分享:
分享到微信朋友圈
X
临床研究
扩散峰度成像定量参数术前预测直肠癌肿瘤出芽分级的价值
陈安良 谢素玲 王悦 董德硕 田士峰 魏强 刘爱连

Cite this article as: CHEN A L, XIE S L, WANG Y, et al. The value of quantitative parameters of diffusion kurtosis imaging in preoperative prediction of tumor budding grade of rectal cancer[J]. Chin J Magn Reson Imaging, 2025, 16(2): 59-64, 99.本文引用格式:陈安良, 谢素玲, 王悦, 等. 扩散峰度成像定量参数术前预测直肠癌肿瘤出芽分级的价值[J]. 磁共振成像, 2025, 16(2): 59-64, 99. DOI:10.12015/issn.1674-8034.2025.02.009.


[摘要] 目的 研究磁共振扩散峰度成像(diffusion kurtosis imaging, DKI)定量参数预测直肠癌肿瘤出芽(tumor budding, TB)分级的价值。材料与方法 回顾性分析术前行3.0 T MR检查并经手术病理证实113例直肠腺癌患者资料,按照术后病理TB分为TB中低级别组(75例)、TB高级别组(38例)。两名观察者分别测量两组病灶扩散加权成像(diffusion weighted imaging, DWI)、DKI定量参数值,包括表观扩散系数(apparent diffusion coefficient, ADC)值、各向异性分数(fractional anisotropy, FA)值、平均扩散系数(mean diffusivity, MD)值、平均扩散峰度(mean kurtosis, MK)值。使用组内相关系数(intra-class correlation coefficient, ICC)检验两名观察者各参数值测量一致性。使用独立样本t检验或Mann-Whitney U检验分析各参数两组间差异性,并通过受试者工作特征(receiver operating characteristic, ROC)曲线评价单参数及联合参数诊断效能。使用DeLong检验比较各参数诊断效能。结果 两观察者测量的各定量数据一致性良好(ICC值均>0.75)。TB中低级别组MK值为0.762±0.127,低于TB高级别组的MK值(0.962±0.120);中低级别组ADC、MD值分别为1.157(1.043,1.317)×10-3 mm2/s、(1.377±0.265)μm2/ms,皆高于高级别组[0.964(0.869,1.069)×10-3 mm2/s、(1.114±0.135)μm2/ms];参数两组间差异具有统计学意义(P<0.05)。两组间FA值差异无统计学意义。ADC、MD、MK值预测TB分级的AUC分别为0.805、0.816、0.880,敏感度分别为73.7%、92.1%、76.3%,特异度分别为78.7%、68.0%、86.7%。MK值诊断效能优于ADC及MD值,差异具有统计学意义(P<0.05)。联合参数的AUC值为0.826~0.881,与MK值的AUC值差异无统计学意义。结论 DKI定量参数MK与MD值对术前无创预测直肠癌TB状态具有较好的应用价值,能够为临床对患者提供不同诊疗计划提供帮助。
[Abstract] Objective To investigate the value of multiple quantitative parameters of magnetic resonance diffusion kurtosis imaging (DKI) in predicting tumor budding (TB) grade of rectal cancer.Materials and Methods Retrospective analysis of data from 113 patients with rectal adenocarcinoma who underwent preoperative 3.0 T MR examination and were confirmed by surgical pathology, including 75 patients in low-medium grade TB group and 38 patients in high grade TB group. The diffusion weighted imaging (DWI) and DKI quantitative parameter values of the lesions in two groups were recorded, including the apparent diffusion coefficient (ADC) value, fractional anisotropy (FA) value, mean diffusivity (MD) value, mean kurtosis (MK) value. The intra-class correlation coefficient (ICC) test was used to evaluate the measurement consistency of each parameter value between two observers. The independent samples t-test or Mann-Whitney U test was used to analyze the differences between the two groups of parameters, and the diagnostic performances of single parameter and combined parameters were evaluated through the receiver operating characteristic (ROC) curve. The DeLong test was used to compare the performance of each parameter.Results The agreement between the two observers for each parameter value was good (ICC > 0.75). The MK value of the low-medium grade group was 0.762 ± 0.127, which was lower than the high grade group with the value of 0.962 ± 0.120. The ADC and MD values of the low-medium grade groups were 1.157 (1.043, 1.317) × 10-3 mm2/s and (1.377 ± 0.265) μm2/ms, which were all higher than those of the high grade group with the value of 0.964 (0.869, 1.069) × 10-3 mm2/s and (1.114 ± 0.135) μm2/ms, respectively, the difference of each parameter was statistically significant (P < 0.05). There was no statistically significant difference in FA values between the two groups. The areas under the curve (AUC) of ADC, MD and MK values in predicting TB grade were 0.805, 0.816, 0.880, with the sensitivities of 73.7%, 92.1%, 76.3%, and the specificities of 78.7%, 68.0%, 86.7%, respectively. The diagnostic performance of MK value was better than ADC and MD values (P < 0.05). The AUC values of the combined parameters ranged from 0.826 to 0.881, and there was no statistically significant difference in AUC value compared to the MK value.Conclusions The DKI quantitative parameters MK and MD demonstrated significant utility in the non-invasive preoperative prediction of TB status in rectal cancer, thereby assisting clinicians in formulating tailored treatment strategies for patients.
[关键词] 直肠癌;肿瘤出芽;磁共振成像;扩散峰度成像;扩散加权成像
[Keywords] rectal cancer;tumor budding;magnetic resonance imaging;diffusion kurtosis imaging;diffusion-weighted imaging

陈安良 1, 2   谢素玲 3   王悦 1   董德硕 1   田士峰 1, 2   魏强 1   刘爱连 1, 2*  

1 大连医科大学附属第一医院放射科,大连 116011

2 大连市医学影像人工智能工程技术研究中心,大连 116011

3 大连医科大学附属第一医院病理科,大连 116011

通信作者:刘爱连,E-mail: cjr.liuailian@vip.163.com

作者贡献声明:刘爱连设计本研究的方案,对稿件重要内容进行了修改,获得了大连医科大学附属第一医院院内基金项目资助;陈安良起草和撰写稿件,获取、分析及解释本研究的数据;谢素玲、王悦、董德硕、田士峰、魏强获取、分析或解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 大连医科大学附属第一医院院内基金项目 2019HZ007
收稿日期:2024-09-09
接受日期:2025-02-10
中图分类号:R445.2  R735.37 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.02.009
本文引用格式:陈安良, 谢素玲, 王悦, 等. 扩散峰度成像定量参数术前预测直肠癌肿瘤出芽分级的价值[J]. 磁共振成像, 2025, 16(2): 59-64, 99. DOI:10.12015/issn.1674-8034.2025.02.009.

0 引言

       国家癌症中心发布2022年我国癌症统计数据,结直肠癌在癌症中的发病率排名第二,同时也是导致癌症死亡的第四大原因[1],极大地影响着患者的日常生活及生命健康。肿瘤出芽(tumor budding, TB)指结直肠癌浸润侧前沿处的间质内散在单个或多达四个肿瘤细胞的细胞簇,是从局灶向全身转移的潜在因素,可影响手术方案的选择,以及是否需要新辅助治疗[2, 3, 4],因此2020版中国结直肠癌诊疗规范在病理学方面增加了TB这一指标[3]。目前TB的诊断依赖于手术后病理,因此,术前影像学无创评估TB状态具有重要的临床意义。CHONG等[5]首次利用影像学方法预测TB状态,使用正电子发射计算机体层成像(positron emission tomography-computed tomography, PET-CT)影像组学成功建立宫颈癌患者TB状态预测模型,GRANATA等[6]基于CT门脉期图像纹理特征评估了结直肠癌肝转移瘤TB状态,说明影像学在预测肿瘤TB状态具有一定潜力。目前为止,已有基于b阈值图[7]、扩散加权成像(diffusion-weighted imaging, DWI)[7]、动态对比增强磁共振成像(dynamic contrast-enhanced MRI, DCE-MRI)[8]、MRI影像组学模型[9, 10]、CT及MRI多模态深度学习模型[11, 12]方法术前评估直肠癌TB状态,具有良好的预测价值。扩散峰度成像(diffusion kurtosis imaging, DKI)作为一种非高斯分布模型的DWI衍生序列,可对组织内来自细胞膜和细胞外基质等微观结构的水分子扩散情况进行真实客观的描述[13, 14],已应用于直肠癌分期[15]、分级及病理分型[15, 16]、微卫星不稳定状态[17]、淋巴结转移及壁外血管侵犯[18]、新辅助治疗[19, 20, 21]等方面的研究,但尚未见应用DKI预测直肠癌TB状态的报道。本研究旨在探讨应用DKI技术术前预测直肠癌TB状态的价值。

1 材料与方法

1.1 研究对象

       本研究遵守《赫尔辛基宣言》,经大连医科大学附属第一医院伦理委员会批准,免除受试者知情同意,批准文号:PJ-KS-KY-2019-49。回顾性分析2015年9月至2024年2月于我院行GE 3.0 T MRI检查,且一周内经手术后病理检查证实为直肠腺癌患者资料。纳入标准:(1)患者临床资料完整;(2)MRI检查包含DKI序列;(3)病理含TB信息;(4)术前未接受新辅助治疗或靶向治疗。排除标准:(1)DKI图像拟合度差或伪影重(4例);(2)病灶大小无法确认病灶DWI及DKI位置(2例)。最终入组113例患者病例。

1.2 扫描方法及技术参数

       采用3.0 T磁共振扫描仪(GE Signa HDxt, USA)进行盆腔MRI扫描,使用8通道腹部线圈,扫描前4小时嘱患者禁食水,保持肠道清洁,准备好静脉通路并嘱咐患者练习呼气末憋气。患者采取仰卧位。扫描序列包括冠状位、矢状位、轴位T2WI以及轴位DWI、DKI、DCE-MRI序列,扫描方案详见表1

表1  MRI扫描序列及参数
Tab. 1  MRI scan sequence and parameters

1.3 临床及病理资料

       记录如下临床资料:便血、肠癌家族史、癌胚抗原(carcinoembryonic antigen, CEA)水平(0~5 ng/mL为正常,大于5 ng/mL为升高)、CA19-9水平(0~27 U/mL为正常,大于27 U/mL为升高)。记录术后病理资料:T分期、淋巴结转移、远处转移、病理大体分型(隆起型、溃疡型、浸润型)、分化程度、病理类型(管状腺癌、非管状腺癌或含有其他成分的管状腺癌)、脉管侵犯。

       根据国际肿瘤出芽共识会议(International Tumor Budding Consensus Conference, ITBCC)标准,由一名10年以上工作经验的病理科主治医师对直肠癌HE染色切片进行出芽计数。根据出芽计数将直肠癌TB级别分为低级别(0~4个出芽)、中级别(5~9个出芽)、高级别(≥10个出芽)[2]

1.4 图像处理与数据测量

       将DWI及DKI序列数据传到AW 4.6工作站,由两名具有3年(观察者1)及10年(观察者2)腹部MRI诊断经验观察者,分别使用Functool软件进行后处理,获得表观扩散系数(apparent diffusion coefficient, ADC)、各向异性分数(fractional anisotropy, FA)、平均扩散系数(mean diffusivity, MD)、平均扩散峰度(mean kurtosis, MK)图。联合DWI扩散受限区及DCE-MRI(灌注期相10)明显强化区确定相应最大截面病灶实质区,在DKI拟合最好区域内放置3个圆形ROI,面积超过肿瘤区域三分之一,避开坏死、囊变、肠腔区,记录ADC值以及DKI各参数值(图12),并计算其平均值用于后续分析。

图1  男,70岁,直肠隆起型中分化管状腺癌中级别肿瘤出芽患者,分期T1N0M0。1A:T2WI示直肠下段右后壁局部向腔内隆起稍高信号灶;1B:DCE-MRI示病灶明显强化;1C:病灶DWI示病灶呈高信号;1D:ADC图示病灶平均ADC值为1.400×10-3 mm2/s;1E~1G:DKI后处理图像,FA、MD、MK平均值分别为0.232、2.220 μm2 /ms、0.660;1H:病理图(HE染色,目镜10×,物镜20×)示肿瘤浸润前沿处肿瘤出芽(箭)。DCE:动态对比增强;DWI:扩散加权成像;ADC:表观扩散系数;DKI:扩散峰度成像;FA:各向异性分数;MD:平均扩散系数;MK:平均扩散峰度。
Fig. 1  Male, 70 years old, with medium grade tumor budding of protruding moderately differentiated tubular adenocarcinoma in rectum, staging T1N0M0. 1A: T2WI shows a slightly higher signal focus in the right posterior wall of the lower rectum towards the luminal eminence; 1B: DCE-MRI shows significant enhancement of the lesion; 1C: DWI shows high signal on lesions; 1D: ADC map shows the average ADC value of the lesions is 1.400 × 10-3 mm2/s; 1E-1G: DKI post-processing maps, the average values of FA, MD and MK values are 0.232, 2.220 μm2/ms and 0.660, respectively; 1H: Pathological image (HE, eyepiece 10 ×, objective 20 ×) shows tumor budding (arrow) at the frontier of tumor invasion. DCE: dynamic contrast-enhanced; DWI: diffusion weighted imaging; ADC: apparent diffusion coefficient; DKI: diffusion kurtosis imaging; FA: fractional anisotropy; MD: mean diffusivity; MK: mean kurtosis.
图2  女,72岁,直肠溃疡型中分化管状腺癌高级别肿瘤出芽患者,分期T4aN0M0。2A:T2WI示直肠中段环壁增厚,呈稍高信号灶;2B:DCE-MRI示病灶可见明显强化;2C:DWI示病灶呈高信号;2D:ADC图示病灶平均ADC值为0.912×10-3 mm2/s;2E~2G:DKI后处理图像,FA、MD、MK平均值分别为0.159、1.015 μm2 /ms、1.017;2H:病理图(HE染色,目镜10×,物镜20×)示肿瘤浸润前沿肿瘤出芽(箭)。DCE:动态对比增强;DWI:扩散加权成像;ADC:表观扩散系数;DKI:扩散峰度成像;FA:各向异性分数;MD:平均扩散系数;MK:平均扩散峰度。
Fig. 2  Female, 72 years old, with high grade tumor budding of ulcerative moderately differentiated tubular adenocarcinoma in rectum, staging T4aN0M0. 2A: T2WI shows a thickening of the ring wall in the middle of the rectum with a slightly higher signal focus; 2B: DCE-MRI shows significant enhancement of the lesion; 2C: DWI shows high signal on lesions; 2D: ADC map shows the average ADC value of the lesions is 0.912 × 10-3 mm2/s; 2E-2G: DKI post-processing maps, the average values of FA, MD and MK values are 0.159, 1.015 μm2/ms and 1.017, respectively; 2H: Pathological image (HE, eyepiece 10 ×, objective 20 ×) shows tumor budding (arrow) at the frontier of tumor invasion. DCE: dynamic contrast-enhanced; DWI: diffusion weighted imaging; ADC: apparent diffusion coefficient; DKI: diffusion kurtosis imaging; FA: fractional anisotropy; MD: mean diffusivity; MK: mean kurtosis.

1.5 统计学分析

       采用IBM SPSS 27及MedCalc 15.2.2进行统计学分析。对患者一般资料使用卡方检验或Fish确切概率法检验。使用组内相关系数(intra-class correlation coefficient, ICC)检验两名观察者所测数据结果的一致性(ICC≤0.40为一致性差,0.40<ICC<0.75为一致性为中等,ICC≥0.75为一致性良好),取两名观察者平均值进行差异性统计学分析。采用Kolmogorov-Smirnov检验各定量参数的正态性,并检验两组病例参数差异性。对符合正态性的定量参数使用独立样本t检验,以均值±标准差表示;不符合正态性的参数使用Mann-Whitney U检验,以中位数(25%分位数,75%分位数)表示。差异具有统计学意义的参数使用二元logistic回归方法获得联合参数数据。通过受试者工作特征(receiver operating characteristic, ROC)曲线评价DWI、DKI参数以及联合参数判断两组病灶的诊断效能,确定曲线下面积(area under the curve, AUC),根据最大约登指数获得诊断阈值及相应的敏感度和特异度。使用DeLong检验比较各参数效能。P<0.05为差异具有统计学意义。

2 结果

2.1 一般资料

       最终入组113例患者病例,按照TB状态分为两组:中低级别组75例,男48例,女27例,年龄36~89(65.45±10.85)岁;高级别组38例,男26例,女12例,年龄44~89(66.13±9.44)岁。两组患者临床及病理资料比较见表2。高级别组CEA升高、T3~4期、病理大体分型为溃疡型、脉管侵犯的概率高于中低级别组,两组差异具有统计学意义(P<0.05);余临床及病理资料两组间差异无统计学意义。

表2  直肠癌肿瘤出芽中低级别组与高级别组患者临床及病理资料分析
Tab. 2  Clinical and pathological data analysis of patients in low-medium grade group and high grade group of tumor budding in rectal cancer

2.2 两名观察者一致性分析

       两名观察者所测量两组患者ADC值、DKI各参数值及其一致性检验结果显示,各参数值两观察者一致性良好(ICC值均>0.75)。详见表3

表3  两组各参数值观察者一致性比较
Tab. 3  Observer consistency comparison of each parameter between the two groups

2.3 两组ADC值及DKI各参数值差异性分析及诊断效能分析

       中低级别组ADC、MD值皆高于高级别组,MK值低于高级别组,两组差异具有统计学意义(P<0.05)(表4),具有较高的诊断效能,MD值具有较高敏感度(表5图3)。两组FA值差异无统计学意义(P>0.05)。DeLong检验示MK值诊断效能优于ADC及MD值,差异具有统计学意义(P<0.05),且各联合参数诊断效能与单参数MK诊断效能差异无统计学意义(P>0.05)(表6)。

图3  ADC值、DKI各参数值及其联合参数预测直肠癌肿瘤出芽状态的ROC曲线图。ADC:表观扩散系数;DKI:扩散峰度成像;ROC:受试者工作特征;MD:平均扩散系数;MK:平均扩散峰度。
Fig. 3  ROC curve of ADC value, DKI parameter values and the combined parameters in predicting the tumor budding grade of rectal cancer. ADC: apparent diffusion coefficient; DKI: diffusion kurtosis imaging; ROC: receiver operating characteristic; MD: mean diffusivity; MK: mean kurtosis.
表4  肿瘤出芽中低级别组与高级别组各定量参数值差异性比较结果
Tab. 4  Comparison results of the difference of each quantitative parameter between the low-medium grade group and high grade group of tumor budding
表5  肿瘤出芽中低级别组与高级别组定量参数及其联合参数效能分析
Tab. 5  Diagnostic performance analysis of quantitative parameters and combined parameters between low-medium grade group and high grade group of tumor budding
表6  各参数值诊断效能比较DeLong检验结果
Tab. 6  DeLong test results of the diagnostic efficiency between two groups

3 讨论

       本研究使用DKI技术对直肠癌TB状态进行预测,并与DWI序列进行对比,结果发现TB中低级别组MK值低于TB高级别组,中低级别组ADC、MD值高于高级别组,单参数诊断效能MK值最高,联合参数较MK值未能提高诊断效能。本研究首次在国内外报道DKI技术用于评估直肠癌TB状态,为术前预测直肠癌TB状态提供了新方法。

3.1 直肠癌TB相关病理机制及临床意义

       TB细胞呈细线样或小的条索状进入间质,具有侵袭性,是结直肠癌从局灶向其他部位转移的一个重要步骤,为上皮-间质转化(epithelial-mesenchymal transition, EMT)病理上的形态学表现[22, 23, 24]。TB细胞及胞核异型性高,形态不规则,且胞质丰富并易融合,与肿瘤间质内细胞和蛋白(如肿瘤相关成纤维细胞及巨噬细胞、血管内皮生长因子、表皮生长因子、基质金属蛋白酶)、缺氧和血管扩张、炎症浸润等因素有关,而这些因素则诱导细胞EMT的发生,促进肿瘤转移[25, 26, 27]。TB是pT1期结直肠癌局部淋巴结转移的高风险因素[2, 28, 29],对于是否需要进行腹腔镜或开腹行淋巴结清扫术具有重要意义。本组12例T1期病例中,1例中级别TB状态伴有淋巴结转移,2例高级别TB状态不伴有淋巴结转移,与上述研究结论不一致,需进一步关注。Ⅱ期结直肠癌患者若伴有高危因素(如脉管侵犯、浆膜受累、微卫星不稳定状态等)需要进行辅助化疗,但有研究表明Ⅱ期结直肠癌患者若伴有高级别TB状态对新辅助治疗反应不良,降低其生存率,具有类似于Ⅲ期结直肠癌的预后[30, 31, 32]。本研究病例高级别TB状态直肠癌术后高分期概率、脉管侵犯概率高于中低级别TB状态,这与王煦喆等[33]研究结果类似;TB状态与直肠癌新辅助治疗后的5年无病生存期及总生存期、局部复发和远处转移风险密切相关[33, 34];因此直肠癌TB状态对进展期直肠癌治疗方案及预后,特别是Ⅱ期直肠癌是否行新辅助治疗具有重要意义。基于以上原因,TB已成为2020版中国临床肿瘤学会(Chinese Society of Clinical Oncology, CSCO)结直肠癌诊疗指南中病理学诊断原则新纳入指标。目前TB的诊断依赖于手术后病理,因此直肠癌术前影像学检查无创预测肿瘤TB状态具有重要意义。

3.2 DWI及DKI参数预测直肠癌TB状态价值评估

       DKI技术是基于非高斯分布模型的DWI衍生技术,较常规DWI技术,能更真实地反映组织和细胞微观结构的复杂性及异质性。ADC值、MD值与水分子运动扩散受限程度呈负相关[35],本研究结果显示,高级别TB组的ADC值及MD值低于中低级别组,可能由于高级别TB肿瘤同时伴有高危因素(如T分期、脉管侵犯等),在浸润边缘具有更多肿瘤细胞,细胞密度更高,间质更小,水分子弥散受限,ADC值与MD值下降,两者预测效能相仿,其ADC值结果与CHEN等[7]研究结果相似。但MD值的敏感度较ADC值显著增高,说明MD值考虑到水分子向各个方向的扩散来计算,因此较ADC值更能真实地反映水分子运动扩散,检出TB状态的效能更高。MK值与肿瘤内结构复杂性呈正相关[35],TB高级别组的MK值高于中低级别组,推测由于高级别TB状态与脉管侵犯、肿瘤分化恶性程度高有关,肿瘤前缘新生血管丰富且结构异常,血管、淋巴管受累[4, 8]。同时高级别TB状态肿瘤病理大体类型为溃疡型的概率高,肿瘤向深层不均匀生长,导致高级别TB肿瘤组织结构复杂,异质性明显,MK值增高,其诊断效能(AUC值为0.880)较ADC值、MD值明显提高。ADC值、MD值、MK值间联合参数诊断效能为0.826~0.881,较单参数MK值诊断效能持平,原因可能这些参数从根本上都是反映扩散相关的参数,未能提升联合诊断效能。FA值反映组织内水分子各向异性的程度,本研究结果中FA值未能预测直肠癌TB分级,说明不同TB状态肿瘤组织分子方向性没有明显差异或被抵消。

3.3 局限性

       本研究仍存在以下局限性:(1)由于肠道蠕动及肠腔内气体会影响DKI序列后处理图像的拟合结果,因此为了测量的一致性,ROI的选择采用在肿瘤组织DKI后处理图像拟合好的位置进行多次测量取平均值的方法;(2)由于TB采用肿瘤浸润侧前沿处热点区计数的方法[2],邻近前沿区的肿瘤组织可能会更好地反映TB的情况,MRI病灶ROI放置难以对应,有待于之后对照病理切片进行进一步研究;(3)本研究病例较少,特别是高级别TB的病例数较少,且未能结合肿瘤术前其他相关指标(如CEA),今后还需要扩大样本量,建立临床-影像模型。

4 结论

       综上所述,DKI定量参数对术前无创预测直肠癌TB状态具有较好的应用价值,特别是MK值具有较高的诊断效能,MD值具有高敏感度,为临床医生对患者作出不同诊疗计划提供帮助。

[1]
HAN B F, ZHENG R S, ZENG H M, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. DOI: 10.1016/j.jncc.2024.01.006.
[2]
LUGLI A, KIRSCH R, AJIOKA Y, et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016[J]. Mod Pathol, 2017, 30(9): 1299-1311. DOI: 10.1038/modpathol.2017.46.
[3]
中华人民共和国国家卫生健康委员会. 中国结直肠癌诊疗规范(2020年版)[J]. 中华外科杂志, 2020, 58(8): 561-585. DOI: 10.3760/cma.j.cn112139-20200518-00390.
National Health Commission of the People's Republic of China. Chinese Protocol of Diagnosis and Treatment of Colorectal Cancer (2020 edition)[J]. Chin J Surg, 2020, 58(8): 561-585. DOI: 10.3760/cma.j.cn112139-20200518-00390.
[4]
邓爽, 谭林, 黄美园. 肿瘤出芽及其在结直肠癌中的研究进展[J]. 临床与病理杂志, 2019, 39(11): 2519-2524. DOI: 10.3978/j.issn.2095-6959.2019.11.029.
DENG S, TAN L, HUANG M Y. Tumor budding and its research progress in colorectal cancer[J]. J Clin Pathol Res, 2019, 39(11): 2519-2524. DOI: 10.3978/j.issn.2095-6959.2019.11.029.
[5]
CHONG G O, PARK S H, JEONG S Y, et al. Prediction model for tumor budding status using the radiomic features of F-18 fluorodeoxyglucose positron emission tomography/computed tomography in cervical cancer[J/OL]. Diagnostics, 2021, 11(8): 1517 [2024-03-11]. https://pubmed.ncbi.nlm.nih.gov/34441452/. DOI: 10.3390/diagnostics11081517.
[6]
GRANATA V, FUSCO R, SETOLA S V, et al. CT-based radiomics analysis to predict histopathological outcomes following liver resection in colorectal liver metastases[J/OL]. Cancers, 2022, 14(7): 1648 [2024-03-11]. https://pubmed.ncbi.nlm.nih.gov/35406419/. DOI: 10.3390/cancers14071648.
[7]
CHEN F Y, ZHANG S T, MA X L, et al. Prediction of tumor budding in patients with rectal adenocarcinoma using b-value threshold map[J]. Eur Radiol, 2023, 33(2): 1353-1363. DOI: 10.1007/s00330-022-09087-6.
[8]
周振, 沈浮, 陆海迪, 等. 动态增强磁共振成像术前评估直肠癌肿瘤出芽等级的价值[J]. 中国医学计算机成像杂志, 2022, 28(4): 379-384. DOI: 10.19627/j.cnki.cn31-1700/th.2022.04.002.
ZHOU Z, SHEN F, LU H D, et al. The value of dynamic contrast-enhanced magnetic resonance imaging for preoperative evaluation of the tumor budding of rectal cancer[J]. Chin Comput Med Imag, 2022, 28(4): 379-384. DOI: 10.19627/j.cnki.cn31-1700/th.2022.04.002.
[9]
LI Z H, CHEN F Y, ZHANG S T, et al. The feasibility of MRI-based radiomics model in presurgical evaluation of tumor budding in locally advanced rectal cancer[J]. Abdom Radiol, 2022, 47(1): 56-65. DOI: 10.1007/s00261-021-03311-5.
[10]
PENG L, WANG D Q, ZHUANG Z J, et al. Preoperative noninvasive evaluation of tumor budding in rectal cancer using multiparameter MRI radiomics[J]. Acad Radiol, 2024, 31(6): 2334-2345. DOI: 10.1016/j.acra.2023.11.023.
[11]
LIU Z Y, JIA J Y, BAI F, et al. Predicting rectal cancer tumor budding grading based on MRI and CT with multimodal deep transfer learning: A dual-center study[J/OL]. Heliyon, 2024, 10(7): e28769 [2024-09-26]. https://pubmed.ncbi.nlm.nih.gov/38590908/. DOI: 10.1016/j.heliyon.2024.e28769.
[12]
QU X T, ZHANG L, JI W N, et al. Preoperative prediction of tumor budding in rectal cancer using multiple machine learning algorithms based on MRI T2WI radiomics[J/OL]. Front Oncol, 2023, 13: 1267838 [2024-09-26]. https://pubmed.ncbi.nlm.nih.gov/37941552/. DOI: 10.3389/fonc.2023.1267838.
[13]
JENSEN J H, HELPERN J A, RAMANI A, et al. Diffusional kurtosis imaging: The quantification of non-Gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6): 1432-1440. DOI: 10.1002/mrm.20508.
[14]
HAN Y X, WU P, TIAN J, et al. Diffusion kurtosis imaging and diffusion weighted imaging comparison in diagnosis of early hypoxic-ischemic brain edema[J/OL]. Eur J Med Res, 2023, 28(1): 159 [2024-09-25]. https://pubmed.ncbi.nlm.nih.gov/37131227/. DOI: 10.1186/s40001-023-01090-x.
[15]
王莉莉, 李生虎, 黄刚, 等. 基于磁共振扩散峰度成像直肠癌生物学特征研究[J]. 磁共振成像, 2020, 11(1): 35-39. DOI: 10.12015/issn.1674-8034.2020.01.008.
WANG L L, LI S H, HUANG G, et al. Study on biological characteristics of rectal cancer based on magnetic resonance diffusion kurtosis imaging[J]. Chin J Magn Reson Imag, 2020, 11(1): 35-39. DOI: 10.12015/issn.1674-8034.2020.01.008.
[16]
WEN Z Q, CHEN Y, YANG X Y, et al. Application of magnetic resonance diffusion kurtosis imaging for distinguishing histopathologic subtypes and grades of rectal carcinoma[J/OL]. Cancer Imaging, 2019, 19(1): 8 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/30744694/. DOI: 10.1186/s40644-019-0192-x.
[17]
王莉莉, 雷建凯, 李生虎, 等. 基于磁共振扩散峰度成像的直肠癌微卫星不稳定状态研究[J]. 磁共振成像, 2023, 14(8): 73-78. DOI: 10.12015/issn.1674-8034.2020.01.008.
WANG L L, LEI J K, LI S H, et al. Microsatellite instability of rectal cancer based on magnetic resonance diffusion kurtosis imaging[J]. Chin J Magn Reson Imag, 2023, 14(8): 73-78. DOI: 10.12015/issn.1674-8034.2020.01.008.
[18]
ZHOU M, CHEN M Y, LUO M F, et al. Pathological prognostic factors of rectal cancer based on diffusion-weighted imaging, intravoxel incoherent motion, and diffusion kurtosis imaging[J]. Eur Radiol, 2025, 35(2): 979-988. DOI: 10.1007/s00330-024-11025-7.
[19]
董宛, 刘爱连, 陈安良, 等. 酰胺质子转移加权和扩散峰度成像对直肠癌化疗和未化疗的定量对比研究[J]. 中国医学影像学杂志, 2022, 30(1): 54-59. DOI: 10.3969/j.issn.1005-5185.2022.01.012.
DONG W, LIU A L, CHEN A L, et al. Comparison of amide proton transfer-weighted and diffusion kurtosis imaging in quantifying rectal cancer with and without chemotherapy[J]. Chin J Med Imag, 2022, 30(1): 54-59. DOI: 10.3969/j.issn.1005-5185.2022.01.012.
[20]
黄伟康, 冯洁萍, 严兆贤, 等. DWI和DKI预测局部进展期直肠腺癌新辅助放化疗反应[J]. 放射学实践, 2022, 37(4): 485-492. DOI: 10.13609/j.cnki.1000-0313.2022.04.013.
HUANG W K, FENG J P, YAN Z X, et al. Predicting treatment response of locally advanced rectal adenocarcinoma after neoadjuvant chemoradiotherapy using diffusion kurtosis imaging and diffusion weighted imaging[J]. Radiol Pract, 2022, 37(4): 485-492. DOI: 10.13609/j.cnki.1000-0313.2022.04.013.
[21]
ZHANG L, JIN Z W, YANG F, et al. Added value of histogram analysis of intravoxel incoherent motion and diffusion kurtosis imaging for the evaluation of complete response to neoadjuvant therapy in locally advanced rectal cancer[J]. Eur Radiol, 2025, 35(3): 1669-1678. DOI: 10.1007/s00330-024-11081-z.
[22]
LUGLI A, ZLOBEC I, BERGER M D, et al. Tumour budding in solid cancers[J]. Nat Rev Clin Oncol, 2021, 18(2): 101-115. DOI: 10.1038/s41571-020-0422-y.
[23]
王佩, 接玉, 姚林, 等. 肿瘤出芽在结直肠癌异时性远处转移中的临床意义[J]. 中华实验外科杂志, 2023, 40(5): 985. DOI: 10.3760/cma.j.cn421213-20230108-00011.
WANG P, JIE Y, YAO L, et al. Clinical significance of tumor budding in heterochronous distant metastases in colorectal cancer[J]. Chin J Exp Surg, 2023, 40(5): 985. DOI: 10.3760/cma.j.cn421213-20230108-00011.
[24]
DE SMEDT L, PALMANS S, ANDEL D, et al. Expression profiling of budding cells in colorectal cancer reveals an EMT-like phenotype and molecular subtype switching[J]. Br J Cancer, 2017, 116(1): 58-65. DOI: 10.1038/bjc.2016.382.
[25]
曹卫刚, 杨振林.肿瘤微环境与上皮-间质转化在肿瘤转移中的研究进展[J]. 肿瘤基础与临床, 2019, 32(6): 547-549. DOI: 10.3969/j.issn.1673-5412.2019.06.026.
CAO W G, YANG Z L.Research progress of tumor microenvironment and epithelial-mesenchymal transition in tumor metastasis[J]. J Basic Clin Oncol, 2019, 32(6): 547-549. DOI: 10.3969/j.issn.1673-5412.2019.06.026.
[26]
ELKADY N, ALLAM D M.The role of Galectin3, tubulinβ, and maspin in promoting tumor budding in colorectal carcinoma and their clinical implications[J]. Appl Immunohistochem Mol Morphol, 2024, 32(3): 143-150. DOI: 10.1097/PAI.0000000000001183.
[27]
MA J, LI H T, GAO Q Q, et al. High MEIS3 expression indicates a poor prognosis for patients with stage II/III colorectal cancer[J/OL]. Front Biosci, 2023, 28(12): 338 [2024-09-25]. https://pubmed.ncbi.nlm.nih.gov/38179750/. DOI: 10.31083/j.fbl2812338.
[28]
KAJIWARA Y, OKA S, TANAKA S, et al. Nomogram as a novel predictive tool for lymph node metastasis in T1 colorectal cancer treated with endoscopic resection: a nationwide, multicenter study[J]. Gastrointest Endosc, 2023, 97(6): 1119-1128. DOI: 10.1016/j.gie.2023.01.022.
[29]
OKA S, TANAKA S, KAJIWARA Y, et al. Treatment decision for locally resected T1 colorectal carcinoma-verification of the Japanese guideline criteria for additional surgery based on long-term clinical outcomes[J]. Am J Gastroenterol, 2024, 119(10): 2019-2027. DOI: 10.14309/ajg.0000000000002715.
[30]
BETGE J, KORNPRAT P, POLLHEIMER M J, et al. Tumor budding is an independent predictor of outcome in AJCC/UICC stage II colorectal cancer[J]. Ann Surg Oncol, 2012, 19(12): 3706-3712. DOI: 10.1245/s10434-012-2426-z.
[31]
曾达通, 黄伟健, 李柳艳, 等. 肿瘤出芽在消化系统恶性肿瘤中的临床病理意义研究新进展[J]. 临床与实验病理学杂志, 2024, 40(6): 632-636. DOI: 10.13315/j.cnki.cjcep.2024.06.014.
ZENG D T, HUANG W J, LI L Y, et al. New progress in clinical and pathological significance of tumor budding in digestive system malignant tumors[J]. Chin J Clin Exp Pathol, 2024, 40(6): 632-636. DOI: 10.13315/j.cnki.cjcep.2024.06.014.
[32]
RAN X, CHEN Y, LIU C X, et al. Differential effect of tumor budding on the benefit of adjuvant chemotherapy in stage II colorectal cancer: a retrospective observational study[J]. J Gastrointest Oncol, 2024, 15(4): 1545-1555. DOI: 10.21037/jgo-24-278.
[33]
王煦喆, 肖明明, 柳青峰.肿瘤出芽和TILs与结直肠癌患者临床病理特征和预后的相关性[J]. 现代肿瘤医学, 2022, 30(21): 3935-3939. DOI: 10.3969/j.issn.1672-4992.2022.21.019.
WANG X Z, XIAO M M, LIU Q F.Correlation between tumor budding, TILs and clinicopathological features and prognosis of colorectal cancer patients[J]. J Mod Oncol, 2022, 30(21): 3935-3939. DOI: 10.3969/j.issn.1672-4992.2022.21.019.
[34]
LI J H, MA Y L, WEN L, et al. Prognostic impact of tumor budding in rectal cancer after neoadjuvant therapy: a systematic review and meta-analysis[J/OL]. Syst Rev, 2024, 13(1): 22 [2024-03-10]. https://pubmed.ncbi.nlm.nih.gov/38191437/. DOI: 10.1186/s13643-023-02441-9.
[35]
JIN X X, YAN R F, LI Z, et al. Evaluation of amide proton transfer-weighted imaging for risk factors in stage I endometrial cancer: a comparison with diffusion-weighted imaging and diffusion kurtosis imaging[J/OL]. Front Oncol, 2022, 12: 876120 [2024-09-26]. https://pubmed.ncbi.nlm.nih.gov/35494050/. DOI: 10.3389/fonc.2022.876120.

上一篇 基于MRI瘤内及瘤周特征预测肝内肿块型胆管癌病理分级模型的开发和验证
下一篇 pCASL技术在评估合并高血压慢性肾脏疾病患者肾功能损伤和分期中的应用价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2