分享:
分享到微信朋友圈
X
临床研究
基于多延迟动脉自旋标记成像的早产儿脑灌注模式研究
常苗 岳松虹 张静

Cite this article as: CHANG M, YUE S H, ZHANG J. Study on cerebral perfusion patterns in premature infants based on multi-delayed arterial spin labeling imaging[J]. Chin J Magn Reson Imaging, 2025, 16(2): 1-6, 13.本文引用格式:常苗, 岳松虹, 张静. 基于多延迟动脉自旋标记成像的早产儿脑灌注模式研究[J]. 磁共振成像, 2025, 16(2): 1-6, 13. DOI:10.12015/issn.1674-8034.2025.02.001.


[摘要] 目的 基于多延迟动脉自旋标记(multidelay arterial spin labeling, MDASL)探讨早产儿脑灌注随经后年龄(postmenstrual age, PMA)的变化轨迹以及足月等效年龄(term equivalent age, TEA)早产儿与正常足月儿的脑灌注差异。材料与方法 前瞻性纳入早产儿(胎龄<37 w)36例及正常足月儿(胎龄≥37 w)18例,其中18例TEA早产儿与14例正常足月儿的经后年龄相匹配;受试者均在3.0 T GE premier上行常规MRI及MDASL扫描,MDASL通过8次采集生成来自7个不同标记后延迟时间(post labeling delay, PLD)的脑血流量(cerebral blood flow, CBF)图像,原始图像经Functool软件处理得到动脉通过时间(arterial transit time, ATT)图和经ATT校正CBF(transit time–corrected cerebral blood flow, tCBF)图。使用线性回归分析早产儿与正常足月儿tCBF值随PMA的变化趋势,独立样本t检验用于分析TEA早产儿与足月儿的tCBF和ATT值差异。结果 正常足月儿与早产儿的所有区域(脑桥除外)tCBF值均随PMA增加而增长(P<0.05),其中小脑半球tCBF值变化程度最大,正常足月儿小脑半球的变化程度(b=0.829,P<0.05)较早产儿(b=0.518,P<0.05)更大;与正常足月儿相比,TEA早产儿额叶白质、颞叶白质、枕叶白质、额叶皮质、枕叶皮质、豆状核、尾状核、丘脑、海马、小脑半球及脑桥的tCBF值显著较高(P<0.05);正常足月儿额叶皮质、丘脑及海马的ATT值较TEA早产儿长(P<0.05)。结论 MDASL可以更准确显示早产儿与正常足月儿脑灌注的区域差异以及早期脑发育的时空轨迹。
[Abstract] Objective To explore the changes of cerebral perfusion in premature infants with postmenstrual age (PMA) and the differences in cerebral perfusion between premature infants and normal full-term infants at term equivalent age (TEA) based on multidelay arterial spin labeling (MDASL).Materials and Methods Prospective data collection included 36 premature infants (gestational age < 37 weeks) and 18 normal full-term infants (gestational age ≥ 37 weeks), of which 18 premature infants with TEA were matched with 14 normal full-term infants in terms of PMA. All subjects underwent conventional MRI and MDASL scanning at 3.0 T GE premier. MDASL generated cerebral blood flow (CBF) images from 7 different postlabeling delays (PLD) through 8 acquisitions. The original images were processed by functool software to obtain arterial transit times (ATT) and transit time–corrected cerebral blood flow (tCBF) images. Linear regression was used to analyze the trend of tCBF changes with PMA in premature infants and normal full-term infants, and independent sample t-test was used to analyze the differences in tCBF and ATT between premature infants and full-term infants with TEA.Results The tCBF of all regions (except the pons) of normal full-term and premature infants increased with the increase of PMA (P < 0.05), among which the tCBF of the cerebellar hemisphere changed the most. The change of the cerebellar hemisphere in normal full-term infants (b = 0.829, P < 0.05) was greater than that in premature infants (b = 0.518, P < 0.05). Compared with normal full-term infants, the tCBF of premature infants with TEA was significantly higher in frontal white matter, temporal white matter, occipital white matter, frontal cortex, occipital cortex, lenticular nucleus, caudate nucleus, thalamus, hippocampus, cerebellar hemisphere and pons (P < 0.05). ATT in frontal cortex, thalamus and hippocampus of normal full-term infants was longer than that of premature TEA infants (P < 0.05).Conclusions MDASL can more accurately show the regional differences in cerebral perfusion between premature infants and normal full-term infants and the spatiotemporal trajectory of early brain development.
[关键词] 早产儿;脑血流;多延迟动脉自旋标记;磁共振成像;动脉通过时间
[Keywords] premature infants;cerebral blood flow;multidelay arterial spin labeling;magnetic resonance imaging;arterial transit times

常苗 1, 2, 3   岳松虹 1, 2, 3   张静 1, 2, 3, 4*  

1 兰州大学第二医院核磁共振科,兰州 730030

2 兰州大学第二临床医学院,兰州 730030

3 甘肃省功能及分子影像临床医学研究中心,兰州 730030

4 甘肃省医用核磁共振装备应用行业技术中心,兰州 730030

通信作者:张静,E-mail: ery_zhangjing@lzu.edu.cn

作者贡献声明:张静设计本研究的方案,对稿件重要的智力内容进行了修改;常苗起草和撰写稿件,获取、分析和解释本研究的数据,获得了兰州市人才创新创业项目和甘肃省科技计划项目的资助;岳松虹获取、分析和解释本研究的数据,对稿件重要的智力内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 甘肃省科技计划项目 21JR7RA438 兰州市人才创新创业项目 2022-RC-74
收稿日期:2024-10-15
接受日期:2025-02-10
中图分类号:R445.2  R722.6 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.02.001
本文引用格式:常苗, 岳松虹, 张静. 基于多延迟动脉自旋标记成像的早产儿脑灌注模式研究[J]. 磁共振成像, 2025, 16(2): 1-6, 13. DOI:10.12015/issn.1674-8034.2025.02.001.

0 引言

       妊娠晚期是胎儿大脑发育的关键时期,早产可能会导致死亡、脑瘫和不同程度神经发育障碍[1, 2]。但是很多神经发育障碍早期表现隐匿,常致治疗延误,造成不可逆的损伤,因此,早期诊断及预测不良的神经发育结果尤为重要[3]。既往研究表明早产儿脑血流量(cerebral blood flow, CBF)与出生时的胎龄(gestational age, GA)显著相关,神经发育障碍的风险与GA呈负相关,CBF的变化有助于预测早产儿的神经发育结果[4, 5, 6, 7]。目前,动脉自旋标记成像(arterial spin labeling, ASL)是无创定量测量CBF的常用技术。既往单延迟ASL使用固定的动脉通过时间(arterial transit times, ATT)来近似地计算CBF值,而最近提出的Hadamard编码的多延迟ASL(multidelay ASL, MDASL)则可以在合理时间内校正ATT带来的误差获得更准确的CBF值及相应区域的ATT值[4, 8, 9, 10]。ATT值是ASL进行脑灌注评估中较大的一个误差来源,ATT的长短取决于年龄、不同的脑组织(灰质、白质)、病理生理状态等[10, 11, 12]。既往基于MDASL分析早产儿脑灌注的研究尚少,主要提示早产儿的区域脑灌注与经后年龄(postmenstrual age, PMA)有显著的相关性,但其在出生后随PMA的变化程度以及与同龄正常足月儿的差距尚不明确[4, 9]。此外,尚未有研究评估TEA早产儿与正常足月儿的区域ATT值及其二者之间的差异。本研究基于MDASL成像技术来评估早产儿与正常足月儿的脑灌注发育轨迹以及足月等效年龄(term equivalent age, TEA)早产儿与正常足月儿的脑灌注和动脉通过时间差异,旨在更准确地反映早产儿大脑的功能和发育状态,指导康复训练,进而改善早产儿的预后。

1 材料与方法

1.1 一般资料

       前瞻性纳入兰州大学第二医院自2023年3月至2023年12月期间的早产儿和健康足月儿。早产儿纳入标准:GA<37 w;排除标准:(1)有严重并发症,包括胆红素脑病、先天性感染、先天性代谢性疾病、颅脑畸形等中枢神经系统疾病;(2)MDASL图像中存在明显的运动伪影或部分像素丢失。正常足月儿纳入标准:GA≥37 w,患儿因喂养不良或面部畸形等进行MRI检查;排除标准:缺氧缺血性脑病、窒息、癫痫、先天性心脏病或其他可能影响脑血流的疾病。共纳入早产儿36例(男22例,女14例)、足月儿共18例(男9例,女9例),两组新生儿性别、GA、PMA及Apgar评分见表1。本研究设计遵守《赫尔辛基宣言》,并经医院伦理委员会批准,批准文号:2023A-317,受试者家属均签署了知情同意书。

表1  一般临床特征
Tab. 1  General clinical features

1.2 影像学检查

       所有患儿均在3.0 T磁共振扫描仪(GE premier 3.0 T)上采集,使用16通道相控阵列婴儿专用头颅线圈。在MRI检查前15~20分钟,直肠给水合氯醛(0.5 mL/kg)进行镇静,扫描时使用海绵固定新生儿头部,静音耳塞隔绝噪音。一名新生儿科医生在整个MRI检查过程中都在场监测新生儿状态。

       检查序列包括常规MRI和增强型ASL(enhanced ASL, eASL)序列,MDASL是GE基于Hadamard编码的伪连续动脉自旋标记(pseudo-continuous ASL, pCASL)模块,使用螺旋堆叠/分段/3D快速自旋回波组成的脉冲序列采集数据。成像参数如下:TR 6359 ms,TE 14.2 ms,层厚3.5 mm,翻转角111°,FOV 180 mm×180 mm,矩阵128×128,总扫描时间为7 min。7个标记后延迟时间(postlabeling delay, PLD)分别为1000、1360、1740、2140、2580、3070、3660 ms,血液弛豫时间(T1b)选择了固定值1600 ms, 这是因为部分患儿来源于门诊,血细胞比容的资料未采集。选择7个PLD是因为VAN DER THIEL等[13]研究发现7个PLD比3个PLD的ASL估计的CBF值更高,且KIM等[4, 9]对于新生儿和婴儿的两项MDASL研究获得的经ATT校正CBF(transit time-corrected CBF, tCBF)值更接近正电子发射型计算机断层显像(positron emission computed tomography, PET)的研究。

1.3 图像处理

       MDASL通过8次采集生成来自7个PLD的CBF图像及M0图,使用Functool软件将CBF图像和M0图结合起来,基于Hadamard解码矩阵获取相应ATT定量图和经ATT校正的CBF定量图。

       采用手动勾画感兴趣区(region of interest, ROI),在六个层面上进行勾画,如图1所示,选取了25个ROI,分别是双侧额叶白质、顶叶白质、颞叶白质、枕叶白质、半卵圆中心、额叶皮质、枕叶皮质、豆状核、尾状核、丘脑、海马、小脑半球,还有脑桥,未使用共同配准,通过同时查看tCBF图和相应的T2加权图像,进行解剖定位,对侧ROI采用镜像画法使其处于对称位置,ROI的范围取决于感兴趣区域的位置,其中额叶白质、顶叶白质、颞叶白质、枕叶白质、半卵圆中心、豆状核、丘脑、海马、小脑半球、脑桥的ROI大小约为(45±5)mm2,额叶皮质、枕叶皮质、尾状核的ROI大小约为(35±5)mm2

       为了确保所有新生儿的ROI范围和位置基本相同,减少误差,所有数据均由两名五年以上主治资质医生协商完成,每个医生分别测量ROI两次,取平均值,最终结果取两个医生测得结果的平均值。

图1  女,正常足月儿,出生时胎龄为37 w+5 d,经后年龄为44 w+2 d,ROI测量示例图。1A~1B:脑桥、小脑半球;1C~1D:海马;1E~1F:颞叶白质、枕叶白质、枕叶皮质;1G~1H:豆状核、尾状核、丘脑;1I~1J:额叶白质、额叶皮质、顶叶白质;1K~1L:半卵圆中心。
Fig. 1  Normal full-term infant, female, gestational age at birth was 37 w + 5 d, postmenstrual age was 44 w + 2 d, ROI measurement examples diagram. 1A-1B: Pons, cerebellar hemisphere; 1C-1D: Hippocampus; 1E-1F: Temporal lobe white matter, occipital lobe white matter, occipital cortex; 1G-1H: Lentiform nucleus, caudate nucleus, thalamus; 1I-1J: Frontal lobe white matter, frontal lobe cortex, parietal lobe white matter; 1K-1L: Basal ganglia area of centrum semiovale.

1.4 统计学分析

       采用SPSS 26.0软件(IBM SPSS Statistics 26.0)对数据进行统计学分析,GraphPad Prism 9.0作图,计量资料若符合正态分布以均数±标准差表示,采用独立样本t检验;性别分析使用卡方检验;使用线性回归分析早产儿与正常足月儿的tCBF随PMA的变化趋势;此外,选取18例TEA早产儿及正常足月儿14例,这18例早产儿的出生后年龄与14例正常足月儿相匹配,使用独立样本t检验分析TEA早产儿及足月儿同一ROI的tCBF与ATT值的差异,根据方差齐性检验结果,使用Bonferroni进行多重比较校正。P<0.05认为差异有统计学意义。

2 结果

2.1 一般临床特征比较

       两组新生儿之间的临床特征比较见表1,结果显示胎龄(gestational age, GA)、经后年龄(postmenstrual age, PMA)、1分钟和5分钟Apgar评分之间差异有统计学意义(P<0.05),性别之间差异无统计学意义。

2.2 早产儿与正常足月儿的tCBF值随PMA的变化轨迹

       线性回归分析早产儿与正常足月儿的tCBF值随PMA的变化轨迹发现早产儿与正常足月儿的所有区域tCBF值(除脑桥外)均随PMA增加而增长,其中小脑半球tCBF值变化程度最大,正常足月儿小脑半球的tCBF值变化程度(b=0.829,P<0.05)较早产儿(b=0.518,P<0.05)更大;早产儿与正常足月儿的额叶皮质tCBF值的变化程度均较枕叶皮质大;白质区域tCBF值的变化程度普遍较小。早产儿和正常足月儿的tCBF值随着PMA的增加逐渐开始趋于一致(图2)。

图2  早产儿与正常足月儿区域tCBF值随PMA的变化趋势图。R2是线性回归拟合度。tCBF:经动脉通过时间校正的脑血流量;PMA:经后年龄。
Fig. 2  The changing tendency chart of regional tCBF with PMA in premature infants and normal term infants. R2 is the linear regression fitting degree. tCBF: transit time–corrected cerebral blood flow; PMA: postmenstrual age.

2.3 TEA早产儿与健康足月儿的区域tCBF与ATT值的差异

       选取TEA早产儿18例[PMA为(279±13)天]与正常足月儿14例[PMA为(285±11)天],选取的早产儿经后年龄处于足月等效年龄,与选取的正常足月儿的PMA相匹配,对这两组进行独立样本t检验分析TEA早产儿与健康足月儿的区域tCBF与ATT值显示,与正常足月儿相比,TEA早产儿额叶白质、颞叶白质、枕叶白质、额叶皮质、枕叶皮质、豆状核、尾状核、丘脑、海马、小脑半球及脑桥的tCBF值显著较高(P<0.05)(表2图3);TEA早产儿的额叶皮质、丘脑及海马的ATT值较短(P<0.05)(表3)。

图3  TEA早产儿与正常足月儿的区域tCBF值差异。*:P<0.05,两组比较差异有统计学意义;**:P<0.001,两组比较差异有显著统计学意义。TEA:足月等效年龄;tCBF:经动脉通过时间校正的脑血流量。
Fig. 3  Differences in regional tCBF between TEA premature infants and normal term infants. *: P < 0.05, the difference between the two groups is statistically significant; **: P < 0.001, the difference between the two groups is statistically significant. TEA: term equivalent age; tCBF: transit time–corrected cerebral blood flow.
表2  TEA早产儿与正常足月儿的区域tCBF值比较
Tab. 2  Comparison of regional tCBF between premature infants and term infants in TEA
表3  TEA早产儿与正常足月儿区域ATT值比较
Tab. 3  Comparison of regional ATT values between TEA premature infants and healthy term infants

3 讨论

       本研究使用MDASL探究早产儿及正常足月儿的区域脑灌注随PMA的变化轨迹以及TEA早产儿与正常足月儿的tCBF与ATT值差异,结果显示早产儿与正常足月儿的所有区域tCBF值(除脑桥外)均随PMA增加而增长,其中小脑半球tCBF值变化程度最大,正常足月儿小脑半球tCBF值的变化程度较早产儿更大;早产儿与正常足月儿的额叶皮质tCBF值的变化程度均较枕叶皮质大;白质区域tCBF值的变化程度普遍较小。与正常足月儿相比,TEA早产儿额叶白质、颞叶白质、枕叶白质、额叶皮质、枕叶皮质、豆状核、尾状核、丘脑、海马、小脑半球及脑桥的tCBF值显著较高,TEA早产儿的额叶皮质、丘脑及海马的ATT值较短。

3.1 MDASL成像技术

       新生儿CBF值较低,血流速度较慢,在这类人群中应用ASL需要注意选择合适的PLD[14],ASL的成像理论表明PLD越接近ATT值,CBF值越准确,当PLD短于ATT,图像采集时标记的血液留在血管内,尚未进入脑组织,区域CBF值可能会被高估或低估,当PLD长于ATT,信号将随T1弛豫时间延长而衰减,CBF值将被低估[15]。MDASL是在多个PLD时间点进行采样,可以校正ATT与选择的PLD不匹配带来的误差,而且除CBF值指标外,还可以获得ATT值[16]以及反映部分疾病造成的延迟灌注[17, 18]。此外,MDASL的延迟数量尚未有明确共识,它需要平衡CBF和ATT值的准确度、精度与扫描时间,主要取决于解剖结构和特定应用[8, 19]。VAN DER THIEL等[13]研究发现7个PLD比3个PLD的ASL估计的CBF值更高。而且ALEXANDER等使用7个PLD进行研究认为进行ATT校正的CBF值有较高的纵向可重复性[20]。因此,本研究应用了7个PLD的MDASL来获取较准确的CBF值以及ATT值。

3.2 早产儿与正常足月儿脑灌注随经后年龄的变化轨迹分析

       随着PMA的增加,大脑tCBF值增加,这反映了出生后早期大脑发育的加速以及对氧气和营养物质的代谢需求的增加[21]。但是,不同大脑区域的tCBF值变化存在显著差异[22]。本研究发现早产儿和正常足月儿小脑半球的tCBF值的变化程度最大,这与ZUN等[23]的纵向研究结果一致,可能是因为在妊娠晚期和出生后早期小脑半球的体积增长最快[24, 25]。与深部灰质与皮质的变化程度相比,白质的变化程度较小,这与结构的发育有显著的相关性[26, 27],本研究显示额叶皮质的tCBF值变化程度较枕叶更大,这与OUYANG等[28]的研究一致,在新生儿扫描时自然睡眠且没有视觉刺激可能导致枕叶皮质的CBF值持续较低。此外,与正常足月儿相比,早产儿大部分区域的变化程度较小,这可能是因为早产儿脑发育本身处于相对不成熟的状态,在发育过程中落后于正常足月儿[29]。脑桥的tCBF值没有表现出随出生后年龄的增加而增长的规律,可能是因为在宫内时就处于较高的发育阶段,出生后短期内没有明显的变化趋势[30]

3.3 足月等效年龄早产儿与正常足月儿tCBF与ATT值的差异分析

       本研究获得的TEA早产儿区域tCBF值与KIM等的研究最具可比性,该研究进行了多重延迟采集、ATT校正和血液及组织T1校正[4],本研究的区域tCBF值高于该研究,这可能是由于未进行个体血液及组织T1弛豫时间校正,造成CBF值的高估。此外,ZUN等使用单个PLD的ASL研究进行了血液T1弛豫时间校正,该研究获得的区域CBF值低于本研究[23]。ANDERSEN等[31]研究发现健康足月儿的额叶及枕叶白质以及丘脑tCBF值与PET获取的结果相近,而PET是评估脑灌注的金标准,这说明MDASL经过ATT校正获得的tCBF值更接近绝对值,是准确评估脑血流变化的有效手段。

       与正常足月儿相比,TEA早产儿额叶白质、颞叶白质、枕叶白质、额叶皮质、枕叶皮质、豆状核、尾状核、丘脑、海马、小脑半球及脑桥的tCBF值更高,出现这种结果的原因很复杂,目前认为可能与早产儿副交感神经控制受损、宫外环境刺激导致依赖于经验的皮层发育使得局部大脑代谢需求改变、树突树枝状化和突触形成有关[28, 32, 33]

       此外使用MDASL还可以获得区域ATT值,来确认最佳的PLD[15]。本研究发现正常足月儿额叶皮质、丘脑及海马的ATT较TEA早产儿长,这可能是因为足月儿的脑血管发育及自动调节机制较早产儿成熟,动脉标记信号到达脑组织较慢[34]。KIM等[4]研究发现灰质ATT中位数(2122~2170 ms)略短于白质(2193~2229 ms),但二者之间无明显的差异,这可能是由于本研究未进行血液及组织T1弛豫时间校正带来的误差,未来应该在更大的研究队列中验证本研究的结果。

3.4 局限性

       血液T1弛豫时间是ASL成像量化CBF值的重要参数,血液T1弛豫时间强烈依赖于血细胞比容,新生儿血细胞比容的变化很大,并随孕周和产后年龄而波动[35]。本研究缺乏特定于受试者对于血液T1弛豫时间的估计,使用标准T1弛豫时间来量化 CBF值,忽略了受试者间变异性,无法进行受试者或组之间准确CBF值比较。

       本研究区域ROI进行手动勾画,可能会导致测量人员依赖性偏差、可靠性低以及过度关注特定结构,未来可以采用自动分割来减小误差。

       本研究样本量少,减少了对组间差异的识别,未来应该在更大的队列中验证本研究的结果。

4 结论

       MDASL可以更准确显示TEA早产儿与正常足月儿脑灌注的区域差异以及早期脑发育的时空轨迹。

[1]
BELL E F, HINTZ S R, HANSEN N I, et al. Mortality, In-Hospital Morbidity, Care Practices, and 2-Year Outcomes for Extremely Preterm Infants in the US, 2013-2018[J]. JAMA, 2022, 327(3): 248-263. DOI: 10.1001/jama.2021.23580.
[2]
JAIN S, PATEL P, PANDYA N, et al. Neurodevelopmental Outcomes in Preterm Babies: A 12-Month Observational Study[J/OL]. Cureus, 2023, 15(10): e47775 [2024-10-15]. https://dx.doi.org/10.7759/cureus.47775. DOI: 10.7759/cureus.47775.
[3]
HIJMAN A S, WEHRLE F M, LATAL B, et al. Cerebral perfusion differences are linked to executive function performance in very preterm-born children and adolescents[J/OL]. Neuroimage, 2024, 285: 120500 [2024-10-15]. https://dx.doi.org/10.1016/j.neuroimage.2023.120500. DOI: 10.1016/j.neuroimage.2023.120500.
[4]
KIM H G, CHOI J W, LEE J H, et al. Association of Cerebral Blood Flow and Brain Tissue Relaxation Time With Neurodevelopmental Outcomes of Preterm Neonates: Multidelay Arterial Spin Labeling and Synthetic MRI Study[J]. Invest Radiol, 2022, 57(4): 254-262. DOI: 10.1097/rli.0000000000000833.
[5]
PICCIRILLI E, CHIARELLI A M, SESTIERI C, et al. Cerebral blood flow patterns in preterm and term neonates assessed with pseudo-continuous arterial spin labeling perfusion MRI[J]. Hum Brain Mapp, 2023, 44(9): 3833-3844. DOI: 10.1002/hbm.26315.
[6]
DUBOIS M, LEGOUHY A, COROUGE I, et al. Multiparametric Analysis of Cerebral Development in Preterm Infants Using Magnetic Resonance Imaging[J/OL]. Front Neurosci, 2021, 15: 658002 [2024-10-15]. https://dx.doi.org/10.3389/fnins.2021.658002. DOI: 10.3389/fnins.2021.658002.
[7]
CHENG W, ZHAO Y, LIU C, et al. Investigation of the catch-up status and termination for corrected age of neurodevelopment in premature infants of different gestational ages[J]. Transl Pediatr, 2024, 13(11): 1913-1922. DOI: 10.21037/tp-24-243.
[8]
WOODS J G, ACHTEN E, ASLLANI I, et al. Recommendations for quantitative cerebral perfusion MRI using multi-timepoint arterial spin labeling: Acquisition, quantification, and clinical applications[J]. Magn Reson Med, 2024, 92(2): 469-495. DOI: 10.1002/mrm.30091.
[9]
KIM H G, LEE J H, CHOI J W, et al. Multidelay Arterial Spin-Labeling MRI in Neonates and Infants: Cerebral Perfusion Changes during Brain Maturation[J]. AJNR Am J Neuroradiol, 2018, 39(10): 1912-1918. DOI: 10.3174/ajnr.A5774.
[10]
ZHAO M Y, FAN A P, CHEN D Y, et al. Using arterial spin labeling to measure cerebrovascular reactivity in Moyamoya disease: Insights from simultaneous PET/MRI[J]. J Cereb Blood Flow Metab, 2022, 42(8): 1493-1506. DOI: 10.1177/0271678x221083471.
[11]
HU Y, ZHANG K, LIU R. The effect of post-labeling delay on cerebral blood flow is influenced by age and sex: a study based on arterial spin-labeling magnetic resonance imaging[J]. Quant Imaging Med Surg, 2024, 14(7): 4388-4402. DOI: 10.21037/qims-23-1622.
[12]
李清清, 陈飞, 钟建国, 等. 多标记后延迟时间动脉自旋标记成像在健康人脑解剖亚区血流定量分析中的应用[J]. 中华内科杂志, 2022, 61(8): 908-915. DOI: 10.3760/cma.j.cn112138-20211013-00703.
LI Q Q, CHEN F, ZHONG J G, et al. Application of multiple post labeling delay time arterial spin labeling imaging in the quantitative blood flow analysis of brain subregions in healthy adults[J]. Zhonghua Nei Ke Za Zhi, 2022, 61(8): 908-915. DOI: 10.3760/cma.j.cn112138-20211013-00703.
[13]
VAN DER THIEL M, RODRIGUEZ C, GIANNAKOPOULOS P, et al. Brain Perfusion Measurements Using Multidelay Arterial Spin-Labeling Are Systematically Biased by the Number of Delays[J]. AJNR Am J Neuroradiol, 2018, 39(8): 1432-1438. DOI: 10.3174/ajnr.A5717.
[14]
GOLAY X, HO M L. Multidelay ASL of the pediatric brain[J/OL]. Br J Radiol, 2022, 95(1134): 20220034 [2024-10-15]. https://dx.doi.org/10.1259/bjr.20220034. DOI: 10.1259/bjr.20220034.
[15]
HU Y, LV F, LI Q, et al. Effect of post-labeling delay on regional cerebral blood flow in arterial spin-labeling MR imaging[J/OL]. Medicine (Baltimore), 2020, 99(27): e20463 [2024-10-15]. https://dx.doi.org/10.1097/md.0000000000020463. DOI: 10.1097/md.0000000000020463.
[16]
DAI W, FONG T, JONES R N, et al. Effects of arterial transit delay on cerebral blood flow quantification using arterial spin labeling in an elderly cohort[J]. J Magn Reson Imaging, 2017, 45(2): 472-481. DOI: 10.1002/jmri.25367.
[17]
HARA S, TANAKA Y, UEDA Y, et al. Noninvasive Evaluation of CBF and Perfusion Delay of Moyamoya Disease Using Arterial Spin-Labeling MRI with Multiple Postlabeling Delays: Comparison with (15)O-Gas PET and DSC-MRI[J]. AJNR Am J Neuroradiol, 2017, 38(4): 696-702. DOI: 10.3174/ajnr.A5068.
[18]
LINDNER T, CHENG B, HEINZE M, et al. A comparative study of multi and single post labeling delay pseudocontinuous arterial spin labeling in patients with carotid artery stenosis[J]. Magn Reson Imaging, 2024, 106: 18-23. DOI: 10.1016/j.mri.2023.11.011.
[19]
ALSOP D C, DETRE J A, GOLAY X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia[J]. Magn Reson Med, 2015, 73(1): 102-116. DOI: 10.1002/mrm.25197.
[20]
COHEN A D, AGARWAL M, JAGRA A S, et al. Longitudinal Reproducibility of MR Perfusion Using 3D Pseudocontinuous Arterial Spin Labeling With Hadamard-Encoded Multiple Postlabeling Delays[J]. J Magn Reson Imaging, 2020, 51(6): 1846-1853. DOI: 10.1002/jmri.27007.
[21]
CHUGANI H T. Imaging Brain Metabolism in the Newborn[J]. J Child Neurol, 2018, 33(13): 851-860. DOI: 10.1177/0883073818792308.
[22]
QIN C, ZHAO X, SHEN Y, et al. Evaluation of the effect of intraventricular haemorrhage on cerebral perfusion in preterm neonates using three-dimensional pseudo-continuous arterial spin labelling[J]. Pediatr Radiol, 2024, 54(5): 776-786. DOI: 10.1007/s00247-024-05865-0.
[23]
ZUN Z, KAPSE K, JACOBS M, et al. Longitudinal Trajectories of Regional Cerebral Blood Flow in Very Preterm Infants during Third Trimester Ex Utero Development Assessed with MRI[J]. Radiology, 2021, 299(3): 691-702. DOI: 10.1148/radiol.2021202423.
[24]
LIMPEROPOULOS C, SOUL J S, GAUVREAU K, et al. Late gestation cerebellar growth is rapid and impeded by premature birth[J]. Pediatrics, 2005, 115(3): 688-695. DOI: 10.1542/peds.2004-1169.
[25]
TATARANNO M L, CLAESSENS N H P, MOESKOPS P, et al. Changes in brain morphology and microstructure in relation to early brain activity in extremely preterm infants[J]. Pediatr Res, 2018, 83(4): 834-842. DOI: 10.1038/pr.2017.314.
[26]
CONTE S, ZIMMERMAN D, RICHARDS J E. White matter trajectories over the lifespan[J/OL]. PLoS One, 2024, 19(5): e0301520 [2024-10-15]. https://dx.doi.org/10.1371/journal.pone.0301520. DOI: 10.1371/journal.pone.0301520.
[27]
LEHTOLA S J, TUULARI J J, KARLSSON L, et al. Associations of age and sex with brain volumes and asymmetry in 2-5-week-old infants[J]. Brain Struct Funct, 2019, 224(1): 501-513. DOI: 10.1007/s00429-018-1787-x.
[28]
OUYANG M, LIU P, JEON T, et al. Heterogeneous increases of regional cerebral blood flow during preterm brain development: Preliminary assessment with pseudo-continuous arterial spin labeled perfusion MRI[J]. Neuroimage, 2017, 147: 233-242. DOI: 10.1016/j.neuroimage.2016.12.034.
[29]
BOUYSSI-KOBAR M, MURNICK J, BROSSARD-RACINE M, et al. Altered Cerebral Perfusion in Infants Born Preterm Compared with Infants Born Full Term[J/OL]. J Pediatr, 2018, 193: 54-61.e2 [2024-10-15]. https://dx.doi.org/10.1016/j.jpeds.2017.09.083. DOI: 10.1016/j.jpeds.2017.09.083.
[30]
CHANDRA SEKHAR P, RANGASAMI R, ANDREW C, et al. Measurement of apparent diffusion coefficient (ADC) in fetal organs and placenta using 3 Tesla magnetic resonance imaging (MRI) across gestational ages[J/OL]. Sci Rep, 2024, 14(1): 23811 [2024-10-15]. https://dx.doi.org/10.1038/s41598-024-73902-x. DOI: 10.1038/s41598-024-73902-x.
[31]
ANDERSEN J B, LINDBERG U, OLESEN O V, et al. Hybrid PET/MRI imaging in healthy unsedated newborn infants with quantitative rCBF measurements using (15)O-water PET[J]. J Cereb Blood Flow Metab, 2019, 39(5): 782-793. DOI: 10.1177/0271678x17751835.
[32]
BREW N, WALKER D, WONG F Y.Cerebral vascular regulation and brain injury in preterm infants[J/OL]. Am J Physiol Regul Integr Comp Physiol, 2014, 306(11): R773-786 [2024-10-15]. https://dx.doi.org/10.1152/ajpregu.00487.2013. DOI: 10.1152/ajpregu.00487.2013.
[33]
FYFE K L, YIALLOUROU S R, WONG F Y, et al. The development of cardiovascular and cerebral vascular control in preterm infants[J]. Sleep Med Rev, 2014, 18(4): 299-310. DOI: 10.1016/j.smrv.2013.06.002.
[34]
RHEE C J, DA COSTA C S, AUSTIN T, et al. Neonatal cerebrovascular autoregulation[J]. Pediatr Res, 2018, 84(5): 602-610. DOI: 10.1038/s41390-018-0141-6.
[35]
DE VIS J B, HENDRIKSE J, GROENENDAAL F, et al. Impact of neonate haematocrit variability on the longitudinal relaxation time of blood: Implications for arterial spin labelling MRI[J]. Neuroimage Clin, 2014, 4: 517-525. DOI: 10.1016/j.nicl.2014.03.006.

上一篇 全身磁共振成像在血液系统肿瘤中的诊疗进展
下一篇 3D-pCASL在评估妊娠期高血压对早产儿脑发育影响中的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2