxation values (T2), proton density (PD) values, and ultra-high b-value apparent diffusion coefficients (ADCuh) were measured. To make comparisons, the Mann-Whitney U test was utilized to assess the parameter values between the negative and positive groups. We applied the receiver operating characteristic (ROC) curve to evaluate the diagnostic efficacy of cervical cancer parametrial infiltration for each parameter and the combination of parameters with differences.Results Among the 40 cervical cancer patients, there were 35 instances of squamous cell carcinoma and 5 instances of adenocarcinoma; 28cases in the negative group and 12 cases in the positive group. The T1 and T2 values in the positive group were lower than those in the negative group, with a statistically significant difference (P < 0.01). There was no significant difference in PD values between the two groups (P = 0.141). The positive group's ADCuh value was lower than that of the negative group (P < 0.001). The area under the curve (AUC) for T1, T2, and ADCuh to distinguish cervical cancer parametrial invasion were 0.899 (95% CI: 0.762 to 0.972), 0.962 (95% CI: 0.849 to 0.997), 0.934 (95% CI: 0.809 to 0.988), respectively, with sensitivities and specificities of 86.36%, 77.80%, 100.00%, 77.78%, and 77.27%, 94.44%, respectively. The AUC for the combined differentiation of parametrial infiltration could be increased to 0.985, with a sensitivity of 100.00% and a specificity of 95.40%.Conclusions The combination of MAGiC and ultra-high b-value DWI is helpful in judging parametrial infiltration of cervical cancer. The comprehensive use of the advantages of multi-parametric MRI and the combination of parameters with differences can obtain good diagnostic efficacy for parametrial invasion.
[关键词] 宫颈癌;宫旁浸润;磁共振集成;超高b值扩散加权成像;多参数联合;磁共振成像
[Keywords] cervical cancer;parametrial infiltration;magnetic resonance image complication;ultra-high b-value diffusion-weighted imaging;multi-parametric combination;magnetic resonance imaging

陈婷婷 1   陈志健 1   张丽 1   陈敏兰 1   彭晓澜 1*   苏裕盛 2  

1 宁德师范学院附属宁德市医院放射影像科,宁德 352100

2 宁德师范学院医学院,宁德 352100

通信作者:彭晓澜,E-mail:76432007@qq.com

作者贡献声明:彭晓澜设计本研究的方案,对稿件重要内容进行了修改;陈婷婷起草和撰写稿件,获取、分析和解释本研究的数据;陈志健、张丽、陈敏兰、苏裕盛获取、分析或解释本研究的数据,对稿件重要内容进行了修改;陈婷婷获得了宁德师范学院校级科研项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 宁德师范学院校级科研项目 2023ZX701
收稿日期:2024-05-30
接受日期:2025-01-10
中图分类号:R445.2  R737.33 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.01.021
本文引用格式:陈婷婷, 陈志健, 张丽, 等. MAGiC技术联合超高b值DWI对宫颈癌宫旁浸润诊断的价值[J]. 磁共振成像, 2025, 16(1): 140-145. DOI:10.12015/issn.1674-8034.2025.01.021.

0 引言

       宫颈癌是女性生殖系统最常见的恶性肿瘤,发病率和死亡率都排在第四位[1],且其发病逐渐趋于年轻化。目前宫颈癌的治疗原则是Ⅱa期(浸润阴性)以前的患者可行根治性切除,Ⅱb期(浸润阳性)一般先行化学药物治疗[2]。宫颈癌术前精准分期对选择临床治疗方案和患者预后尤为重要。MRI具有软组织分辨率高及良好的解剖对比的特点,主要用于观测肿瘤的分期,有助于宫颈癌精确诊断、准确分期,但其结果具有主观性[3, 4, 5],且组织信号常常容易受多种因素干扰[6]。目前尚缺乏一种准确、快速、无创且可重复性高的定量成像技术可对病灶的病理生理改变情况进行观察以提高宫颈癌宫旁浸润诊断的准确性。

       纵向弛豫时间T1、横向弛豫时间T2及质子密度(proton density, PD)是组织固有属性,反映组织病理生理状态[7]。磁共振集成(magnetic resonance image complication, MAGiC)技术能快速检测并量化T1、T2及PD值,通过一次扫描就能获得多对比加权图像[8, 9]。过往多种研究已证实,MAGiC所获得的各种定量参数具有颇高可重复性以及稳定性[10, 11, 12]。当前在脑卒中[13]、神经系统肿瘤等病变及科学研究中应用较多[14, 15, 16],近来也逐渐推广应用于乳腺癌[17, 18]、前列腺癌[19, 20]等恶性肿瘤的研究应用中。但罕见将其用于宫颈癌宫旁浸润的诊断,仅有的报道样本量少且为单中心研究[21]

       磁共振扩散加权成像是利用水分子扩散加权的成像技术,它能提供活体水分子分布及运动的特征信息,已然成为宫颈、膀胱和前列腺等磁共振扫描的常规序列[22, 23]。从扩散加强成像(diffusion weighted imaging, DWI)中提取的表观扩散系数(apparent diffusion coefficient, ADC)值可以定量分析病灶内水分子的扩散受限,进而反映其细胞密度变化[24, 25]。超高b值磁共振扩散加强成像(ultra-high b-value diffusion weighted imaging, uh-DWI)可显示标准b值DWI难以显示的病变[26]。有研究发现,uh-DWI有利于评估细胞膜上水通道蛋白的表达水平,提高疾病检出率和诊断的准确性[27, 28]。在技术上,uh-DWI能为宫颈癌提供比DWI(b=800  s/mm2)图像更有价值的信息[29]。目前该技术在宫颈癌宫旁浸润的研究尚无相关报告。本文采用MAGiC联合uh-DWI,对宫颈癌宫旁浸润进行诊断,提供了一个准确、无创的先进手段,填补了该领域的技术空白,旨在提高MRI诊断宫颈癌宫旁浸润诊断的准确性,协助临床优化治疗方案。

1 材料与方法

1.1 研究对象

       回顾性收集宁德师范学院附属宁德市医院2022年8月至2024年4月40例经手术病理证实的宫颈癌患者临床信息。本研究纳入标准:(1)全部患者均有病理组织学的检查结果;(2)治疗前所有患者均行MAGiC和uh-DWI及常规MRI扫描;(3)入组患者就诊前均未进行任何肿瘤相关治疗。排除标准:(1)患严重精神疾病;(2)病灶因坏死、囊变等导致实性区不明确;(3)图像质量无法满足分析测量。本研究严格遵守《赫尔辛基宣言》,且经宁德师范学院附属宁德市医院的伦理委员会批准,免除受试者知情同意,其伦理批准文号为:NSYKYLL-2023-042。

1.2 MRI检查方法

       本研究中所使用的设备为美国SIGNATM Architect 3.0 T核磁共振仪、30通道体部魔毯线圈(GE MedicalSystem,美国),所有受试者均行MAGiC、uh-DWI和常规的MRI平扫加增强序列扫描。MAGiC序列参数:TR 4000 ms, TE 17.3 ms,矩阵320×192,扫描视野(FOV)240 mm×240 mm,层厚4 mm,层间隔1 mm,扫描时长3 min 34 s;uh-DWI序列参数: b值30、50、100、200、300、400、500、800、1000、1300、1700、2000、2500、3000、4000、4500 s/mm2,不同b值对应NEX分别为1、1、1、1、1、1、2、2、2、2、2、2、3、3、3、3、3,TR 2101 ms,TE 121.4 ms,FOV 240 mm×240 mm,矩阵128×128,层厚4 mm,层间隔1 mm,扫描时长6 min 7 S;TIWI系列参数:TR 462 ms,TE min full,矩阵256×256,FOV 240 mm×240 mm,层厚4 mm,层间隔0 mm,扫描时间共计2 min 25 s;矢状位T2快速自旋回波(fast spin echo, FSE)序列参数:TR 3000 ms,TE 120 ms,矩阵320×320,FOV 220 mm×220 mm,层厚4 mm,层间隔1 mm,扫描时长1 min 24 s,加速因子2;横轴位T2 FSE序列参数:TR 6000 ms,TE 80 ms,矩阵320×320,FOV 320 mm×320 mm,层厚45 mm,层间隔1 mm,扫描时间54 s,加速因子2;横轴位MUSE DWI序列参数:TR 4668 ms,TE minimum (74.7 ms),FOV 320 mm×320 mm,矩阵168×194,层厚5 mm,层间隔1 mm,扫描时间3 min 30 s;动态对比增强矢状位LAVA-Flex序列参数:TR 8.3 ms,TE minimum,FOV 260 mm×260mm,矩阵256×192,层厚3 mm,层间隔0,扫描时长3 min 56 S;oAx LAVA+C iso序列参数:TR 4.7 ms,TE 1.9 ms, FOV 260 mm×260 mm,矩阵256×260,层厚1 mm,层间隔0,扫描时长1 min 32 s。

1.3 图像处理及分析

       扫描所得的MAGiC的原始图像在GE AW4.7工作站上经MAGiC后处理软件分析,测得T1、T2和PD值;用GE Aw Volume Share 4.6后处理工作站Functool软件对uh-DWI原始图进行后处理,计算ADCuh选取的b值范围为≥2000 s/mm2,即b=2000、2500、3000、3500、4000、4500 s/mm2,共6个b值拟合得到ADCuh伪彩图;参照T1和T2的加权图像,把尺寸为20~40 mm2感兴趣区(region of interest, ROI)置于MAGiC后处理图的实质信号区域和ADCuh伪彩图最低信号区,当病灶较大时(≥3 cm),以最大层面为中心层,前后三层,每层各取2个ROI,最后取平均值并记录,得到肿瘤的定量参数值T1、T2、PD值和ADCuh值,而后两名放射影像科主任医师(医师甲有18年和医师乙有20年从业经验)运用双盲法对病灶进行定量测定,取其平均值。一个月后由医师甲再次对病灶进行定量测定,进行可重复性分析。

1.4 统计学分析

       采用SPSS 25.0及MedCale软件进行数据统计分析。符合正态分布连续变量的数据采用平均值±标准差表示,采用组内相关系数(intra-class correiation coefficient, ICC)对各定量值的观察者间及观察者内的一致性进行验证。所取ICC值范围为0~1:0.00~0.20为一致性差;0.21~0.40为一致性一般;0.41~0.60为一致性中等;0.61~0.80为一致性强;0.81~1.00为一致性非常好。阴性组和阳性组间的T1、T2、PD值和ADCuh进行比较,不符合正态分布的数据使用Mann-Whitney U检验,符合正态分布的用t检验。P<0.05为差异有统计学意义。使用Medcale软件进行受试者工作特征(receiver operating characteristic, ROC)曲线分析,以评估各定量值和联合差异有统计学意义的定量值区分宫颈癌宫旁浸润的能力。采用阈值标准获得最佳临界值,其阈值标准最大化被用于预测宫颈癌宫旁浸润的约登指数,依次获取敏感度、特异度,用DeLong检验比较AUC。检验标准为α=0.05。

2 结果

2.1 宫颈癌浸润阴性组和阳性组各定量参数的比较

       纳入研究的40例宫颈癌患者病例的年龄为38~81岁,包括:鳞状细胞癌35例、腺癌5例;非浸润组28例、浸润组12例(图1)。非浸润组和浸润组之间T1、T2及ADCuh值差异有统计学意义(P=0.036),而两组间的PD值差异无统计学意义(P>0.05)(表1)。

图1  女,60岁,宫颈鳞癌Ⅳ期。1A:复合灵敏度编码扩散加权成像图示宫颈前后唇病灶呈高信号,弥散受限较明显(箭);1B:横轴位纵向弛豫脂肪抑制成像图示病灶呈稍高信号(箭);1C:横轴位纵向弛豫增强图示病灶呈不均匀强化(箭);1D:矢状位纵向弛豫动态增强图示病灶呈不均匀强化(箭);1E~1K:超高b值(b=2000、2500、3000、4000、4500 s/mm2)扩散加权图像示病灶呈高信号,弥散受限较明显;1L:ADCuh伪彩图,ADCuh=0.19×10-3 mm2/s;1M:合成T2图;1N:T1 mapping(纵向弛豫时间定量)图,T1值为992 ms;1O:T2 mapping(横向弛豫时间定量)图,T2值为81 ms;1P:PD定量图,PD值为71.2 pu;1Q:纵向弛豫率为1.0 Hz,横向弛豫率为12.35 Hz。ADCuh:超高b值表观扩散系数;PD:质子密度。
Fig. 1  Female, 60 years old, with stage Ⅳ cervical squamous cell carcinoma. 1A: The image of axis multiplexed sensitivity-encoding diffusion-weighted imaging (MUSE-DWI) reveals a lesion with high signal intensity and restricted diffusion in cervix uteri (arrow); 1B: The image of axis T2 fat saturation (FS) shows slightly high signal intensity (arrow); 1C: The image of axis LAVA contrast-enhanced iso displays inhomogeneous enhancement (arrow); 1D: Dynamic contrast-enhanced sagittal LAVA-Flex demonstrates inhomogeneous enhancement (arrow);1E-1K: Ultra-high b-value (b=2000, 2500, 3000, 4000, 4500 s/mm2) diffusion weighted imaging images shows slightly high signal intensity; 1L: Pseudocolor image of ADCuh, the ADCuh value is 0.19 × 10-3 mm2/s; 1M: T2 (Synthetic) image; 1N: T1 mapping (quantitative) image, the T1 value is 992 ms; 1O: T2 mapping (quantitative) image, the T2 value is 81 ms; 1P: PD mapping (quantitative) image, the PD value is 71.2 pu; 1Q: The rate of relaxation, R1 (1/T1) and R2 (1/T2), the R1 value is 1.01 Hz, the R2 value is 12.35 Hz. ADCuh: ultra-high apparent diffusion coefficient; PD: proton density.
表1  宫颈癌浸润阴性组和阳性组T1、T2和ADCuh值的比较
Tab. 1  Comparison of T1, T2, and ADCuh values between the negative and positive parametrial infiltration groups

2.2 一致性检验

       分析得出全部宫颈癌受试者的T1、T2和ADCuh在观察者间及观察者内均拥有较高的一致性(P=0.036)(表2)。

表2  T1、T2和ADCuh值的一致性检验
Tab. 2  The consistency test of T1, T2, and ADCuh values

2.3 T1、T2和ADCuh对宫颈癌宫旁浸润ROC分析

       以ADCuh=0.22×10-3 mm2/s为临界值区分是否宫旁浸润的AUC为0.934(95% CI:0.809~0.988),敏感度为77.27%,特异度为94.44%;以T1=1 176.24 ms为临界值区分是否宫旁浸润的AUC为0.899(95% CI:0.762~0.972),敏感度为86.36%,特异度为77.80%;以T2=83.81 ms为临界值区分是否宫旁浸润的AUC为0.962(95% CI:0.849~0.997),敏感度为100.00%,特异度为77.78%;联合T1+T2+ADCuh区分是否宫旁浸润的AUC提高至0.985(95% CI:0.957~1.000),敏感度为100.00%,特异度为95.40%。对由于炎性或宫旁脂肪浸润等导致的假阴性和肿瘤坏死等导致的假阳性均有效降低,与病理一致率提升至97.7%(表3图2)。

图2  横向弛豫时间(T1)、纵向弛豫时间(T2)、超高b值表观扩散系数(ADCuh)单独(2A)及两两和三者联合(2B;T1+T2、T1+ADCuh、T1+T2+ADCuh、T2+ADCuh)鉴别宫颈癌宫旁浸润的受试者工作特征曲线。
Fig. 2  The receiver operating characteristic (ROC) curve of T1, T2, ADCuh alone (2A) and to combine them (2B; T1+T2, T1+ADCuh, T1+T2+ADCuh, T2+ADCuh) to differentiate parametrial infiltration of cervical cancer.
表3  宫颈癌浸润阴性组和阳性组T1、T2和ADCuh的效能
Tab. 3  Effectiveness analysis of T1, T2, and ADCuh in the negative and positive parametrial infiltration groups of cervical cancer

3 讨论

       目前多种技术被用于宫颈癌术前评估,其中磁共振是最主要的检查手段之一,但常规磁共振诊断是基于主观判断,无客观定量标准。动态对比增强磁共振需注射对比剂,IVIM等技术存在图像组织分辨率低等短板。本研究将MAGiC技术联合uh-DWI应用于宫颈癌宫旁浸润的诊断,首次采用准确、快速、无创且可重复性高的磁共振定量成像技术对病灶的病生理改变情况进行观察,有效规避传统MRI序列诊断耗时且有观察者主观性等问题[30],联合T1、T2和ADCuh这三个有差异的参数可以获得良好的宫旁浸润诊断效能,对提高宫颈癌宫旁浸润诊断的准确性具有重要意义。

3.1 MAGiC对宫颈癌宫旁浸润的诊断价值

       MAGiC序列是一种将扫描测量和重建计算相结合的磁共振成像技术。它通过对特殊的脉冲序列进行定量测定,从而获得组织的参数,然后利用定量组织参数通过后处理重建不同对比度的MRI影像,相当程度上克服了传统MRI技术存在的非定量性和扫描时间长的短板[31]。本研究发现阳性组T1、T2低于阴性组,二者之间定量值差异有统计学意义,这与先前研究[32]一致,可能原因是与非浸润组相比浸润组细胞增殖更快[33],导致细胞密度增高、组织间隙变窄,组织中自由水含量减少。但该研究未对PD值进行分析,PD值代表组织质子密度,一定程度上反映了组织本身的细微结构和病生理状态,在临床诊断上可以作为观察指标,对病灶的研究具有重大意义。本研究将PD值纳入分析,但两组间结果无统计性差异,可能由于本研究样本量小导致检验功效不足,无法检测到两组间真实差异;另外,本研究采用的MAGiC序列带宽为25 kHz,可能引起PD值的测量可重复性减低[34],对测量产生影响。

3.2 uh-DWI对宫颈癌的诊断价值

       ADCuh能为宫颈癌提供比常规DWI(b=800  s/mm2)图像更有价值的信息[22, 29]。本研究中阳性组ADCuh低于阴性组,与刘开惠等[35]的研究一致,ADC值的定量测定对明确宫颈癌与正常组织及对宫颈癌组织学类型及分化程度的判定意义重大[36];但与ZHANG等[32]的研究报道宫旁浸润阴性组和阳性组ADC值差异无统计学意义的结果不一致,可能的原因是ADC的测量受限于序列的分辨率和部分容积效应,以及纳入的病灶类型差异等。另外,二维的ROI勾画方式无法完全采集整个病灶,导致定量参数的测量存在差异。

3.3 联合MAGiC和uh-DWI对宫颈癌病理宫旁浸润的诊断效能

       将MAGiC和uh-DWI这两种模态MRI技术联合应用,无需对比剂即可反映组织病生理情况,且可重复性高。特别是T2值对分子微观结构的变化较敏感,表现出的较高特异性;ADCuh可对浸润组组织密度增高及组织间隙变窄进行直观显示。多定量参数的MRI分析对各个定量值优势的有效利用,对疾病准确诊断至关重要。本研究将差异有统计意义的定量参数联合应用于宫颈癌宫旁浸润的鉴别诊断,所得结果显示T1、T2及ADCuh单一参数和联合参数均能获得良好的诊断效能,其中联合模型AUC最高(0.985)。值得一提的是,联合参数较单一参数AUC有所提高,但通过DeLng检验发现差异没有统计学意义。可能是由于本研究样本量较小,导致统计检验的功效不足;另外,数据测量中可能存在测量误差,导致DeLong检验无法检测出现差异。

3.4 局限性及展望

       本研究的局限性包括:(1)MAGiC作为一种新的成像方法在宫颈癌中的应用不多,uh-DWI技术b值的选择也各不相同,目前尚无规范化和标准化的扫描方法和后处理算法,且ROI的选取容易受主观因素影响导致选取欠准确;(2)本研究用2D而非3D的ROI勾画方式无法完全采集整个病灶,导致定量参数的测量存在偏差;(3)本研究样本量偏少,尤其是浸润组,且样本未能涵盖所有分期,非浸润组多因宫颈癌筛查到我院就诊,病灶多为T1期,这对于统计结果有一定的限制。未来将继续扩充样本量,保证覆盖所有分期,并进行多中心的研究,以提高宫颈癌宫旁浸润诊断准确性,为临床精准治疗提供有指导意义的影像资料。

4 结论

       综上所述,使用MAGiC联合uh-DWI生成的多参数有助于判断宫颈癌宫旁浸润,参数T1、T2和ADCuh可获得良好的宫颈癌宫旁浸润的诊断效能。

[1]
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
[2]
许敏, 何永胜, 戚轩, 等. ADC值和DCE-MRI定量参数对宫颈癌宫旁浸润的判定价值[J]. 医学影像学杂志, 2022, 32(3): 480-483.
XU M, HE Y S, QI X, et al. The diagnostic value and correlation study between ADC and quantitative parameter of DCE-MRI in the parametrial in-vasion of cervical cancer[J]. Chin J Med Imag, 2022, 32(3): 480-483.
[3]
MARJASUO S, KOSKENVUO L, LEPISTÖ A. Findings in magnetic resonance imaging for restaging locally advanced rectal cancer[J/OL]. Int J Colorectal Dis, 2024, 39(1): 23 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/38289485/. DOI: 10.1007/s00384-024-04595-x.
[4]
BENSON A B, VENOOK A P, AL-HAWARY M M, et al. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2021, 19(3): 329-359. DOI: 10.6004/jnccn.2021.0012.
[5]
GARCIA-REYES K, PASSONI N M, PALMERI M L, et al. Detection of prostate cancer with multiparametric MRI (mpMRI): effect of dedicated reader education on accuracy and confidence of index and anterior cancer diagnosis[J]. Abdom Imag, 2015, 40(1): 134-142. DOI: 10.1007/s00261-014-0197-7.
[6]
朱柳红, 刘豪, 周建军. 磁共振T2 mapping技术在体部恶性肿瘤中的研究进展[J]. 磁共振成像, 2020, 11(5): 398-400. DOI: 10.12015/issn.1674-8034.2020.05.019.
ZHU L H, LIU H, ZHOU J J. Research progress of magnetic resonance T2-mapping in body malignant tumors[J]. Chin J Magn Reson Imag, 2020, 11(5): 398-400. DOI: 10.12015/issn.1674-8034.2020.05.019.
[7]
LIU L, YIN B, GENG D Y, et al. Changes of T2 relaxation time from neoadjuvant chemotherapy in breast cancer lesions[J/OL]. Iran J Radiol, 2016, 13(3): e24014 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/27853488/. DOI: 10.5812/iranjradiol.24014.
[8]
HAGIWARA A, WARNTJES M, HORI M, et al. SyMRI of the brain: rapid quantification of relaxation rates and proton density, with synthetic MRI, automatic brain segmentation, and myelin measurement[J]. Invest Radiol, 2017, 52(10): 647-657. DOI: 10.1097/RLI.0000000000000365.
[9]
蔺璐奕, 顾雅佳. 乳腺癌精准诊疗的重要工具: MRI定量分析技术[J]. 磁共振成像, 2024, 15(1): 1-5, 27. DOI: 10.12015/issn.1674-8034.2024.01.001.
LIN L Y, GU Y J. MRI quantitative analysis technology: an important tool for the precise diagnosis and treatment of breast cancer[J]. Chin J Magn Reson Imag, 2024, 15(1): 1-5, 27. DOI: 10.12015/issn.1674-8034.2024.01.001.
[10]
WANG Y, TADIMALLA S, RAI R, et al. Quantitative MRI: Defining repeatability, reproducibility and accuracy for prostate cancer imaging biomarker development[J]. Magn Reson Imaging, 2021, 77: 169-179. DOI: 10.1016/j.mri.2020.12.018.
[11]
HAGIWARA A, HORI M, COHEN-ADAD J, et al. Linearity, bias, intrascanner repeatability, and interscanner reproducibility of quantitative multidynamic multiecho sequence for rapid simultaneous relaxometry at 3 T: a validation study with a standardized phantom and healthy controls[J]. Invest Radiol, 2019, 54(1): 39-47. DOI: 10.1097/RLI.0000000000000510.
[12]
刘雅文, 牛海军, 尹红霞, 等. 合成MRI与传统定量方法对T1、T2弛豫值测定的模体验证对比研究[J]. 磁共振成像, 2022, 13(4): 89-93. DOI: 10.12015/issn.1674-8034.2022.04.016.
LIU Y W, NIU H J, YIN H X, et al. A comparative study on phantom verification of T1 and T2 relaxation values determined by synthetic MRI and conventional mapping methods[J]. Chin J Magn Reson Imag, 2022, 13(4): 89-93. DOI: 10.12015/issn.1674-8034.2022.04.016.
[13]
ANDRÉ J, BARRIT S, JISSENDI P. Synthetic MRI for stroke: a qualitative and quantitative pilot study[J/OL]. Sci Rep, 2022, 12(1): 11552 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/35798771. DOI: 10.1038/s41598-022-15204-8/.
[14]
ANDICA C, HAGIWARA A, HORI M, et al. Review of synthetic MRI in pediatric brains: basic principle of MR quantification, its features, clinical applications, and limitations[J]. J Neuroradiol, 2019, 46(4): 268-275. DOI: 10.1016/j.neurad.2019.02.005.
[15]
COBAN G, PARLAK S, GUMELER E, et al. Synthetic MRI in neurofibromatosis type 1[J]. AJNR Am J Neuroradiol, 2021, 42(9): 1709-1715. DOI: 10.3174/ajnr.A7214.
[16]
CAO J B, XU X H, ZHU J Y, et al. Rapid quantification of global brain volumetry and relaxometry in patients with multiple sclerosis using synthetic magnetic resonance imaging[J]. Quant Imaging Med Surg, 2022, 12(6): 3104-3114. DOI: 10.21037/qims-21-970.
[17]
FUJIOKA T, MORI M, OYAMA J, et al. Investigating the image quality and utility of synthetic MRI in the breast[J]. Magn Reson Med Sci, 2021, 20(4): 431-438. DOI: 10.2463/mrms.mp.2020-0132.
[18]
YANG X, LU Z, TAN X Y, et al. Evaluating the added value of synthetic magnetic resonance imaging in predicting sentinel lymph node status in breast cancer[J]. Quant Imaging Med Surg, 2024, 14(6): 3789-3802. DOI: 10.21037/qims-24-1.
[19]
孟铁豹, 刘辉明, 张蔚菁, 等. 集成磁共振成像弛豫时间定量在前列腺癌诊断中的应用[J]. 临床放射学杂志, 2020, 39(3): 605-608. DOI: 10.13437/j.cnki.jcr.2020.03.040.
MENG T B, LIU H M, ZHANG W J, et al. Quantification of relaxation time by synthetic MRI in diagnosis of prostate cancer[J]. J Clin Radiol, 2020, 39(3): 605-608. DOI: 10.13437/j.cnki.jcr.2020.03.040.
[20]
ARITA Y, TAKAHARA T, YOSHIDA S, et al. Quantitative assessment of bone metastasis in prostate cancer using synthetic magnetic resonance imaging[J]. Invest Radiol, 2019, 54(10): 638-644. DOI: 10.1097/RLI.0000000000000579.
[21]
刘洁. 磁共振定量成像技术在宫颈癌诊断和复发预测中的研究[D]. 郑州: 郑州大学, 2022. DOI: 10.27466/d.cnki.gzzdu.2022.000045.
LIU J. Study on quantitative magnetic resonance imaging in diagnosis and recurrence prediction of cervical cancer[D]. Zhengzhou: Zhengzhou University, 2022. DOI: 10.27466/d.cnki.gzzdu.2022.000045.
[22]
TANG Q, ZHOU Q Q, CHEN W, et al. A feasibility study of reduced full-of-view synthetic high-b-value diffusion-weighted imaging in uterine tumors[J/OL]. Insights Imaging, 2023, 14(1): 12 [2024-06-30]. https://doi.org/10.1186/s13244-022-01350-0. DOI: 10.1186/s13244-022-01350-0.
[23]
ARITA Y, WOO S, KWEE T C, et al. Pictorial review of multiparametric MRI in bladder urothelial carcinoma with variant histology: pearls and pitfalls[J]. Abdom Radiol, 2024, 49(8): 2797-2811. DOI: 10.1007/s00261-024-04397-3.
[24]
TAVAKOLI A A, HIELSCHER T, BADURA P, et al. Contribution of dynamic contrast-enhanced and diffusion MRI to PI-RADS for detecting clinically significant prostate cancer[J]. Radiology, 2023, 306(1): 186-199. DOI: 10.1148/radiol.212692.
[25]
ABDEL WAHAB C, JANNOT A S, BONAFFINI P A, et al. Diagnostic algorithm to differentiate benign atypical leiomyomas from malignant uterine sarcomas with diffusion-weighted MRI[J]. Radiology, 2020, 297(2): 361-371. DOI: 10.1148/radiol.2020191658.
[26]
MD R J, MD Z W, BS J L, et al. High b-value and ultra-high b-value diffusion weighted MRI in stroke[J/OL]. J Magn Reson Imag, 2024 [2024-06-30]. https://onlinelibrary.wiley.com/doi/10.1002/jmri.29547. https://doi.org/10.1002/jmri.29547. DOI: 10.1002/jmri.29547.
[27]
ZHANG Z P, ZHA T T, JIANG Z X, et al. Using ultrahigh b-value diffusion-weighted imaging to noninvasively assess renal fibrosis in a rabbit model of renal artery stenosis[J]. J Comput Assist Tomogr, 2023, 47(5): 713-720. DOI: 10.1097/RCT.0000000000001487.
[28]
LIN C X, TIAN Y, LI J M, et al. Diagnostic value of multiple b-value diffusion-weighted imaging in discriminating the malignant from benign breast lesions[J/OL]. BMC Med Imaging, 2023, 23(1): 10 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/36631781/. DOI: 10.1186/s12880-022-00950-y.
[29]
QI Y F, HE Y L, LIN C Y, et al. Diffusion-weighted imaging of cervical cancer: Feasibility of ultra-high b-value at 3T[J/OL]. Eur J Radiol, 2020, 124: 108779 [2024-06-30]. https://doi.org/10.1016/j.ejrad.2019.108779. DOI: 10.1016/j.ejrad.2019.108779.
[30]
YANG C S, TAN Z Y, WANG Y J, et al. SwinUNeCCt: bidirectional hash-based agent transformer for cervical cancer MRI image multi-task learning[J/OL]. Sci Rep, 2024, 14(1): 24621 [2024-06-30]. https://doi.org/10.1038/s41598-024-75544-5. DOI: 10.1038/s41598-024-75544-5.
[31]
董正超. 合成MRI的原理、技术及应用[J]. 国际医学放射学杂志, 2023, 46(5): 598-609. DOI: 10.19300/j.2023.Z20852.
DONG Z C. Synthetic MRI: principles, techniques, and applications[J]. Int J Med Radiol, 2023, 46(5): 598-609. DOI: 10.19300/j.2023.Z20852.
[32]
ZHANG W J, LU N, HE H Q, et al. Application of synthetic magnetic resonance imaging and DWI for evaluation of prognostic factors in cervical carcinoma: a prospective preliminary study[J/OL]. Br J Radiol, 2023, 96(1141): 20220596 [2024-06-30]. https://doi.org/10.1259/bjr.20220596. DOI: 10.1259/bjr.20220596.
[33]
ZHANG X X, GUO J X, YUN Y, et al. Differentiation of muscular invasion in bladder cancer: additional value of synthetic magnetic resonance imaging[J]. Acad Radiol, 2024, 31(10): 4076-4084. DOI: 10.1016/j.acra.2024.03.011.
[34]
郑作锋, 王振常, 尹红霞, 等. 合成磁共振成像不同带宽对T1、T2及PD测量值的影响—体膜研究[J]. 磁共振成像, 2022, 13(1): 98-102. DOI: 10.12015/issn.1674-8034.2022.01.019.
ZHENG Z F, WANG Z C, YIN H X, et al. The effect of bandwidth on evaluation of T1, T2 relaxation times and proton density using synthetic MRI: a phantom study[J]. Chin J Magn Reson Imag, 2022, 13(1): 98-102. DOI: 10.12015/issn.1674-8034.2022.01.019.
[35]
刘开惠, 杨蔚, 田海萍, 等. 基于临床、病理、DWI定量参数构建列线图预测宫颈癌程序性死亡受体配体1阳性表达: 不同ROI选择的比较[J]. 磁共振成像, 2023, 14(10): 98-104, 115. DOI: 10.12015/issn.1674-8034.2023.10.017.
LIU K H, YANG W/Y), TIAN H P, et al. Nomogram based on clinical, pathological, and DWI quantitative parameters for predicting the programmed death-ligand 1 positive expression in cervical cancer: Comparison of different ROI options[J]. Chin J Magn Reson Imag, 2023, 14(10): 98-104, 115. DOI: 10.12015/issn.1674-8034.2023.10.017.
[36]
张琴, 张玉龙, 刘曦. 合成磁共振成像技术在恶性肿瘤中的研究进展[J]. 磁共振成像, 2023, 14(5): 196-202. DOI: 10.12015/issn.1674-8034.2023.05.035.
ZHANG Q, ZHANG Y L, LIU X. Research progress of synthetic magnetic resonance imaging technology in malignant tumors[J]. Chin J Magn Reson Imag, 2023, 14(5): 196-202. DOI: 10.12015/issn.1674-8034.2023.05.035.

上一篇 增强T2*加权血管成像在T2WI低信号肾脏病变良恶性鉴别诊断中的价值
下一篇 二维相位对比磁共振成像在髂静脉压迫综合征中的应用研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2