分享:
分享到微信朋友圈
X
技术研究
MRI相位导航技术下2D T2-TSE与3D T2-SPACE序列在疑似隐匿性脊髓栓系综合征俯卧位扫描中的应用价值对比
李鹏 杨立棋 徐守军 张艳慧 林飞飞 熊海芮 孙金磊 向葵

Cite this article as: LI P, YANG L Q, XU S J, et al. Comparison of the application value of 2D T2-TSE and 3D T2-SPACE sequences using MRI phase scout technology in prone position scanning of suspected occult tethered cord syndrome[J]. Chin J Magn Reson Imaging, 2025, 16(1): 158-164.本文引用格式:李鹏, 杨立棋, 徐守军, 等. MRI相位导航技术下2D T2-TSE与3D T2-SPACE序列在疑似隐匿性脊髓栓系综合征俯卧位扫描中的应用价值对比[J]. 磁共振成像, 2025, 16(1): 158-164. DOI:10.12015/issn.1674-8034.2025.01.024.


[摘要] 目的 对比MRI相位导航技术下二维T2加权快速自旋回波(two dimensional T2 weighted imaging turbo spin echo, 2D T2-TSE)序列与三维T2加权可变翻转角快速自旋回波(three dimensional T2 weighted imaging sampling perfection with application optimized contrast using different flip angle evolution, 3D T2-SPACE)序列在疑似隐匿性脊髓栓系综合征(occult tethered cord syndrome, OTCS)俯卧位扫描中的图像质量和临床应用价值。材料与方法 回顾性分析2023年1月至2023年10月在我院接受MRI检查的疑似OTCS的6岁以下患者30例,均采用相位导航技术下俯卧位2D T2-TSE和3D T2-SPACE序列进行检查。根据所得图像整体质量、脊髓圆锥显示、马尾神经及终丝显示、蛛网膜下腔脑脊液信号显示、背景噪声显示情况进行主观评分,记录扫描时间,计算椎管内的图像信噪比(signal-to-noise ratio, SNR)和对比噪声比(contrast-to-noise ratio, CNR)。比较两种序列的图像质量的主观评分、扫描时间、椎管内SNR与CNR的客观分析。分别采用配对t检验、Mann-Whitney U检验,将两种检查方法的评估结果进行对比分析。通过Kappa检验分别评估两名医师主观评分的一致性,以及两名技师客观定量分析的一致性。结果 图像质量的主观评分中,两名医师的评分一致性较强(Kappa=0.794,P<0.001),3D T2-SPACE序列图像整体质量、马尾神经及终丝显示、蛛网膜下腔脑脊液信号显示以及背景噪声显示评分均高于2D T2-TSE序列(Z=-2.305、-4.242、-3.453、-2.201,P均<0.05),在脊髓圆锥显示上,2D T2-TSE与3D T2-SPACE序列一致(Z=-0.948,P>0.05)。客观定量分析中,两名技师对椎管内SNR与CNR测量结果的一致性很强(Kappa=0.851、0.734,P均<0.001),2D T2-TSE对比3D T2-SPACE序列,两次测量的数据分析结果中3D T2-SPACE 序列椎管内SNR和CNR均优于2D T2-TSE 序列(第一次测量SNR与CNR:t=-3.058、-3.703;第二次测量SNR与CNR:t=-2.981、-2.965,P均<0.05)。3D T2-SPACE序列扫描时间较2D T2-TSE序列扫描时间长[(183.67±34.89) s vs. (120.53±27.93) s,t=-10.087,P<0.001]。结论 在疑似OTCS患者的俯卧位MRI检查中,相位导航技术下的3D T2-SPACE序列相比2D T2-TSE 序列可以提供更优良的椎管内图像质量、更小的FOV与体素,为临床诊治提供更多可靠信息。
[Abstract] Objective To Compare the image quality and clinical value of two dimensional T2 weighted imaging turbo spin echo (2D T2-TSE) and three dimensional T2 weighted imaging sampling perfection with application optimized contrast using different flip angle evolution (3D T2-SPACE) sequences using MRI phase scout technology in prone position scanning of occult tethered cord syndrome occult tethered cord syndrome (OTCS).Materials and Methods A retrospective analysis was performed on 30 children under 6 years of age with suspected OTCS who received MRI examination in our hospital from January 2023 to October 2023. 2D T2-TSE and 3D T2-SPACE sequences in prone position using phase scout technology were both used to examine the children. Subjective scoring was based on overall image quality, spinal conus display, cauda equina and terminal filament display, subarachnoid cerebrospinal fluid signal display and background noise display, record the scanning time, and calculate the intraspinal image signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). The image quality scores, scanning time, intraspinal SNR and CNR of the two sequences were compared. Paired t test and Mann-Whitney U test were used to compare and analyze the evaluation results of the two test methods. Using Kappa test, evaluate the consistency of subjective scoring by two radiologists and consistency of objective quantitative analysis by two technicians. P < 0.05 was considered statistically significant.Results In the subjective scores of image quality, the scores of the two radiologists were more consistent (Kappa = 0.794, P < 0.001), the overall image quality, cauda equina and terminal filament display, subarachnoid cerebrospinal fluid signal display and background noise display scores of 3D T2-SPACE sequence were higher than those of 2D T2-TSE sequence (Z = -2.305, -4.242, -3.453, -2.201, P < 0.05). On the display of the spinal conus, 2D T2-TSE consistent with 3D T2-SPACE (Z = -0.948, P > 0.05). In objective quantitative analysis, the scores of intraspinal SNR and CNR measurement results by two technicians were most consistent (Kappa = 0.851, 0.734, P < 0.001). Comparing the 2D T2-TSE with the 3D T2-SPACE sequence, intraspinal SNR and CNR of 3D T2-SPACE sequence were better than those of 2D T2-TSE sequence by analysis results of two measurements (The first measurement of SNR and CNR: t = -3.058, -3.703; The second measurement of SNR and CNR: t = -2.981, -2.965, P < 0.05 for all). The scanning time of 3D T2-SPACE sequence was longer than that of 2D T2-TSE sequence [(183.67±34.89) s vs. (120.53±27.93) s, t = -10.087, P < 0.001].Conclusions In the prone position MRI examination of suspected OTCS patients, the 3D T2-SPACE sequence using phase scout technology can provide better intraspinal image quality compared with the 2D T2-TSE sequence, smaller FOV and voxels, and more reliable information for clinical practice and treatment compared to the 2D T2-TSE sequence.
[关键词] 脊髓栓系综合征;隐匿性;三维T2加权可变翻转角快速自旋回波;俯卧位;相位导航技术;儿童;磁共振成像
[Keywords] tethered cord syndrome;occult;three dimensional T2 weighted imaging sampling perfection with application-optimized contrast using different flip angle evolution (3D T2-SPACE);prone position;phase scout technology;children;magnetic resonance imaging

李鹏    杨立棋    徐守军    张艳慧    林飞飞    熊海芮    孙金磊    向葵 *  

深圳市儿童医院放射科,深圳 518026

通信作者:向葵,E-mail:xiejiarui001@163.com

作者贡献声明:向葵设计本研究方案,对稿件重要内容进行修正;李鹏设计本研究方案,起草和撰写稿件,获取、分析并解释本研究的数据;杨立棋设计研究方案,获取、分析并解释本研究数据,对稿件重要内容进行修改;张艳慧、徐守军、林飞飞、熊海芮、孙金磊统计学分析,图像质量评价,分析或解释本研究的数据,对稿件重要内容进行修改;李鹏获得了深圳市医疗卫生三名工程项目的资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 深圳市医疗卫生三名工程项目 SZSM202011005
收稿日期:2024-09-03
接受日期:2025-01-10
中图分类号:R445.2  R726.5 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.01.024
本文引用格式:李鹏, 杨立棋, 徐守军, 等. MRI相位导航技术下2D T2-TSE与3D T2-SPACE序列在疑似隐匿性脊髓栓系综合征俯卧位扫描中的应用价值对比[J]. 磁共振成像, 2025, 16(1): 158-164. DOI:10.12015/issn.1674-8034.2025.01.024.

0 引言

       脊髓栓系综合征(tethered cord syndrome, TCS)是一种由多种因素引起的脊髓疾病,常见于新生儿和儿童,女性多于男性[1, 2]。临床上常见神经、泌尿、骨骼、皮肤等多系统症状[3, 4, 5],脊髓神经因缺血、缺氧、发生坏死或变性,从而导致下肢运动或感知障碍、大小便功能障碍的综合病症,严重影响患者生活的质量。MRI检查是临床评估TCS的“金标准”,多表现为脊髓圆锥低位、栓系、终丝牵拉、脂肪化或增粗等[6, 7, 8]。然而,近年来有学者提出隐匿性脊髓栓系综合征(occult tethered cord syndrome, OTCS),其临床症状与TCS相似,有明显的神经、骨科、尿动力学障碍,但脊髓圆锥的位置仍在第二腰椎水平[9, 10],被认为是脊髓终丝牵拉束缚脊髓的活动所致。如今国内外对OTCS的诊疗虽然具有一定的争议,但终丝松解手术的尽早干预对泌尿系统的功能起到很大的恢复或改善[11]。MRI检查的目的就在于为临床提供马尾神经与终丝的形态与位置信息。马尾神经与终丝本身存在弹性差异,俯卧时马尾神经落至腹侧,终丝因本身张力、摆动度较小而变得突出[12],而OTCS患者的终丝有可能因致密结缔组织增加、弹性纤维减少导致过度牵拉而更靠近背侧,与马尾神经对比更为突出[13],所以提供终丝的组织解剖形态和信号特征对于OTCS的诊断尤为重要。终丝的增粗或异常信号可能提示存在OTCS的风险。MRI俯卧位可显示终丝增粗或牵拉后的摆动度受限,既可为OTCS术前提供辅助诊断依据,也可作为术后手术效果的评价指标[13]

       随着数年来临床对OTCS诊治的改革提升,对影像技术提出了新的需求。但近年来国内外MRI相关研究较匮乏,缺乏大样本、多中心的研究来明确OTCS的影像学特征。以往一些早年国外文献中提出的俯卧位序列多数为半傅里叶单激发快速自旋回波(half-fourier acquisition single-shot turbo spin echo, HASTE)序列,是在自由呼吸下完成采集的。因为序列的原理特性,成像速度快,可以一定程度上冻结呼吸运动,虽然能看到脊髓圆锥位置以及终丝的摆动度,但整体图像上有信噪比(signal-to-noise ratio, SNR)低、分辨率低,以及马尾神经及终丝显示运动模糊等不足。在HASTE序列上增加了相位导航技术,利用腹部呼吸运动产生的失谐效应,实现全自动跟踪采集图像,可稳定采集数据,去除腹部运动造成的马尾神经以及终丝的模糊,但因HASTE序列本身特性的限制,图像分辨力无法提升。改用二维T2加权快速自旋回波(two dimensional T2 weighted imaging turbo spin echo, 2D T2- TSE)序列后,可以提高图像分辨率以及SNR,更精准地显示脊髓圆锥的形态与位置,在临床应用中完全替代了HASTE序列,但其层厚和层间隔偏厚,马尾神经及终丝在层面方向上分辨力表现欠佳,对于终丝增粗会有漏诊的影响,临床需求仍旧不能得以全面满足。三维T2加权可变翻转角快速自旋回波(three dimensional T2 weighted imaging sampling perfection with application optimized contrast using different flip angle evolution, 3D T2-SPACE)序列同属快速自旋回波家族,具有更高的分辨力、SNR及对比噪声比(contrast-to-noise ratio, CNR)[14, 15],能够多方向更清晰地显示脊髓圆锥、马尾神经和终丝的形态与位置。3D T2-SPACE序列在俯卧位应用与合并导航技术应用上未见相关文献,能查阅的神经外科相关文献提供的俯卧位图像多为2D序列扫描、有运动伪影的或分辨率很低的图像[16, 17]。本研究在与相位导航技术结合后进一步对比了2D T2-TSE序列与3D T2-SPACE序列图像质量,探讨2D与3D的差别,为临床的诊断提供更可靠的影像学依据,从而改善患者的临床管理和治疗结果,望为MRI技术在小儿神经放射学领域的应用提供新的见解。

1 材料与方法

1.1 样本量估算

       由于本研究是一种新的探索,目前尚无相关的参考文献来指导样本量的选择。经过对30例数据进行了初步分析,并使用专业的能效分析和样本量估算软件PASS(Power Analysis and Sample Size)中Means/Paired Means/Test(inequality)/Test for Paired Means模块下配对均数检验功能分别计算了椎管内SNR与CNR指标的检验效能。结果显示,样本量在显著性水平为0.05情况下,能够提供足够的检验效能(均大于0.75)(表1)。

表1  PASS软件检验能效估算结果
Tab. 1  Estimation results of power for PASS software

1.2 研究对象

       回顾性收集2023年1月至2023年10月在深圳市儿童医院行腰椎及骶尾椎MRI检查的疑似OTCS患者30例。就诊主要原因为骶尾部皮肤凹陷,其他原因为下肢行走异常及便秘、污粪等。

       纳入标准:(1)6岁以下临床疑似OTCS的镇静熟睡患者,包括神经、泌尿、皮肤等异常症状者;(2)均行腰骶椎仰、俯卧位MRI检查;(3)均使用相位导航自动跟踪模式的俯卧位2D T2-TSE与3D T2-SPACE序列采集者;(4)仰卧位使用无相位导航3D T2-SPACE 序列采集者。排除标准:MRI图像质量无法满足临床诊断者。本研究遵守《赫尔辛基宣言》,经深圳市儿童医院伦理委员会批准,免除受试者知情同意,批件号:深儿医伦审(科研)202309702号。

1.3 扫描方法及参数

1.3.1 扫描前准备

       扫描前2岁以下患者给予中国南方医科大学南方医院生产的水合醛溶液[粤药制字H07022737]灌肠镇静,2岁以上的患者给予水合氯醛口服镇静(按0.5 mL/kg用药,最大量≤10 mL)。采用德国Siemens Prisma 3.0 T MRI扫描仪,体部18通道及脊柱相控阵线圈。

1.3.2 俯卧位2D T2-TSE序列扫描方法及参数

       患者俯卧,头偏一侧,双耳用耳塞隔音,矢状位,相位导航自动模式,TR 1530 ms(此TR时长因患者呼吸频率幅度差异而有所不同),开启Restore magn,TE 224 ms,扫描矩阵269×384,FOV 234 mm×234 mm,层厚 2 mm,层数9,间隔0.1 mm,激励次数1,相位编码方向为前后,并行采集加速因子2,腹侧添加饱和带,背部覆盖体部18通道线圈固定以减少腹部上下移动,总时长1.5~3 min。

1.3.3 俯卧位3D T2-SPACE序列扫描方法及参数

       患者俯卧,头偏一侧,双耳用耳塞隔音,矢状位,相位导航自动模式,TR 1500 ms(此TR时长因患者呼吸频率幅度差异而有所不同),开启Restore magn,TE 222 ms,扫描矩阵384×384,FOV 200 mm×200 mm,层厚0.5 mm,层数32,无间隔,激励次数1.7,并行采集加速因子2,相位编码方向前后,层面方向欠采样50%,腹侧添加饱和带,背部覆盖体部18通道线圈固定以减少腹部上下移动,总时长2~4 min。

1.3.4 仰卧位3D T2-SPACE序列扫描方法及参数

       患者仰卧,矢状位,TR 2220 ms,开启Restore magn,TE 222 ms,扫描矩阵 384×384,FOV 200 mm×200 mm,层厚0.5 mm,层数32,无间隔,激励次数2,相位编码方向为前后,并行采集加速因子2,腹侧添加饱和带,脊柱线圈,总时长2.5 min。

1.4 图像质量评价

1.4.1 主观评价

       由两名具有10年以上儿科工作经验的中级与正高级职称放射诊断医师独立阅片,并以4分制对图像整体质量、脊髓圆锥显示、马尾神经及终丝显示、蛛网膜下腔脑脊液信号显示、背景噪声显示情况进行主观评价。图像评分标准:(1)1分,图像质量差,伪影严重,脊髓圆锥显示差,马尾神经及终丝显示模糊,蛛网膜下腔脑脊液信号显示弱,背景噪声大;(2)2分,图像质量较差,中度伪影,脊髓圆锥显示欠佳,马尾神经及终丝欠清晰,蛛网膜下腔脑脊液信号显示适中,背景噪声稍大;(3)3分,图像质量良好,少量伪影,脊髓圆锥显示较好,马尾神经及终丝显示欠清晰,蛛网膜下腔脑脊液信号显示较强,背景噪声较小;(4)4分,图像质量优,无明显伪影,脊髓圆锥显示好,马尾神经及终丝显示清晰,蛛网膜下腔脑脊液信号显示强,背景噪声小[18]

1.4.2 客观评价

       由一名具有10年以上工作经验的主管技师计算统计2D T2-TSE 与3D T2-SPACE序列的扫描时间。由两名具有10年以上工作经验的主管技师分别在Singo.via工作站进行图像信号测量,所有数据分别测量两次椎管内信号与四次背景噪声后取平均值。将面积为0.2 cm2的两个感兴趣区(region of interest, ROI)放置在信号均匀、无伪影的脊髓中央层面(见图1中ROI①、②),记录信号强度(signal intensity, SI)并取平均值为SI脊髓圆锥;在同一扫描层面中将选取两个ROI放置在信号均匀、无伪影的脑脊液区(见图1中ROI③、④),记录SI取平均值为SI脑脊液。放置四个ROI于图像四个角落测量图像背景噪声(见图1中ROI⑤、⑥、⑦、⑧),尽量避开运动伪影,记录背景噪声标准差(standard deviation, SD)取平均值为SD背景噪声。计算得出椎管内SNR与CNR,见式(1)~(2)。测量方法见图1

图1  客观评价测量方法示意图。①、②为SI脊髓圆锥ROI;③、④为SI脑脊液ROI;⑤、⑥、⑦、⑧为SD背景噪声ROI。SI:信号强度;ROI:感兴趣区;SD:标准差。
Fig. 1  Diagram of objective evaluation measurement methods. ① and ② are SI spinal conus ROI; ③ and ④ are SIcerebrospinal fluid ROI; ⑤ ⑥, ⑦, ⑧ are SD background noise ROI. SI: signal intensity; ROI: region of interest; SD: standard deviation.

1.5 统计学分析

       应用SPSS AU软件,采用Shapiro-Wilk检验数据是否符合正态性分布,符合正态分布的计量资料以x¯±s表示,采用配对t检验。不符合正态分布的以MQ1,Q3)表示,采用Mann-Whitney U检验分析。采用Kappa检验分析两名医师的主观评分一致性。P<0.05为差异具有统计学意义。采用Kappa检验对两名技师测得的2D T2-TSE与3D T2-SPACE序列分别在椎管内SNR与CNR指标差异上的一致性分析。Kappa检验是作为评价判断的一致性程度的重要指标,取值在0~1之间。0<Kappa≤0.20一致性差;0.20<Kappa≤0.40一致性一般;0.40<Kappa≤0.60一致性中等;0.60<Kappa≤0.80一致性较强;0.80<Kappa≤1.00一致性很强。

2 结果

2.1 一般资料

       本研究共纳入临床疑似OTCS患者30例,其中男18例,女12例,年龄3月~5岁,平均(1.64±1.51)岁。

2.2 2D T2-TSE 和3D T2-SPACE序列扫描时间

       2D T2-TSE序列扫描时间为(120.53±27.93) s,3D T2-SPACE序列扫描时间为(183.67±34.89) s,差异有统计学意义(t=-10.087,P<0.001)。3D T2-SPACE序列较2D T2-TSE序列扫描时间平均长52.38%。

2.3 主观评分与客观定量分析的一致性

       两名医师的主观评分具有较强的一致性(Kappa=0.794,P<0.001)。两名技师测量的2D T2-TSE与3D T2-SPACE序列椎管内SNR和CNR指标的差异进行了Kappa一致性分析(Kappa=0.851、0.734,P均<0.001),测量结果之间一致性很强(表2)。

图2  女,5岁,因骶尾部皮肤凹陷来诊。仰卧位三维T2加权可变翻转角快速自旋回波(3D T2-SPACE)序列(2A)示脊髓圆锥及马尾终丝受重力的作用“落”至椎管背侧。俯卧位二维T2加权快速自旋回波(2D T2-TSE)序列(2B)及俯卧位3D T2-SPACE序列(2C)示脊髓圆锥及马尾受重力的作用“落”至椎管腹侧,并能清楚地看见终丝的形态(白箭)。主观评分:2D T2-TSE(2B)和3D T2-SPACE(2C)序列图像质量比较,二者序列图像质量优;脊髓圆锥显示好;马尾神经及终丝显示清晰;蛛网膜下腔脑脊液信号显示强;背景噪声小;评分均为4分。
Fig. 2  Female, 5 years old, who is diagnosed with sacrococcygeal skin depression. Three dimensional T2 weighted imaging sampling perfection with application-optimized contrast using different flip angle evolution (3D T2-SPACE) sequence (2A) in supine position shows the conus spinalis and cauda equina “falling” to the dorsal spinal canal due to gravity. Two dimensional T2 weighted imaging turbo spin echo (2D T2-TSE) sequence (2B) in prone position and 3D T2-SPACE sequence (2C) in prone position showed that the conus spinalis and cauda equina "fell" to the ventral side of the spinal canal under the action of gravity, and can clearly see the morphology of the terminal filament (white arrow). Subjective scores: Comparison of image quality between 2D T2-TSE (2B) and 3D T2-SPACE (2C) sequences, the image quality of both (2B) and (2C) sequences is well; The spinal conus showed well; Cauda equina and terminal filament shows clearly. The signal of subarachnoid cerebrospinal fluid is strong. Low background noise; All scores are 4 points.
图3  女,1岁,因骶尾部皮肤凹陷来诊。仰卧位三维T2加权可变翻转角快速自旋回波(3D T2-SPACE)序列(3A)示脊髓圆锥及马尾终丝受重力的作用“落”至椎管背侧。俯卧位二维T2加权快速自旋回波(2D T2-TSE)序列(3B)及俯卧位3D T2-SPACE序列(3C)示脊髓圆锥及马尾、终丝受重力的作用“落”至椎管腹侧,并能清楚地看见终丝的形态(白箭)。主观评分:俯卧位2D T2-TSE序列(3B)图像整体质量良好;脊髓圆锥显示较好;终丝显示欠清晰;蛛网膜下腔脑脊液信号显示较强;背景噪声较小,评分为3分。3D T2-SPACE序列(3C)对比2D T2-TSE序列(3B)终丝显示更清晰(白箭),评分为4分。
Fig. 3  Female, 1 year old, who is diagnosed with sacrococcygeal skin depression. Three dimensional T2 weighted imaging sampling perfection with applicationoptimized contrast using different flip angle evolution (3D T2-SPACE) sequence (3A) in supine position shows that the conus spinalis and the cauda equina "fall" to the dorsal spinal canal due to gravity. Two dimensional T2 weighted imaging turbo spin echo sequence (3B) in prone position and 3D T2-SPACE sequence (3C) in prone position showed that the spinal conus, cauda equina and terminal filament "fell" to the ventral side of the spinal canal under the action of gravity, and can clearly see the morphology of the terminal filament (white arrow). Subjective scores: 2D T2-TSE sequence (3B) in prone position had good overall quality. The spinal conus showed better; Terminal filament (arrow pointed) is not clearly displayed. The signal of subarachnoid cerebrospinal fluid was strong. Smaller background noise, the score is 3 points. Compared with 2D T2-TSE (3B) sequence, 3D T2-SPACE sequence (3C) shows more clearly terminal filament (white arrow), the score is 4 points.
表2  主观评分结果与客观定量分析结果一致性分析
Tab. 2  Consistency analysis results between subjective scoring and objective quantitative analysis

2.4 主观评分结果

       主观评分中,3D T2-SPACE序列图像整体质量、马尾神经及终丝显示、蛛网膜下腔脑脊液信号显示、背景噪声显示评分均高于2D T2-TSE序列,差异有统计学意义(Z=-2.305、-4.242、-3.453、-2.201,P均<0.05),在脊髓圆锥显示上,2D T2-TSE与3D T2-SPACE序列一致,差异无统计学意义(Z=0.948,P>0.05);评分示例见表3图2图3

表3  相位导航下2D T2-TSE和3D T2-SPACE俯卧位序列图像质量各项主观评分及客观定量分析
Tab. 3  Subjective scoring and objective quantitative analysis of various aspects of image quality for 2D T2-TSE and 3D T2-SPACE prone position sequences using phase scout technology

2.5 客观定量分析结果

       客观定量分析中,3D T2-SPACE 序列在两组测量配对t检验结果中,椎管内SNR与CNR均优于2D T2-TSE序列,差异有统计学意义(P均<0.05),主客观分析结果见表3

3 讨论

       本研究旨在对比MRI相位导航技术下2D T2-TSE与3D T2-SPACE序列在疑似OTCS俯卧位扫描中的应用价值。在主观评分方面,两名医师的评分具有较高的一致性。3D T2-SPACE序列除在脊髓圆锥显示上无明显差别外,在图像整体质量、马尾神经及终丝显示、蛛网膜下腔脑脊液信号显示和背景噪声显示等方面表现更优。从客观定量分析来看,3D T2-SPACE序列的扫描时间较长,在椎管内SNR和CNR客观定量分析中均优于2D T2-TSE序列。两名技师的评分具有很强的一致性。因国内外相关磁共振技术类文献空白,少量神经外科杂志文献可看到HASTE序列或存在运动伪影的T2-TSE序列,本研究创新点是利用相位导航技术降低运动伪影干扰并进一步探索3D扫描技术的临床价值,拟解决俯卧位存在的图像质量与分辨力问题。综合本研究结果,相位导航技术下的3D T2-SPACE序列在疑似OTCS患者的俯卧位MRI检查中显示出其独特的价值,在儿童本身MRI信号较差的特性情况下,做到更小的FOV、更小的体素、层面方向更高的分辨力,在脊髓圆锥、马尾神经及终丝的图像质量显示方面上也能表现优秀。虽然存在扫描时间较长的难处,但其在提高诊断准确性方面的潜力不容忽视。尽管两种序列的本质上存在差异,但序列选择与参数的优化都应基于特定的临床需求和诊断目标。本研究进一步证实了这一点,通过对比两种不同的序列,能够更好地理解它们在OTCS诊断中的相对优势,为临床提供更精准的影像学参考数据。

3.1 图像质量评价对比

       相位导航下俯卧位2D T2-TSE序列能够良好地评估脊髓圆锥、马尾及终丝的摆动度,但其层厚大,层面方向分辨能力不足,不易显示单根神经走行,多根神经相互聚集时难以分辨,容易误判为马尾、终丝增粗[19],如今已无法满足临床诊治的判断。减小2D T2-TSE层厚与体素去提高分辨力,同时会增加图像噪声而降低SNR[20],结果是椎管内脑脊液信号降低,或有严重的噪声颗粒干扰马尾神经终丝的显示。增加采集激励次数后可提高SNR,但同时也增加了组织特定吸收率和采集时间。Siemens 3D T2-SPACE序列一种快速、有效的TSE 3D T2加权序列,相当于Philips VISTA或GE Cube序列[21]。有研究表明与2D T2-TSE序列相比,3D T2-SPACE序列图像质量更高,更有效,观察者之间的一致性更高[22, 23, 24]。3D T2-SPACE序列采集图像时使用不同的翻转角度来聚焦脉冲,而非传统的180°聚焦脉冲,一方面可以降低组织特定吸收率[25];另一方面可以实现连续薄层采集,同时能够减少部分容积伪影,提高了空间分辨率,能够更好地显示马尾神经等解剖结构的细节及其与周围组织的空间关系[14, 15, 26]。但因3D序列更薄、体素更小,SNR往往会偏低,本研究将3D序列的激励次数提升至1.7,优化了SNR的缺失。3D T2-SPACE序列在整体图像质量、马尾神经及终丝显示、蛛网膜下腔脑脊液信号显示以及背景噪声控制方面均获得较好的评分,这表明该序列能够提供更清晰的椎管内部解剖细节,有助于提高诊断的准确性。

3.2 扫描时间对比

       有文献曾指出腰椎仰卧位3D T2-SPACE序列扫描时间要长于2D T2-TSE序列[27, 28]。本研究因俯卧位体位扫描并结合导航技术,在扫描时间上不稳定。在时间计算统计中3D T2-SPACE序列较2D T2-TSE序列平均扫描时间长52.38%,但这个结果影并不是必然的,3D T2-SPACE序列与2D T2-TSE序列采集时间接近的情况也有发生。在患者呼吸平稳的状态下,3D序列扫描时间长于2D,但在患者呼吸不平稳或导航追踪稳定度受影响的情况下,2D序列扫描时间会延长至与3D序列相近,甚至超过3D序列。可以得出的结论是影响因素依赖于患者的呼吸平稳度或导航的追踪稳定度,也可能因为序列参数并不是最优化的结果。将相位导航模式改为手动模式,可有助于提高采集的稳定度,从而大幅度减少扫描时间。此外,未镇静患者在扫描前训练呼吸,可提高配合度,也相应会减少扫描时间、运动模糊与呼吸伪影的影响。3D序列因为扫描层数薄并且无间隔,又是高分辨的矩阵采集,检查时间多长于2D序列,考虑到其在图像质量上与可多平面重组的优势上,这一额外的时间投入是否合理,在影响序列时间的参数优化上是否还有空间,还有待继续探索。但在临床实践中,更高质量的图像可以减少重复扫描的需要与漏诊率,从而可能提高整体的诊疗效率。

3.3 椎管内SNR和CNR对比

       本研究观察目标锁定在椎管内的显示能力上,椎管外组织如椎体、肌肉等均不在测量范围内。2D序列是自旋回波,拥有良好的SNR与CNR,3D T2-SPACE序列同样具有自旋回波的特性,目前可以提供较好的图像SNR与CNR,并且能够抵抗磁场不均匀性,大大减少磁化率伪影[20, 29]。3D T2-SPACE是一种高分辨率容积序列,可做到无间隔、超薄层扫描,可多平面重建观察马尾神经与终丝的形态,并可增加脑脊液和组织之间的差别[15]。3D T2-SPACE序列可以获取与成分相关的信号强度,如囊性改变、出血或坏死等,能够更好地区分不同成分的分界,更准确地描述不同成分的形状、体积和显著性等[30, 31, 32]。3D T2-SPACE序列在保持椎管内图像SNR与CNR的基础上最大程度地解决了2D T2-TSE在分辨能力上的问题,提高了诊断准确概率[33, 34]。该序列的应用有望提升OTCS的检出率,从而为患者提供更及时和有效的治疗。

3.4 本研究的局限性

       (1)本研究评分标准也以临床需求目的为核心,主要观察范围设定在椎管内,3D T2-SPACE序列在图像质量总体评价上,因为分辨力高,图像细节显示上轮廓清晰,因此给了高分评价,但为了凸显了脑脊液信号与马尾神经与终丝的对比,两种序列均延长了TE时间,也使得3D序列在椎管外软组织与椎体的信号强度上不及2D序列,此内容暂且不在本研究内;(2)脊髓扫描常规相位编码方向选择头足,本研究使用前后方向主要目的是减少过采样优化扫描时间,但时有肠道蠕动产生的伪影不能完全被相位导航去除,添加腹侧饱和带技术,能够一定程度抑制伪影的产生;(3)本研究使用的相位导航技术为德国西门子公司MRI扫描仪独有专利技术,其他品牌MRI扫描仪可用呼吸门控或膈肌导航技术作为替代,本研究未进行其他导航技术的试验,所得结果数据不能作为通用标准;(4)本研究中主要回顾性研究6岁以下镇静的患者,两种序列在6岁以上未镇静患者中的应用都可能受限于患者的配合度限制,导航自动模式可能难以每一次都能准确追踪脏器的失谐信息变化,相位信息曲线不稳定会导致采集时间增加和运动伪影增多,以及马尾神经与终丝的显示模糊;(5)本研究未能验证3D序列的诊断能效,需今后与临床诊疗方案结合后继续探索。

4 结论

       本研究通过对比两种序列应用价值后发现,本研究结果支持3D T2-SPACE序列在OTCS诊断中的应用,但仍需要进一步关注如何优化序列参数,以减少扫描时间与提高图像质量,并且应该扩大样本量来探索其在OTCS中不同年龄组和不同病理状态下的表现,以实现更高的采集效率、诊断效率及准确性,为OTCS的诊疗提供有价值的影像学数据。

[1]
HILLS S, PUGACHEVA A, WELTIN P, et al. Tethered cord syndrome in KBG syndrome[J]. Am J Med Genet A, 2023, 191(5): 1222-1226. DOI: 10.1002/ajmg.a.63128.
[2]
LIU M, DENG W, LU Y Y, et al. Surgical treatment of tethered cord syndrome showed promising outcome in young children with short duration[J]. Eur Rev Med Pharmacol Sci, 2023, 27(5): 1831-1836. DOI: 10.26355/eurrev_202303_31545.
[3]
MICHAEL M M, GARTON A L A, KUZAN-FISCHER C M, et al. A critical analysis of surgery for occult tethered cord syndrome[J]. Childs Nerv Syst, 2021, 37(10): 3003-3011. DOI: 10.1007/s00381-021-05287-5.
[4]
PAN J, BOOP S H, BARBER J K, et al. Perioperative complications and secondary retethering after pediatric tethered cord release surgery[J]. J Neurosurg Pediatr, 2023, 32(5): 607-616. DOI: 10.3171/2023.6.PEDS23259.
[5]
TSIPTSIOS D, SYSOEV K, ANASTASIADIS A, et al. Occult tethered cord syndrome: a reversible cause of paraparesis not to be missed[J]. Childs Nerv Syst, 2020, 36(9): 2089-2092. DOI: 10.1007/s00381-020-04701-8.
[6]
KEYKHOSRAVI E, FARAVANI E, DEHGHANI DASHTABI S, et al. Comparison of ultrasonographic findings between patients with tethered cord syndrome and healthy children[J]. Iran J Med Sci, 2023, 48(2): 130-136. DOI: 10.30476/IJMS.2022.93848.2517.
[7]
KOBAYASHI T, MIYAKOSHI N, ABE T, et al. Surgical technique of spine-shortening vertebral osteotomy for adult tethered cord syndrome: a case report and review of the literature[J/OL]. J Med Case Rep, 2023, 17(1): 425 [2024-09-02]. https://pubmed.ncbi.nlm.nih.gov/37817238/. DOI: 10.1186/s13256-023-04155-x.
[8]
SHIELDS L B E, MUTCHNICK I S, PEPPAS D S, et al. Importance of physical examination and imaging in the detection of tethered cord syndrome[J/OL]. Glob Pediatr Health, 2019, 6: 2333794X19851419 [2024-09-02]. https://pubmed.ncbi.nlm.nih.gov/31218244/. DOI: 10.1177/2333794X19851419.
[9]
REZAEE H, KEYKHOSRAVI E. Effect of untethering on occult tethered cord syndrome: a systematic review[J]. Br J Neurosurg, 2022, 36(5): 574-582. DOI: 10.1080/02688697.2021.1995589.
[10]
YANG J, WON J K, KIM K H, et al. Occult tethered cord syndrome: a rare, treatable condition[J]. Childs Nerv Syst, 2022, 38(2): 387-395. DOI: 10.1007/s00381-021-05353-y.
[11]
唐义锋, 王陈, 汪立刚, 等. 隐性脊髓栓系综合征的研究进展[J]. 中国临床神经外科杂志, 2018, 23(4): 289-291. DOI: 10.13798/j.issn.1009-153X.2018.04.024.
TANG Y F, WANG C, WANG L G, et al. Research progress on occult tethered cord syndrome[J]. Chin J Clin Neurosurg, 2018, 23(4): 289-291. DOI: 10.13798/j.issn.1009-153X.2018.04.024.
[12]
NAKANISHI K, TANAKA N, KAMEI N, et al. Use of prone position magnetic resonance imaging for detecting the terminal Filum in patients with occult tethered cord syndrome[J]. J Neurosurg Spine, 2013, 18(1): 76-84. DOI: 10.3171/2012.10.SPINE12321.
[13]
李浩, 范双石, 苏君, 等. 经小切口单侧椎间隙入路手术治疗儿童隐匿性脊髓栓系综合征的疗效分析[J]. 临床小儿外科杂志, 2021, 20(12): 1154-1158. DOI: 10.12260/lcxewkzz.2021.12.010.
LI H, FAN S S, SU J, et al. Unilateral intervertebral space approach through small incision for the treatment of occult tethered cord syndrome in children[J]. J Clin Pediatr Surg, 2021, 20(12): 1154-1158. DOI: 10.12260/lcxewkzz.2021.12.010.
[14]
YANG A, XIAO X H, WANG Z L, et al. Carotid wall imaging with 3D_T2_FFE: sequence parameter optimization and comparison with 3D_T2_SPACE[J/OL]. Sci Rep, 2021, 11(1): 2255 [2024-09-02]. https://pubmed.ncbi.nlm.nih.gov/33500428/. DOI: 10.1038/s41598-021-81309-1.
[15]
OZAKI S, OKAMOTO S, SHINOHARA N. 3D T2-weighted sampling perfection with application-optimized contrasts using different flip angle evolutions (SPACE) and 3D time-of-flight (TOF) MR angiography fusion imaging for occluded intracranial arteries[J]. J Neuroendovasc Ther, 2022, 16(9): 452-457. DOI: 10.5797/jnet.oa.2021-0102.
[16]
STAMATES M M, FRIM D M, YANG C W, et al. Magnetic resonance imaging in the prone position and the diagnosis of tethered spinal cord[J]. J Neurosurg Pediatr, 2018, 21(1): 4-10. DOI: 10.3171/2017.3.peds16596.
[17]
AOUN S G, AHMADIEH T Y EL, VANCE A Z, et al. The use of prone magnetic resonance imaging to rule out tethered cord in patients with structural spine anomalies: a diagnostic technical note for surgical decision-making[J/OL]. Cureus, 2019, 11(3): e4221 [2024-09-02]. https://pubmed.ncbi.nlm.nih.gov/31123643/. DOI: 10.7759/cureus.4221.
[18]
浦仁旺, 刘爱连, 王家正, 等. 不同压缩感知加速倍数对三维磁共振胰胆管成像图像质量的影响[J]. 实用放射学杂志, 2021, 37(1): 128-131. DOI: 10.3969/j.issn.1002-1671.2021.01.031.
PU R W, LIU A L, WANG J Z, et al. Influence of different compressed-sensing acceleration factors on three-dimensional magnetic resonance cholangiopancreatography image quality[J]. J Pract Radiol, 2021, 37(1): 128-131. DOI: 10.3969/j.issn.1002-1671.2021.01.031.
[19]
BARNAURE I, GALLEY J, FRITZ B, et al. Magnetic resonance imaging in the evaluation of cervical foraminal stenosis: comparison of 3D T2 SPACE with sagittal oblique 2D T2 TSE[J]. Skeletal Radiol, 2022, 51(7): 1453-1462. DOI: 10.1007/s00256-022-03988-9.
[20]
TANG Y, WU Y, ZHANG H, et al. Increased diagnostic confidence in the diagnosis of pituitary micro-lesions with the addition of three-dimensional sampling perfection with application-optimized contrasts using different flip-angle evolutions sequences[J]. Acta Radiol, 2019, 60(2): 213-220. DOI: 10.1177/0284185118774954.
[21]
TAYDAS O, OGUL H, GOZGEC E, et al. Evaluation of craniocervical pseudomeningoceles with three-dimensional T2-SPACE sequence at 3T[J]. Acta Radiol, 2021, 62(1): 80-86. DOI: 10.1177/0284185120912507.
[22]
HONG J J, KIM S, LEE G Y, et al. Demonstration of transverse ligament on 3D SPACE MRI in whiplash-associated disorder and nontraumatic conditions[J]. Eur Spine J, 2024, 33(3): 1171-1178. DOI: 10.1007/s00586-023-08079-4.
[23]
KONG C, LI X Y, SUN S Y, et al. The value of contrast-enhanced three-dimensional isotropic T2-weighted turbo spin-echo SPACE sequence in the diagnosis of patients with lumbosacral nerve root compression[J]. Eur Spine J, 2021, 30(4): 855-864. DOI: 10.1007/s00586-020-06600-7.
[24]
SAYAH A, KHAYAT E, LEE E C, et al. Accuracy of noncontrast T2 SPACE in active MS cord lesion detection[J]. AJNR Am J Neuroradiol, 2023, 44(12): 1458-1463. DOI: 10.3174/ajnr.A8060.
[25]
YAMAZAKI R, UCHIKOSHI M, HIURA Y, et al. T2 image contrast evaluation using three dimension sampling perfection with application optimized contrasts using different flip angle evolution (3D-SPACE)[J]. Nihon Hoshasen Gijutsu Gakkai Zasshi, 2011, 67(12): 1515-1522. DOI: 10.6009/jjrt.67.1515.
[26]
GOZGEC E, OGUL H, DURMUS H. Evaluation of anterior and middle cranial Fossa intraosseous arachnoid granulations with 3D T2-SPACE sequence[J]. Acta Neurol Belg, 2023, 123(5): 1861-1868. DOI: 10.1007/s13760-022-02097-7.
[27]
HOSSEIN J, FARIBORZ F, MEHRNAZ R, et al. Evaluation of diagnostic value and T2-weighted three-dimensional isotropic turbo spin-echo (3D-SPACE) image quality in comparison with T2-weighted two-dimensional turbo spin-echo (2D-TSE) sequences in lumbar spine MR imaging[J/OL]. Eur J Radiol Open, 2018, 6: 36-41 [2024-09-02]. https://pubmed.ncbi.nlm.nih.gov/30619918/. DOI: 10.1016/j.ejro.2018.12.003.
[28]
OUYANG F, WU Q, CHEN Y, et al. The value of 3D T2-weighted SPACE sequence in the differential diagnosis of spinal arteriovenous fistula and acute transverse myelitis[J]. Eur Spine J, 2023, 32(12): 4111-4117. DOI: 10.1007/s00586-023-07969-x.
[29]
HAKIM A, KURMANN C, POSPIESZNY K, et al. Diagnostic accuracy of high-resolution 3D T2-SPACE in detecting cerebral venous sinus thrombosis[J]. AJNR Am J Neuroradiol, 2022, 43(6): 881-886. DOI: 10.3174/ajnr.A7530.
[30]
CHEN W, NIU Y, LIN M Y, et al. Space-occupying lesions of the inner ear are easily misdiagnosed as endolymphatic Hydrops in a perilymph-enhanced sequence without the assistance of a heavily T2-weighted sequence[J]. J Comput Assist Tomogr, 2022, 46(5): 830-835. DOI: 10.1097/RCT.0000000000001331.
[31]
KINGER N P, CHIEN L C, SHARMA P S, et al. Comparison of 3D constructive interference in steady state (CISS) and T2 sampling perfection with application optimized contrasts using different flip angle evolution MR imaging of the intracranial trigeminal nerve and central skull base neuroforamina[J]. Neuroradiol J, 2022, 35(6): 678-683. DOI: 10.1177/19714009221084248.
[32]
SAMANCı R, OĞUL H, GÖKÇE A, et al. Investigation of incidental findings of temporomandibular joint disorders on brain magnetic resonance imaging in three-dimensional T2-weighted SPACE sequence performed for brain imaging[J]. Turk J Phys Med Rehabil, 2024, 70(1): 123-130. DOI: 10.5606/tftrd.2024.12538.
[33]
AMANO Y, ASAYAMA B, NORO S, et al. Objectively-captured changes in trigeminal fibers before and after microvascular decompression using 3D T2-SPACE MRI might relate to eventual residual symptoms[J]. Neurol Med Chir, 2023, 63(9): 400-408. DOI: 10.2176/jns-nmc.2022-0354.
[34]
KHALADKAR S, AJMERA P, RATHI S. Utility of 3D-T2 space MRI sequence in diagnosing a rare cause of lower backache: horseshoe cord and meningocoele manqué in a case of composite split cord malformation[J]. BMJ Case Rep, 2022, 15(3): e248615 [2024-09-02]. https://pubmed.ncbi.nlm.nih.gov/35351760/. DOI: 10.1136/bcr-2021-248615.

上一篇 基于体素内不相干运动扩散加权成像的虚拟磁共振弹性成像在髌下脂肪垫中的可重复性分析
下一篇 成人椎管内非典型脉络丛乳头状瘤一例
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2