分享:
分享到微信朋友圈
X
临床研究
基于PSAD及mp-MRI的联合模型对临床显著性前列腺癌诊断价值的研究
辛建英 张文轩 韩雨 巩平 徐爱霞 王锡臻

Cite this article as: XIN J Y, ZHANG W X, HAN Y, et al. Study on the diagnostic value of combined models based on PSAD and mp-MRI in clinically significant prostate cancer[J]. Chin J Magn Reson Imaging, 2025, 16(2): 72-76, 141.本文引用格式:辛建英, 张文轩, 韩雨, 等. 基于PSAD及mp-MRI的联合模型对临床显著性前列腺癌诊断价值的研究[J]. 磁共振成像, 2025, 16(2): 72-76, 141. DOI:10.12015/issn.1674-8034.2025.02.011.


[摘要] 目的 探讨前列腺特异性抗原密度(prostate specific antigen density, PSAD)联合多参数磁共振成像(multi-parameter magnetic resonance imaging, mp-MRI)在临床显著性前列腺癌(clinically significant prostate cancer, csPCa)诊断中的价值。材料与方法 回顾性分析105例疑诊为PCa并取得病理结果患者的临床及影像资料。术前均行mp-MRI检查、前列腺特异性抗原(prostate specific antigen, PSA)检测。根据病理及Gleason评分,将患者分为csPCa和非csPCa两组,比较两组间PSAD和mp-MRI的表观扩散系数(apparent diffusion coefficient, ADC)值、开始强化时间(T0)、短暂增强时间、流入速率(wash in rate, WIR)等参数的差异,采用二元logistic回归构建联合诊断模型,运用受试者工作特征(receiver operating characteristic, ROC)曲线评估各参数及构建模型诊断csPCa的效能。结果 csPCa组的ADC、T0低于非csPCa组,WIR、PSAD、短暂增强时间高于非csPCa,差异均有统计学意义(P<0.05)。PSAD、ADC、WIR单独诊断csPCa的ROC曲线下面积(area under the curve, AUC)及95%置信区间分别为0.902(0.829~0.952)、0.890(0.814~0.942)、0.812(0.724~0.882),具有较高的诊断效能,临床诊断界值分别为0.47 ng/(mL•cm3)、0.82×10-3 mm2/s、50.33 s-1,敏感度分别为79.1%、67.4%、100.0%,特异度分别为100.0%、100.0%、54.8%。PSAD、ADC、WIR任意两参数(WIR+PSAD、ADC+PSAD、WIR+ADC)及多参数(WIR+PSAD+ADC)联合诊断csPCa的AUC、敏感度、特异度分别为:0.929(0.862~0.970)、83.7%、96.8%;0.940(0.877~0.977)、90.7%、91.9%;0.935(0.870~0.974)、79.1%、95.2%;0.955(0.896~0.986)、90.7%、91.9%。ROC曲线对比分析显示WIR+PSAD+ADC、ADC+PSAD、WIR+ADC联合模型与ADC、WIR单参数诊断csPCa的AUC差异均具有统计学意义(P<0.05);WIR+PSAD联合模型与WIR单独诊断csPCa的AUC差异具有统计学意义(P<0.05)。结论 PSAD联合mp-MRI对csPCa具有较高的诊断价值,其主要指标构建的诊断模型可用于预测csPCa。
[Abstract] Objective To evaluate the value of prostate specific antigen density (PSAD) combined with multi-parameter magnetic resonance imaging (mp-MRI) used in diagnosing clinically significant prostate cancer (csPCa).Materials and Methods Retrospective analysis of clinical and imaging data of 105 patients with suspected PCa and pathological findings were selected, prostate specific antigen (PSA) detection and mp-MRI were performed before surgery. Based on pathological results and Gleason score, patients were divided into csPCa and non-csPCa groups. Parameters of mp-MRI including apparent diffusion coefficient (ADC), Begin time of enhancement (T0), Brevity of enhancement, wash in rate (WIR) and PSAD were compared between the two groups, combined diagnostic models were constructed by binary logistic regression, and receiver operating characteristic (ROC) curves were used to evaluate the diagnostic efficacy of each parameter and model for csPCa.Results The ADC and T0 in csPCa group were lower than those in non-csPCa group, while the PSAD, WIR and Brevity of enhancement were opposite, and all differences reach statistical significance (P < 0.05). The area under the curve (AUC) for the diagnosis of csPCa in PSAD, ADC and WIR were 0.902 (0.829 to 0.952), 0.890 (0.814 to 0.942) and 0.812 (0.724 to 0.882) respectively with higher diagnostic efficacy, the clinical diagnostic boundaries were 0.47 ng/(mL·cm3), 0.82 × 10-3 mm2/s, 50.33 s-1, the sensitivities were 79.1%, 67.4%, 100.0%, and the specificities were 100.0%, 100.0% and 54.8%, respectively. The AUC, sensitivity and specificity of any two and multi-parameter combined diagnosis of csPCa by WIR, PSAD and ADC: WIR + PSAD 0.929 (0.862 to 0.970), 83.7%, 96.8%; ADC + PSAD 0.940 (0.877 to 0.977), 90.7%, 91.9%; WIR + ADC 0.935 (0.870 to 0.974), 79.1%, 95.2%; WIR + PSAD + ADC 0.955 (0.896 to 0.986), 90.7%, 91.9%, respectively. ROC curve contrast analysis revealed significant differences in AUC between WIR + PSAD + ADC, ADC + PSAD, WIR + ADC combined diagnostic models and ADC, WIR single parameter diagnosis of csPCa (P < 0.05); the AUC of WIR+PSAD model was different from that of WIR in the diagnosis of csPCa statistically (P < 0.05).Conclusions PSAD combined with mp-MRI has a high diagnostic value for csPCa, progressively, the combined diagnostic model based on the key indicators can be used to predict csPCa.
[关键词] 临床显著性前列腺癌;前列腺特异性抗原密度;多参数磁共振成像;扩散加权成像;动态对比增强;诊断效能
[Keywords] clinically significant prostate cancer;prostate specific antigen density;multi-parameter magnetic resonance imaging;diffusion weighted imaging;dynamic contrast-enhanced;diagnostic efficacy

辛建英    张文轩    韩雨    巩平    徐爱霞    王锡臻 *  

山东第二医科大学附属医院影像中心,潍坊 261031

通信作者:王锡臻,E-mail: zhen94320@aliyun.com

作者贡献声明:辛建英、王锡臻、张文轩、韩雨、巩平、徐爱霞参与选题和设计、资料的分析与解释;王锡臻设计本研究的方案,对稿件的重要内容进行了修改;辛建英起草和撰写稿件,获取、分析或解释本研究的数据,获得潍坊医学院附属医院医学研究培育基金项目资助;张文轩、韩雨、巩平、徐爱霞获取、分析或解释本研究的数据,对稿件的重要内容进行了修改,张文轩获得潍坊市卫生健康委员会科研项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 潍坊市卫生健康委员会科研项目 WFWSJK-2023-281 潍坊医学院附属医院医学研究培育基金项目 2022wyfyzzjj01
收稿日期:2024-08-13
接受日期:2025-02-10
中图分类号:R445.2  R737.25 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.02.011
本文引用格式:辛建英, 张文轩, 韩雨, 等. 基于PSAD及mp-MRI的联合模型对临床显著性前列腺癌诊断价值的研究[J]. 磁共振成像, 2025, 16(2): 72-76, 141. DOI:10.12015/issn.1674-8034.2025.02.011.

0 引言

       前列腺癌(prostate cancer, PCa)目前居于男性常见癌症的第二位[1],其患病率在中国呈逐年增高趋势,近年来增长超过欧美国家[2, 3, 4, 5]。依据病理结果,PCa可分成两类:临床显著性PCa(clinically significant PCa, csPCa)和Gleason评分=6分的PCa[6]。csPCa病情进展迅速,需根据分期采取积极的治疗方案,而非csPCa进展缓慢,可动态随访观察,无需穿刺活检[7],因而早期精确诊断对csPCa治疗方案的选择极为紧要[8]。前列腺特异性抗原(prostate specific antigen, PSA)是筛查PCa最重要的检验指标,因前列腺增生亦可升高血清PSA水平,故存在过度诊断的风险[9, 10],采用前列腺特异性抗原密度(prostate specific antigen density, PSAD)指标可提高PCa诊断的准确性和特异度[11]。多参数磁共振成像(multi-parameter magnetic resonance imaging, mp-MRI)是诊断及指导临床治疗PCa最具优势的影像检查技术,在PCa的确诊及临床分期中发挥重要作用[12, 13]。欧洲泌尿学会PCa诊疗指南[14]及前列腺影像报告数据系统(prostate imaging reporting and data system, PI-RADS)[15]均推荐使用mp-MRI进行PCa诊断,且鼓励更多研究将MRI定量指标纳入评分。

       PI-RADS是临床诊断PCa的常用工具,具有较高的特异度和灵敏度[16, 17],但受阅片者个人经验和主观性影响,对mp-MRI的判读和评分存在差异[18]。研究显示[19, 20, 21],PI-RADS 3~5分病灶均存在影像诊断和病理不一致的情况,特别是评为3分的病灶病理差异较大,有过度穿刺和治疗的风险,给患者增加了不必要的痛苦和心理负担[22]。另外,PI-RADS主要依赖影像特征进行诊断,未能结合PSA相关指标,有一定局限性。因此,PCa的影像诊断需要更客观、精准、全面的评估手段。本研究采用PSAD和mp-MRI的定量指标对csPCa进行诊断,不仅纳入了临床指标,也使分析过程得到量化,提升了诊断的客观性。

1 材料与方法

1.1 一般资料

       回顾性分析2021年3月至2023年11月在潍坊医学院附属医院疑诊为PCa且完成前列腺mp-MRI和病理检查的105例患者的临床及影像资料,年龄55~92(72.0±7.3)岁。纳入标准:(1)受检者行mp-MRI检查前未接受过任何相关治疗,无其他肿瘤病史;(2)前列腺病灶图像清晰、无伪影,便于勾画感兴趣区和测量;(3)患者临床资料完整。排除标准:(1)病灶体积过小或MRI病灶不明确者;(2)前列腺的急性炎症。本研究遵守《赫尔辛基宣言》,经潍坊医学院附属医院医学伦理委员会批准,免除受试者知情同意,批准文号:wyfy-2022-ky-150。

       受检者在mp-MRI检查后2周内行超声引导下穿刺活检(49例)或手术治疗(56例),标本进行HE染色及免疫组化检查,获取Gleason评分。根据病理及Gleason评分[23, 24],研究对象分为csPCa组和非csPCa组:将Gleason评分≥7分的PCa患者归于csPCa组,共43例;非csPCa组包括良性前列腺增生伴或不伴慢性炎症、Gleason评分<7分的肿瘤,共62例,其中良性前列腺增生(benign prostatic hyperplasia,BPH)56例、Gleason评分<7分PCa 6例。

1.2 检查方法

       选择飞利浦医疗(苏州)有限公司生产的1.5 T磁共振成像仪(Prodiva 1.5T CX),以原机自带的腹部八通道相控阵线圈作为接受线圈。受检者体位采用头先进、仰卧位;饱和带置于腹部皮肤脂肪层,以前列腺为中心进行扫描,成像范围要求包全前列腺。常规扫描序列包括T1WI、T2WI、抑脂T2WI及弥散加权成像(diffusion weighted imaging, DWI)。T1WI序列扫描参数:TR 484 ms,TE 8.5 ms,矩阵312×402,FOV 280 mm×406 mm,NSA 2,层厚4 mm,层间距1 mm;T2WI序列扫描参数:TR 4000 ms,TE 100 ms,矩阵360×332,FOV 280 mm×280 mm,NSA 1,层厚4 mm,层间距1 mm;抑脂T2WI序列扫描参数:TR 4356 ms,TE 110 ms,矩阵312×312,FOV 280 mm×280 mm,NSA 1,层厚4 mm,层间距1 mm;DWI序列扫描参数:TR 1400 ms,TE 65 ms,矩阵116×115,FOV 300 mm×404 mm,NSA 4,层厚4 mm,层间距0.4 mm,b值0,800 s/mm²。利用高压注射器经肘静脉以0.2 mL/kg注入钆喷酸葡胺(北京北陆药业股份有限公司),流速2.0 mL/s,并同时行动态对比增强磁共振成像(dynamic contrast enhanced-magnetic resonance imaging, DCE-MRI)扫描,采用mDIXON XD FFE序列,扫描参数:TR 5.4 ms,TE 1.72 ms/3.7 ms,矩阵240×142,FOV 380 mm×253 mm,NSA 1,层厚4 mm,连续不间断扫描24个时相,扫描时间2 min 59 s。

1.3 图像分析

       将检查获取的图像传至Philips工作站(IntelliSpacePortal Version 9.0)进行后处理,得到表观扩散系数(apparent diffusion coefficient, ADC)图及DCE-MRI各参数伪彩图。结合T2WI、DWI和DCE-MRI图像,选取病灶显示最佳的层面,由一位具有7年工作经验的主治医师手动勾画ROI,另一位具有13年工作经验的副主任医师对ROI进行校准和确认,ROI的放置尽量避开尿道、出血、坏死区,同时尽量包含大部分的病变区。若一个病灶放置多个ROI,取其平均值记录。获得的MRI图像参数包括:ADC值、最大增强、最大相对增强、开始强化时间(T0)、达峰时间、短暂增强时间、流入速率(wash in rate, WIR)、流出速率(wash out rate, WOR)。利用联影智能分析软件分割测量前列腺体积,自动计算PSAD值。

1.4 统计学分析

       应用IBM SPSS 26.0软件进行统计学分析。对计量资料进行正态性检验,若符合正态分布用平均值±标准差表示,采用独立样本t检验进行组间比较,若不符合正态分布用中位数(25分位数,75分位数)表示,采用Mann-Whitney U检验进行组间比较。应用MedCalc(version20.0)软件绘制受试者工作特征(receiver operating characteristic, ROC)曲线,得到各参数诊断csPCa的曲线下面积(area under the curve, AUC)、最佳诊断界值、敏感度和特异度。通过二元logistic回归进入法对诊断效能较高的指标构建联合诊断模型,采用DeLong检验比较单参数及各模型诊断csPCa的AUC差异。P<0.05为差异具有统计学意义。

2 结果

2.1 组间PSAD及各MRI指标对比分析

       csPCa组的ADC、T0均低于非csPCa,差异有统计学意义(P<0.05);csPCa组的WIR、PSAD、短暂增强时间均高于非csPCa组,差异有统计学意义(P<0.05);两组间最大增强、最大相对增强、达峰时间、WOR的差异无统计学意义(P>0.05)(表1)。典型病例见图1

图1  男,92岁,前列腺癌。1A~1C:T1WI(1A)、T2WI(1B)及抑脂T2WI(1C)横断位示前列腺区不规则肿块影,左侧盆壁见一结节状转移灶;1D~1E:肿瘤及转移灶于DWI(1D)呈明显高信号(b=800 s/mm2)、ADC图(1E)呈低信号;1F~1G:肿瘤及转移灶于动态增强早期呈显著强化(1F),动态增强WIR伪彩图(1G)显示病变区WIR值明显高于周围组织;1H:病理(HE ×400),腺癌,Gleason评分5+4=9分。DWI:弥散加权成像;ADC:表观扩散系数;WIR:流入速率。
Fig. 1  Male, 92-year-old, prostate cancer. 1A-1C: T1WI (1A), T2WI (1B) and fat-suppressed T2WI (1C) transverse position shows an irregular mass in the prostatic region, a nodular metastatic lesion is seen on the left pelvic wall; 1D-1E: DWI (1D) shows tumor and metastatic foci with a marked high signal (b = 800 s/mm2), ADC diagram (1E) shows low signal; 1F-1G: Tumor and metastasis are significantly enhanced in the early stage of DCE (1F), DCE WIR pseudo-color chart (1G) shows significantly higher WIR in lesion area than surrounding tissue; 1H: Histopathological picture (HE × 400), adenocarcinoma, Gleason score 5 + 4 = 9. DWI: diffusion weighted imaging; ADC: apparent diffusion coefficient; WIR: wash in rate.
表1  csPCa和非csPCa的各指标比较
Tab. 1  Comparison of various indicators of csPCa and non-csPCa

2.2 mp-MRI及PSAD诊断csPCa的ROC曲线分析

       选取两组间差异有统计学意义参数(WIR、短暂增强时间、PSAD、T0、ADC)进行ROC曲线分析(图2),AUC分别为0.812、0.610、0.902、0.678、0.890,其中WIR、PSAD、ADC的临床诊断界值分别为50.33 s-1、0.47 ng/(mL•cm3)、0.82× 10-3 mm2/s,敏感度分别为100.0%、79.1%、67.4%,特异度分别为54.8%、100.0%、100.0%(表2)。

图2  mp-MRI参数及PSAD诊断csPCa的ROC曲线。图3 联合诊断模型诊断csPCa的ROC曲线。mp-MRI:多参数磁共振成像;PSAD:前列腺特异性抗原密度;csPCa:临床显著性前列腺癌;ROC:受试者工作特征;T0:开始强化时间;ADC:表观扩散系数;WIR为流入速率。
Fig. 2  The ROC curve for the diagnosis of csPCa by parameters of mp-MRI and PSAD. Fig. 3 The ROC curves for diagnosing csPCa by combined diagnostic models. mp-MRI: multi-parameter magnetic resonance imaging; PSAD: prostate specific antigen density; csPCa: clinically significant prostate cancer; ROC: receiver operating characteristic; T0: begin time of enhancement; ADC: apparent diffusion coefficient; WIR: wash in rate.
表2  mp-MRI及PSAD诊断csPCa的ROC曲线分析
Tab. 2  ROC curve analysis of diagnosing csPCa by mp-MRI and PSAD

2.3 csPCa联合诊断模型构建及效能分析

       因短暂增强时间、T0诊断csPCa的AUC小于0.7,准确性处于较低水平,不作为诊断模型的构建因素。PSAD、ADC、WIR任意两个指标联合诊断csPCa的AUC、敏感度与特异度分别为:WIR+PSAD(0.929、83.7%、96.8%)、ADC+PSAD(0.940、90.7%、91.9%)、WIR+ADC(0.935、79.1%、95.2%)(表2、图3);构建WIR、PSAD、ADC多参数联合诊断模型(表3),回归方程:logistic(P)=2.250-6.929×ADC+0.035×WIR+4.916×PSAD,AUC为0.955,敏感度、特异度分别为90.7%、91.9%(表2、图3)。

       ROC曲线成对对比分析显示:WIR+PSAD+ADC联合诊断模型与ADC、WIR单参数诊断csPCa的AUC差异均具有统计学意义(P=0.009、0.001),与PSAD单参数及WIR+PSAD、ADC+PSAD、WIR+ADC双参数诊断模型的AUC差异不具有统计学意义(P>0.05);ADC+PSAD、WIR+ADC模型与ADC诊断csPCa的AUC差异均具有统计学意义(P=0.048、0.031);ADC+PSAD、WIR+ADC、WIR+PSAD模型与WIR诊断csPCa的AUC差异均具有统计学意义(P=0.007、0.001、0.002)。

表3  csPCa和非csPCa的多因素二元logistic回归分析
Tab. 3  Multivariate binary logistic regression analysis of csPCa and non-csPCa

3 讨论

       本文联合PSAD这一临床指标和mp-MRI的影像学指标对csPCa和非csPCa进行定量分析,比较了不同参数及模型对诊断效能的提升价值,进一步筛选出多参数诊断csPCa最佳组合模型,探讨基于无创手段的诊断模型预测csPCa的可能性,为治疗提供指导意见,以期减少PCa过度诊疗的风险,具有一定的临床价值。

3.1 PSAD在诊断csPCa中的价值

       PSAD结合了前列腺体积评估患者PSA水平,在检出PCa方面有重要作用,是构建PCa预测模型重要的临床参数[25, 26],但其准确性受前列腺体积测量的影响,且最终诊断时需结合其他指标。本研究采用了人工智能分析软件分割测量前列腺体积,并可自动计算PSAD值,相比手动测算精准且便捷,减少了测量误差对PSAD准确性的影响,使其更有利于临床应用。既往研究显示,PSAD与csPCa有显著相关性[27, 28],PSAD联合PI-RADS评分建立的诊断模型较单一诊断csPCa准确性高[29, 30],PSAD联合BP-MRI、mp-MRI均可提高PCa的诊断效能[31, 32]。但也有研究[33]显示PSAD联合mp-MRI诊断csPCa的诊断效能较mp-MRI没有显著增加。本研究中,csPCa和非csPCa组的PSAD差异具有统计学意义,且PSAD诊断csPCa时AUC略高于0.9,具有较好的诊断效能,PSAD的诊断界值为0.47 ng/(mL•cm3),高于诊断PCa广泛接受的阈值0.15 ng/(mL•cm3),这可能与研究方法及样本选择有关,csPCa组剔除了Gleason评分=6分的PCa,入组患者中晚期比例及平均PSA水平较高;另外,纳入标准只排除了前列腺的急性炎症,而非csPCa组很多患者病理为增生伴慢性炎症,造成该组的PSA均值增高,本文非csPCa组PSAD中位数为0.14 ng/(mL·cm3)应与此有关,以上可能是导致PSAD阈值偏高的原因。PSAD联合mp-MRI模型较mp-MRI诊断效能有显著提升,与张丹等[32]研究结果保持一致。

3.2 mp-MRI各参数在诊断csPCa中的价值

       ADC值是mp-MRI诊断PCa常用的定量指标之一。既往研究显示,ADC图有助于PCa的临床显著性和非显著性的区分,可建立较好的诊断模型[34],ADC值联合PI-RADS可显著提升PI-RADS诊断csPCa的效能[35, 36]。本研究中,csPCa和非csPCa两组间ADC值差异有统计学意义,且ADC值用于诊断csPCa的AUC为0.89,具有较高的诊断效能。同时,我们对DCE-MRI的多个参数进行了分析,发现WIR、T0、短暂增强时间三个参数在csPCa和非csPCa两组间差异有统计学意义;但三者的ROC诊断效能分析显示,T0、短暂增强时间的AUC小于0.7,诊断价值较低,WIR的AUC在0.7~0.9之间,诊断价值属于中等水平。WIR是对比剂流入的最大速率,与组织内的微血管密度呈正相关,是反映病变血流量的直接指标[37];笔者认为,csPCa结节微血管密度高、血供丰富,使对比剂早期能够快速进入,故WIR明显高于非csPCa。因此,在临床诊断模型的构建时,我们选取了mp-MRI的ADC值、WIR这两个重要指标。

3.3 联合诊断模型预测csPCa的价值

       本文采用PSAD联合WIR、ADC分别构建了多参数及任意双参数联合预测模型,其诊断csPCa时AUC均大于0.9,具有较高水平的诊断价值,且大多数模型的诊断效能较ADC、WIR单参数诊断明显提高,这表明,PSAD参与的预测模型可明显增加mp-MRI诊断csPCa的准确度,降低磁共振单独诊断的误诊率。多参数模型含有临床指标、MRI弥散和动态增强参数,能够更全面地反映病灶的临床、影像特征及血供情况。另外,多参数模型的诊断效能较双参数模型也有提升,但其差异不具有统计学意义,可能与各模型诊断csPCa的AUC均较大有关。

3.4 本研究的局限性

       首先,本研究纳入的Gleason评分=6分PCa病例较少,受样本量限制,未能细化分组研究;另外,前列腺DWI扫描的b值偏低,后续需增加样本并获取高b值DWI进一步研究及验证。

4 结论

       综上所述,PSAD联合mp-MRI对csPCa具有较高的诊断价值,有助于提高诊断的准确度,基于PSAD及mp-MRI的联合模型可成为临床实用的预测csPCa的影像手段,以减少对前列腺进行不必要的穿刺活检。

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
ZHANG Z, XU H Z, XUE Y N, et al. Risk stratification of prostate cancer using the combination of histogram analysis of apparent diffusion coefficient across tumor diffusion volume and clinical information: A pilot study[J]. J Magn Reson Imaging, 2019, 49(2): 556-564. DOI: 10.1002/jmri.26235.
[3]
LIU X, YU C, BI Y, et al. Trends and age-period-cohort effect on incidence and mortality of prostate cancer from 1990 to 2017 in China[J]. Public Health, 2019, 172: 70-80. DOI: 10.1016/j.puhe.2019.04.016.
[4]
TEOH J Y C, HIRAI H W, HO J M W, et al. Global incidence of prostate cancer in developing and developed countries with changing age structures[J/OL]. PLoS One, 2019, 14(10): e0221775 [2024-08-12]. https://pubmed.ncbi.nlm.nih.gov/31647819/. DOI: 10.1371/journal.pone.0221775.
[5]
赫捷, 陈万青, 李霓, 等. 中国前列腺癌筛查与早诊早治指南(2022, 北京)[J]. 中国肿瘤, 2022, 31(1): 1-30. DOI: 10.11735/j.issn.1004-0242.2022.01.A001.
HE J, CHEN W Q, LI N, et al. China guideline for the screening and early detection of prostate cancer (2022, Beijing)[J]. China Cancer, 2022, 31(1): 1-30. DOI: 10.11735/j.issn.1004-0242.2022.01.A001.
[6]
SABA K, WETTSTEIN M S, LIEGER L, et al. External validation and comparison of prostate cancer risk calculators incorporating multiparametric magnetic resonance imaging for prediction of clinically significant prostate cancer[J]. J Urol, 2020, 203(4): 719-726. DOI: 10.1097/JU.0000000000000622.
[7]
MOHLER J L, ANTONARAKIS E S, ARMSTRONG A J, et al. Prostate cancer, version 2.2019, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2019, 17(5): 479-505. DOI: 10.6004/jnccn.2019.0023.
[8]
中国抗癌协会泌尿男生殖系统肿瘤专业委员会前列腺癌学组. 前列腺癌筛查中国专家共识(2021年版)[J]. 中国癌症杂志, 2021, 31(5): 435-440. DOI: 10.19401/j.cnki.1007-3639.2021.05.010.
Prostate Cancer Group of the Urology and Andrology Tumor Professional Committee of the Chinese Anti Cancer Association. China expert consensus on prostate cancer screening (2021 edition)[J]. China Oncol, 2021, 31(5): 435-440. DOI: 10.19401/j.cnki.1007-3639.2021.05.010.
[9]
ANDRIOLE G L, DAVID CRAWFORD E, GRUBB R L, et al. Mortality results from a randomized prostate-cancer screening trial[J]. N Engl J Med, 2009, 360(13): 1310-1319. DOI: 10.1056/NEJMoa0810696.
[10]
LOWRANCE W T, BREAU R H, CHOU R, et al. Advanced prostate cancer: AUA/ASTRO/SUO guideline PART Ⅱ[J]. J Urol, 2021, 205(1): 22-29. DOI: 10.1097/JU.0000000000001376.
[11]
STEVENS E, TRUONG M, BULLEN J A, et al. Clinical utility of PSAD combined with PI-RADS category for the detection of clinically significant prostate cancer[J/OL]. Urol Oncol, 2020, 38(11): 846.e9-846.e16 [2024-08-12]. https://pubmed.ncbi.nlm.nih.gov/32576527/. DOI: 10.1016/j.urolonc.2020.05.024.
[12]
SCHOOTS I G, ROOBOL M J. Multivariate risk prediction tools including MRI for individualized biopsy decision in prostate cancer diagnosis: current status and future directions[J]. World J Urol, 2020, 38(3): 517-529. DOI: 10.1007/s00345-019-02707-9.
[13]
MOTTET N, VAN DEN BERGH R C N, BRIERS E, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer-2020 update. part 1: screening, diagnosis, and local treatment with curative intent[J]. Eur Urol, 2021, 79(2): 243-262. DOI: 10.1016/j.eururo.2020.09.042.
[14]
CARACCIOLO M, CASTELLO A, LOPCI E. PSMA PET/CT versus mpMRI for the detection of clinically significant prostate cancer: an updated overview[J]. Semin Nucl Med, 2024, 54(1): 30-38. DOI: 10.1053/j.semnuclmed.2023.10.002.
[15]
TURKBEY B, ROSENKRANTZ A B, HAIDER M A, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3): 340-351. DOI: 10.1016/j.eururo.2019.02.033.
[16]
WEI C G, PAN P, CHEN T, et al. A nomogram based on PI-RADS v2.1 and clinical indicators for predicting clinically significant prostate cancer in the transition zone[J]. Transl Androl Urol, 2021, 10(6): 2435-2446. DOI: 10.21037/tau-21-49.
[17]
WANG Y H, LIANG C, ZHU F P, et al. Improving the understanding of PI-RADS in practice: characters of PI-RADS 4 and 5 lesions with negative biopsy[J]. Asian J Androl, 2023, 25(2): 217-222. DOI: 10.4103/aja2022112.
[18]
LEE G H, CHATTERJEE A, KARADEMIR I, et al. Comparing radiologist performance in diagnosing clinically significant prostate cancer with multiparametric versus hybrid multidimensional MRI[J]. Radiology, 2022, 305(2): 399-407. DOI: 10.1148/radiol.211895.
[19]
KOZEL Z, MARTIN C, MIKHAIL D, et al. Initial experience and cancer detection rates of office-based transperineal magnetic resonance imaging-ultrasound fusion prostate biopsy under local anesthesia[J/OL]. Can Urol Assoc J, 2022, 16(7): E350-E356 [2024-08-12]. https://pubmed.ncbi.nlm.nih.gov/35230932/. DOI: 10.5489/cuaj.7472.
[20]
MARGEL D, BERNSTINE H, GROSHAR D, et al. Diagnostic performance of 68Ga prostate-specific membrane antigen PET/MRI compared with multiparametric MRI for detecting clinically significant prostate cancer[J]. Radiology, 2021, 301(2): 379-386. DOI: 10.1148/radiol.2021204093.
[21]
PADHANI A R, WEINREB J, ROSENKRANTZ A B, et al. Prostate imaging-reporting and data system steering committee: PI-RADS v2 status update and future directions[J]. Eur Urol, 2019, 75(3): 385-396. DOI: 10.1016/j.eururo.2018.05.035.
[22]
LEE C H, VELLAYAPPAN B, TAN C H. Comparison of diagnostic performance and inter-reader agreement between PI-RADS v2.1 and PI-RADS v2: systematic review and meta-analysis[J/OL]. 2022, 95(1131): 20210509 [2024-08-12]. https://pubmed.ncbi.nlm.nih.gov/34520694/. DOI: 10.1259/bjr.20210509.
[23]
OERTHER B, ENGEL H, NEDELCU A, et al. Prediction of upgrade to clinically significant prostate cancer in patients under active surveillance: Performance of a fully automated AI-algorithm for lesion detection and classification[J]. Prostate, 2023, 83(9): 871-878. DOI: 10.1002/pros.24528.
[24]
MATOSO A, EPSTEIN J I.Defining clinically significant prostate cancer on the basis of pathological findings[J]. Histopathology, 2019, 74(1): 135-145. DOI: 10.1111/his.13712.
[25]
LIU T B, ZHANG X M, CHEN R, et al. Development, comparison, and validation of four intelligent, practical machine learning models for patients with prostate-specific antigen in the gray zone[J/OL]. Front Oncol, 2023, 13: 1157384 [2024-08-12]. https://pubmed.ncbi.nlm.nih.gov/37361597/. DOI: 10.3389/fonc.2023.1157384.
[26]
CHEN Y C, XU D, RUAN M J, et al. A prospective study of the prostate health index density and multiparametric magnetic resonance imaging in diagnosing clinically significant prostate cancer[J]. Investig Clin Urol, 2023, 64(4): 363-372. DOI: 10.4111/icu.20230060.
[27]
GAUDIANO C, BIANCHI L, CORCIONI B, et al. Evaluating the performance of clinical and radiological data in predicting prostate cancer in prostate imaging reporting and data system version 2.1 category 3 lesions of the peripheral and the transition zones[J]. Int Urol Nephrol, 2022, 54(2): 263-271. DOI: 10.1007/s11255-021-03071-7.
[28]
CUOCOLO R, STANZIONE A, RUSCONI G, et al. PSA-density does not improve bi-parametric prostate MR detection of prostate cancer in a biopsy naïve patient population[J]. Eur J Radiol, 2018, 104: 64-70. DOI: 10.1016/j.ejrad.2018.05.004.
[29]
HAN L Y, HE G Y, MEI Y J, et al. Combining magnetic resonance diffusion-weighted imaging with prostate-specific antigen to differentiate between malignant and benign prostate lesions[J]. Med Sci Monit, 2022, 28: e935307. DOI: 10.12659/MSM.935307.
[30]
钟宇, 田芳, 周姝, 等. PI-RADS v2.1联合前列腺特异性抗原相关参数诊断临床显著性前列腺癌的预测模型及内部验证[J]. 中国医科大学学报, 2022, 51(12): 1090-1094, 1101. DOI: 10.12007/j.issn.0258-4646.2022.12.007.
ZHONG Y, TIAN F, ZHOU S, et al. Prediction model and internal validation of PI-RADS v2.1 combined with PSA-related parameters in the diagnosis of clinically significant prostate cancer[J]. J China Med Univ, 2022, 51(12): 1090-1094, 1101. DOI: 10.12007/j.issn.0258-4646.2022.12.007.
[31]
黄丹丹, 冯倩茹, 李增华, 等. BP-MRI联合临床预测指标对前列腺癌的诊断价值[J]. 磁共振成像, 2023, 14(10): 90-97. DOI: 10.12015/issn.1674-8034.2023.10.016.
HUANG D D, FENG Q R, LI Z H, et al. Diagnosis value of BP-MRI combined clinical predictors for prostate cancer[J]. Chin J Magn Reson Imag, 2023, 14(10): 90-97. DOI: 10.12015/issn.1674-8034.2023.10.016.
[32]
张丹, 张少茹, 宋娜, 等. PI-RADS v2.1联合PSAD分层预测PSA 4~20ng/mL外周带临床显著性前列腺癌患者的价值[J]. 中国医学计算机成像杂志, 2023, 29(6): 631-636. DOI: 10.19627/j.cnki.cn31-1700/th.2023.06.003.
ZHANG D, ZHANG S R, SONG N, et al. The value of PI-RADS v2.1 combined with psad stratification in predicting peripheral zone clinically significant prostate cancer in patients with psa 4-20 ng/mL[J]. Chin Comput Med Imag, 2023, 29(6): 631-636. DOI: 10.19627/j.cnki.cn31-1700/th.2023.06.003.
[33]
HAN C, LIU S, QIN X B, et al. MRI combined with PSA density in detecting clinically significant prostate cancer in patients with PSA serum levels of 4∼10ng/mL: Biparametric versus multiparametric MRI[J]. Diagn Interv Imaging, 2020, 101(4): 235-244. DOI: 10.1016/j.diii.2020.01.014.
[34]
陈美玲, 张敬, 张玉东, 等. 影像组学用于磁共振临床显著性前列腺癌与非显著性前列腺癌鉴别诊断[J]. 中国医学计算机成像杂志, 2020, 26(3): 261-265. DOI: 10.19627/j.cnki.cn31-1700/th.2020.03.013.
CHEN M L, ZHANG J, ZHANG Y D, et al. Diagnosis of clinically significant prostate cancer by mp-MRI based radiomic features[J]. Chin Comput Med Imag, 2020, 26(3): 261-265. DOI: 10.19627/j.cnki.cn31-1700/th.2020.03.013.
[35]
WESTPHALEN A C, FAZEL F, NGUYEN H, et al. Detection of clinically signifi cant prostate cancer with PIRADS v2 scores, PSA density, and ADC values in regions with and without mpMRI visible lesions[J]. Int Braz J Urol, 2019, 45(4): 713-723. DOI: 10.1590/S1677-5538.IBJU.2018.0768.
[36]
孟凡祺, 黄浩, 齐旭红, 等. ADC值及eADC值在双参数MRI诊断临床显著性前列腺癌中的应用价值[J]. 肿瘤影像学, 2023, 32(4): 353-359. DOI: 10.19732/j.cnki.2096-6210.2023.04.007.
MENG F Q, HUANG H, QI X H, et al. Application value of ADC value and eADC value in bi-parametric MRI in detecting clinical significant prostate cancer[J]. Oncoradiology, 2023, 32(4): 353-359. DOI: 10.19732/j.cnki.2096-6210.2023.04.007.
[37]
岳秀慧, 孔维丹, 任继亮, 等. 3.0-T磁共振扩散加权成像联合动态增强成像对甲状腺良恶性结节的鉴别价值[J]. 上海交通大学学报(医学版), 2020, 40(10): 1393-1397. DOI: 10.3969/j.issn.1674-8115.2020.10.016.
YUE X H, KONG W D, REN J L, et al. Value of 3.0-T MR diffusion-weighted imaging combined with dynamic contrast-enhanced imaging in differentiating benign and malignant thyroid nodules[J]. JOURNAL OF SHANGHAI JIAO TONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(10): 1393-1397. DOI: 10.3969/j.issn.1674-8115.2020.10.016.

上一篇 pCASL技术在评估合并高血压慢性肾脏疾病患者肾功能损伤和分期中的应用价值
下一篇 小视野扩散峰度成像技术在子宫内膜样腺癌分级评估中的价值研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2