分享:
分享到微信朋友圈
X
临床研究
基于MRI定量评估骨骼肌脂肪含量的方法对比研究
郭益彤 黄益龙 严俊 陈佳鑫 李春丽 陆佳航 何波

Cite this article as: GUO Y T, HUANG Y L, YAN J, et al. A comparative study of MRI-based methods for quantitative assessment of skeletal muscle fat content[J]. Chin J Magn Reson Imaging, 2025, 16(2): 83-87, 148.本文引用格式:郭益彤, 黄益龙, 严俊, 等. 基于MRI定量评估骨骼肌脂肪含量的方法对比研究[J]. 磁共振成像, 2025, 16(2): 83-87, 148. DOI:10.12015/issn.1674-8034.2025.02.013.


[摘要] 目的 以质子密度脂肪分数(proton density fat fraction, PDFF)为参考,分析比较其与视觉评分法、同反相位法和阈值分割法量化腰椎旁肌肉脂肪含量的差异及一致性。材料与方法 收集2023年1月至2023年12月共227名行腰部MRI检查患者的临床及影像资料,扫描序列包括T2WI、非对称回波三点法水脂分离和非对称采集与迭代最小二乘估算法迭代水脂分离,分别使用Goutallier分级(Goutallier classification, GC)、脂肪分数(fat fraction, FF)、脂肪浸润面积百分比(the percentage of fat infiltration area, %FIA)和PDFF对椎旁肌的脂肪含量进行定量评估。使用组内相关系数(intra-class correlation coefficient, ICC)、Mann-Whitney U检验、Bland-Altman偏倚和Spearman相关评估PDFF与GC、FF和%FIA的一致性、差异、偏倚及相关性。结果 四种影像学测量方法中,GC的一致性最差(ICC=0.623,P<0.001),%FIA的一致性最好(ICC=0.965,P<0.001)。FF、%FIA与PDFF的测量结果具有差异(P均<0.05)及偏倚。GC与PDFF呈弱相关(r=0.252~0.367,P均<0.001);多裂肌的FF与PDFF无相关性(P均>0.05);%FIA与PDFF呈中等相关(r=0.546~0.652,P均<0.001)。结论 GC可靠性一般,FF准确性较低,%FIA与PDFF相关性高且较为稳定,阈值分割法可作为脂肪定量参考标准PDFF的替代方法。
[Abstract] Objective The proton density fat fraction (PDFF) was used as a reference to analyze and compare the difference and consistency between PDFF and visual scoring method, in phase and out of phase method, and threshold segmentation method in quantifying fat infiltration of lumbar paraspinal muscles.Materials and methods A total of 227 patients who underwent lumbar MRI examination from January 2023 to December 2023 were collected, and the scanning sequences included T2WI, iterative Dixon water-fat separation with echo asymmetry and least-squares estimation, and iterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation. Fat content of the paraspinal muscles was quantitatively assessed using Goutallier classification (GC), fat fraction (FF), the percentage of fat infiltration area (%FIA) and PDFF, respectively. Intra-class correlation coefficient (ICC), Mann-Whitney U test, Bland-Altman bias and Spearman correlation were used to evaluate the agreement, difference, bias and correlation between PDFF and GC, FF and %FIA.Results Among the four imaging methods, GC had the worst consistency (ICC = 0.623, P < 0.001), and %FIA had the best consistency (ICC = 0.965, P < 0.001). The measurement results of FF, %FIA and PDFF are different (all P < 0.05) and biased. There was a weak correlation between GC and PDFF (r = 0.252 to 0.367, all P < 0.001). There was no correlation between FF and PDFF in multifidus muscle (all P > 0.05). %FIA was moderately correlated with PDFF (r = 0.546 to 0.652, all P < 0.001).Conclusions The reliability of GC is general, and the accuracy of FF is low. %FIA is highly correlated with PDFF and stable. The threshold segmentation method can be used as an alternative method for PDFF.
[关键词] 磁共振成像;骨骼肌;脂肪定量;对比研究
[Keywords] magnetic resonance imaging;skeletal muscle;fat quantification;comparative study

郭益彤 1   黄益龙 1   严俊 2   陈佳鑫 1   李春丽 1   陆佳航 3   何波 1*  

1 昆明医科大学第一附属医院医学影像科,昆明 650032

2 曲靖市第一人民医院放射科,曲靖 655099

3 云南省滇南中心医院(红河哈尼族彝族自治州第一人民医院)影像科,蒙自 661199

通信作者:何波,E-mail: kmmu_hb@163.com

作者贡献声明:何波设计本研究的方案,对稿件重要内容进行了修改,获得了国家自然科学基金项目资助;郭益彤起草和撰写稿件,获取、分析和解释本研究的数据;黄益龙、严俊、陈佳鑫、李春丽、陆佳航获取、分析或解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金 82260338
收稿日期:2024-08-23
接受日期:2025-02-10
中图分类号:R445.2  R685 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.02.013
本文引用格式:郭益彤, 黄益龙, 严俊, 等. 基于MRI定量评估骨骼肌脂肪含量的方法对比研究[J]. 磁共振成像, 2025, 16(2): 83-87, 148. DOI:10.12015/issn.1674-8034.2025.02.013.

0 引言

       骨骼肌脂肪浸润指异位脂肪堆积在骨骼肌的现象[1],是肌肉健康的重要生物标志物[2],它可能会导致骨折风险的增加和慢性腰痛的发生[3, 4],且与腰椎术后功能状态和疼痛程度相关[5, 6]。MRI以非侵入性和高准确性被广泛应用于骨骼肌脂肪含量的评估,有研究采用非对称采集与迭代最小二乘估算法迭代水脂分离(iterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation, IDEAL-IQ)定量分析骨骼肌的脂肪含量,其校正了T2*效应和场不均匀性等混杂因素,并提供不受铁过载影响的质子密度脂肪分数(proton density fat fraction, PDFF)测量,PDFF与磁共振波谱成像(magnetic resonance spectroscopy, MRS)在脂肪含量的定量评估方面表现出较高的相关性和一致性[7],已证明将PDFF作为脂肪定量评估的参考是可靠的[8, 9]。但PDFF无法用于大多数医院的广泛筛查和纵向研究[10, 11]。ImageJ是一个基于Java的开源图像处理程序,它使用直方图分析计算感兴趣区(region of interest, ROI)中的平均像素灰度强度[12],其灰度强度值范围为0(黑色)至255(白色),勾画目标肌肉轮廓确定平均像素灰度强度,采用伪着色法量化脂肪含量[13],由于其硬件要求低,操作简单,在研究中被广泛应用[14, 15]。同反相位(in phase/out of phase, IP/OP)是用于水脂肪成像的两点Dixon技术,包含两个成像序列:第一个是传统的自旋回波成像,水和脂肪信号同相;第二个是读数梯度略微偏移以产生180°异相的水和脂肪信号,非对称回波三点法水脂分离(iterative Dixon water-fat separation with echo asymmetry and least-squares estimation, IDEAL)在两点Dixon基础上引入了第三个回波来校正相位误差,以克服较长的扫描时间和对磁场不均匀的敏感性[16, 17],也被用于脂肪组织的定量评估。Goutallier分级(Goutallier classification, GC)最初用于在增强CT图像中描述肩袖肌肉的脂肪浸润,0~1级被认为是正常的,2~4级被认为是病理性的,现在也被广泛应用于其他肌肉(椎旁肌等)的MRI评估中,简单的数字量表为临床医生提供了一种评估脂肪含量的方法[18, 19]。但是,目前骨骼肌脂肪含量评估方法间的测量差异大小和一致性仍不清楚。因此,本文以MRI-PDFF作为参考,探讨视觉评分法、IP/OP法和阈值分割法量化骨骼肌脂肪含量的可行性。

1 材料与方法

1.1 研究对象

       本研究涉及云南省内包括昆明医科大学第一附属医院在内的4家医院,主中心昆明医科大学第一附属医院伦理委员会批准(批准文号:2022-L-305),各分中心达成一致意见,统一使用主中心伦理委员会批准的研究方案进行研究。收集分析2023年1月至2023年12月云南省内4家医院共227名因腰痛行腰部MRI检查的患者的临床及影像资料。入组标准:(1)2023年1月至2023年12月行腰部MRI检查;(2)年龄24~72岁;(3)身体质量指数为18.5~23.9 kg/m2。排除标准:(1)MRI检查禁忌证或不能配合扫描者;(2)骨肌系统疾病或类似病种家族史。

1.2 影像学检查

       所有受试者在3.0 T MRI(Discovery 750W, GE, 美国)扫描仪中进行腰椎扫描,采用16通道CTL脊柱相控阵线圈。受试者取仰卧位,用楔形泡沫垫略抬高双下肢以尽量减小腰部与床板空隙,扫描前使用腹带包扎腹部,嘱受试者保持胸式呼吸,双手置于胸前,双侧肘关节外展,尽量避免伪影产生。受试者的MRI扫描包括轴位及矢状位T2WI,轴位IDEAL和IDEAL-IQ,扫描层面为L4~S1。选取T2WI正中矢状面图像,利用二分线法定位,定位线分别平行于L4椎体下缘与L5椎体上缘,L5~S1层面同前,MRI扫描序列相关参数总结在表1

表1  MRI各序列扫描参数
Tab. 1  Scanning parameters of each MRI sequence

1.3 数据处理与图像分析

       (1)视觉评分法,采用经典的GC标准[20],0级:没有脂肪浸润;1级:肌肉内少量脂肪条带;2级:脂肪量少于肌肉量;3级:脂肪量与肌肉量一样多;4级:脂肪量多于肌肉量。选取L4-S1椎间盘中心层面对应的轴位T2WI图像,由两位工作五年以上的肌骨放射科医师根据标准分别对竖脊肌和多裂肌的脂肪含量进行评分,评分过程中保持两者标准一致。若出现分歧,请第三位具有十五年肌骨影像诊断经验的副主任医师与其共同阅片后进行分级。

       (2)阈值分割法,通过ImageJ软件处理,选取L4~S1椎间盘中心层面对应的轴位T2WI图像,将图像导入ImageJ,调节图像格式为“8 bit”,手动勾画多裂肌和竖脊肌轮廓,避开皮下脂肪组织和筋膜,采用阈值法自动识别脂肪区域,选中ROI manager添加所有的ROI,对L4~S1椎间盘中心层面多裂肌和竖脊肌的肌肉横截面积(cross sectional area, CSA)和脂肪CSA进行测量,用脂肪CSA/肌肉CSA×100%得到脂肪浸润面积百分比(the percentage of fat infiltration area, %FIA)[21, 22]

       (3)IP/OP法,选取L4~S1椎间盘中心层面对应的轴位2D IDEAL图像,在IP图像中沿着肌包膜勾画多裂肌和竖脊肌轮廓,使用工作站的复制粘贴功能,将IP图像的ROI复制于OP图像中,分别记录测得的CSA及生成的两相位值,按照公式IP+OP/2IP×100%计算脂肪分数(fat fraction, FF)[23]

       (4)PDFF,选取L4~S1椎间盘中心层面对应的轴位3D IDEAL-IQ图像,将原始图像传送至图像后处理工作站(Advantage Windows 4.6,GE,美国),在轴位PDFF图中勾画多裂肌和竖脊肌轮廓,避开皮下脂肪组织和筋膜,测量CSA和PDFF值。

       以上所有测量均为相同的两名医师进行。为了提高各种测量方法的准确性,左右肌肉各测量三次后取平均值,具体测量步骤见图1

图1  椎旁肌脂肪定量的勾画示意图。红色:竖脊肌;黄色:多裂肌。1A:椎旁肌勾画层面定位;1B:脂肪浸润面积百分比测量;1C:脂肪分数测量;1D:质子密度脂肪分数测量。
Fig. 1  Schematic diagram of the outlining of fat quantification in the paraspinal muscles. Red: multifidus muscles; Yellow: erector spinae. 1A: Localization of the paraspinal muscle outlining level; 1B: Measurement of the percentage of fat infiltration area; 1C: Measurement of fat fraction; 1D: Measurement of proton density fat fraction. Red: multifidus muscles; Yellow: erector spinae.

1.4 统计学方法

       采用SPSS 27.0版本进行统计分析。采用Shapiro-Wilk法对计量资料进行正态性检验,符合正态分布的计量资料用均值±标准差表示,不符合正态分布以四分位法表示。使用组内相关系数(intra-class correlation coefficient, ICC)评估GC、FF、%FIA和PDFF的观察者间一致性,ICC<0.5提示一致性较差,0.5≤ICC<0.75一致性中等,0.75≤ICC<0.9一致性较好,0.9≤ICC一致性极好。使用Mann-Whitney U检验比较FF、%FIA和PDFF的组间差异。使用Bland-Altman表示FF、%FIA与PDFF之间的偏倚。相关性分析若服从正态分布采用Pearson相关性分析,不服从正态分布或者等级资料则采用Spearman相关性分析,相关性程度分为最小(r<0.2)、弱(0.2≤∣r∣<0.4)、中等(0.4≤∣r∣<0.7)和强(∣r∣≥0.7)。P<0.05为差异具有统计学意义。

2 结果

2.1 一般资料

       本研究共纳入227例受试者病例,其中男82例(36.12%),女145例(63.88%),年龄47.00(31.00,54.00)岁,身体质量指数22.48(20.82,23.72)kg/m2

2.2 PDFF、%FIA、FF和GC的观察者间一致性

       首先,我们对于四种MRI定量方法进行观察者间的一致性分析。PDFF、%FIA、FF和GC的一致性分别为较好、极好、较好和中等(P值均<0.001)(表2)。其中,%FIA的一致性最好,ICC为0.965,达到极好,这表明阈值分割法在测量中稳定性最好,不同操作者对于结果的影响较小;PDFF和FF的ICC均高于0.75,分别为0.895和0.811,达到较好;而GC的一致性最差,ICC仅有0.623,这表明肉眼评估法在测量中稳定性最差。

表2  PDFF、%FIA、FF和GC的观察者间一致性
Tab. 2  Inter-observer agreement of PDFF, %FIA, FF, and GC

2.3 FF、%FIA与PDFF的差异

       其次,我们分析了L4~S1层面椎旁肌FF、%FIA与PDFF定量结果的差异(表3)。我们发现L4~L5及L5~S1层面多裂肌和竖脊肌的FF均高于PDFF,且FF与PDFF的差异具有统计学意义(P值均<0.05);L4~S1层面椎旁肌%FIA与PDFF的差异也具有统计学意义(P值均<0.05),除L4~L5层面竖脊肌的%FIA低于PDFF [13.15(8.27,19.50)vs. 17.50(12.43,22.58)],其余层面的%FIA均高于PDFF。这表明阈值分割法、IP/OP法与PDFF的测量结果都存在差异。

表3  PDFF、FF、%FIA差异比较
Tab. 3  Comparison of differences between PDFF and FF and %FIA

2.4 FF、%FIA与PDFF的偏倚

       除此之外,我们将PDFF的定量结果作为参考,分析FF、%FIA与PDFF的Bland-Altman偏倚。在L4~S1椎旁肌层面,FF的Bland-Altman偏倚为0.42,一致性极限为(-20.27,21.11),偏移值在上限和下限外都有,FF被低估被高估的情况都存在(图2A);%FIA的Bland-Altman偏倚为2.08,一致性极限为(-18.12,22.29),同样,偏移值在上限和下限外都有,%FIA被低估被高估的情况都存在(图2B)。这表明对比PDFF,IP/OP法和阈值分割法的测量都存在偏倚。

图2  Bland-Altman图。上方和下方的实线表示上限(平均值+1.96×标准差)和下限(平均值-1.96×标准差),虚线为0和平均值,空心圆为偏倚值。2AFF与PDFF的Bland-Altman图,均值=(FF+PDFF)/2,标准差=FF-PDFF;2B%FIA与PDFF的Bland-Altman图,均值=(%FIA+PDFF)/2,标准差=%FIA-PDFF。FF:脂肪分数;%FIA:脂肪浸润面积百分比;PDFF:质子密度脂肪分数。
Fig. 2  Bland-Altman plot. Solid lines above and below indicate the upper limit (mean + 1.96 × standard deviation) and lower limit (mean - 1.96 × standard deviation), dashed lines are 0 and mean, and hollow circles are bias values. 2A: Bland-Altman plot of FF and PDFF, mean = (FF + PDFF)/2, standard deviation = FF - PDFF; 2B: Bland-Altman plot of %FIA and PDFF, mean = (%FIA + PDFF) /2, standard deviation = %FIA - PDFF. FF: fat fraction; %FIA: the percentage of fat infiltration area; PDFF: proton density fat fraction.

2.5 PDFF与GC、FF、%FIA的相关性

       最后,我们对PDFF与GC、FF、%FIA进行相关性分析。对于GC、FF与PDFF的相关性,不同肌肉的相关程度不同,GC与PDFF的相关性多裂肌较竖脊肌稍高(多裂肌r=0.492、0.367,P值均<0.001;竖脊肌r=0.252、0.257,P值均<0.001),但都呈弱相关水平;多裂肌FF与PDFF没有相关性,但竖脊肌FF与PDFF呈弱负相关(多裂肌r=-0.033、-0.108,P=0.623、0.106;竖脊肌r=-0.217、-0.331,P=0.001和P<0.001)(表4图3A-3D)。对于%FIA与PDFF的相关性,在L4~S1层面椎旁肌中都呈中度相关(r=0.652、0.546、0.591、0.595,P值均<0.001)(表4图3)。在三种测量方法中,阈值分割法与PDFF的相关性表现最好,这表示阈值分割法测量的准确性高。

图3  椎旁肌GC、FF、%FIA和PDFF的相关系数热图。3A:L4~L5层面多裂肌的热图;3B:L4~L5层面竖脊肌的热图;3C:L5~S1层面多裂肌的热图;3D:L5~S1层面竖脊肌的热图。MM:多裂肌;ES:竖脊肌;GC:Goutallier分级;FF:脂肪分数;%FIA:脂肪浸润面积百分比;PDFF:质子密度脂肪分数。
Fig. 3  Heat maps of correlation coefficients for GC, FF, %FIA, and PDFF of paraspinal muscles at L4-S1 level. 3A: Heat map of multifidus muscle at L4-L5 level; 3B: Heat map of erector spinae at L4-L5 level; 3C: Heat map of multifidus muscle at L5-S1 level; 3D: Heat map of erector spinae at L5-S1 level. MM: multifidus muscle; ES: erector spinae; GC: Goutallier classification; FF: fat fraction; %FIA: the percentage of fat infiltration area; PDFF: proton density fat fraction.
表4  PDFF与GC、FF、%FIA的相关性分析
Tab. 4  Correlation analysis of PDFF with GC, FF and %FIA

3 讨论

       本研究以基于3D IDEAL-IQ技术的PDFF作为参考,综合分析比较PDFF与GC、FF、%FIA测量的一致性、差异、偏倚和相关性,结果表明%FIA的一致性高,与PDFF相关性好。这表明阈值分割法用于定量骨骼肌脂肪含量的可行性高,其为脂肪定量的评估提供了替代方法。

3.1 测量方法的一致性分析

       关于测量方法一致性的评估,既往研究中已有涉及。KIM等[24]和SOMERSON等[25]的研究表明GC的观察者一致性范围多为中等或较差,可靠性存在差异,产生差异的原因尚不明确,用于分级的序列和评分者的选择可能发挥了作用。DI MATTEO等[26]的研究发现通过ImageJ评估脂肪含量时观察者间可靠性较高,阈值分割法用于定量脂肪组织的效能较高。除此之外,国内一项研究的结果也表明ImageJ定量脂肪组织的准确性和可靠性优于GC[27]。NARDO等[28]和ALIZAI等[29]将GC与Dixon定量技术的一致性进行对比,发现GC用于脂肪定量的可靠性较低,这些研究都与我们的结果一致。

3.2 测量方法的差异及偏倚分析

       我们发现PDFF与GC、FF和%FIA对于脂肪含量的评估均存在差异和偏倚,产生此现象的原因可能如下:首先,PDFF定义为来自甘油三酯的可移动质子密度与来自甘油三酯和水的可移动总质子密度之比,反映组织内移动甘油三酯的浓度,甘油三酯的测定包括对PDFF估计没有贡献的MR不可见化学物质[30]。这可能解释了我们的结果中相对于PDFF,FF和%FIA出现偏倚的原因。其次,使用半自动软件ImageJ勾画肌肉轮廓时,通常肌间脂肪不被包括,不同的腰部疾病可能导致脂肪浸润的具体部位不同,如果所患疾病以肌间脂肪浸润为主时,会使定量结果受到影响,这可能解释了%FIA与PDFF出现偏倚的原因。最后,JUNGMANN等[31]提出低GC与较少的退行性病变有关,GC与退行性病变程度相关,GC相同的患者退行性病变程度并不相同,这可能解释了在我们的结果中GC出现偏倚的原因。

       除此之外,还有一些影响定量评估结果的因素存在:第一,患者自身差异,MATSON等[32]发现没有肩袖撕裂的肥胖患者也能在MRI上观察到更多的脂肪浸润,肩袖肌肉的脂肪浸润不仅仅归因于肩袖撕裂的存在,还与患者自身(肥胖、糖尿病等)有关。第二,内源性基因差异,SHAH等[33]发现表示肌生成减少(Myf5)、脂肪生成增加(CEBPα等)和代谢减少(PPARα)的基因与影像学评估相关,脂肪堆积和肌肉萎缩似乎源于内源性变化,内源性基因差异导致影像学结果出现偏差。

3.3 测量方法的相关性分析

       我们的结果表明,FF与PDFF间相关性较小,这表明FF定量评估的准确性欠佳。PENG等[34]发现IP/OP低估了肝脏脂肪含量,与组织学参考标准存在弱相关性(r=0.003,P>0.05),准确性较低。除此之外,BRAY等[35]发现较小病变在IP/OP图像上并不明显,IP/OP图像并不能完全检出阳性病变,敏感性和准确性显著低于其他图像。以上研究都提示了IP/OP图像评估结果较差,这可能归咎于IP/OP常用于腹部成像及慢性肾脏疾病[16, 23, 36],在肌肉组织的脂肪定量中应用相对较少。

3.4 局限性及展望

       第一,本研究仅局限于椎旁肌中脂肪组织的定量,并未涉及腹部、大腿等其他部位;第二,本研究中使用的定量方法无法区分脂肪组织的分布,未来的研究应进行更加精细的分割,例如细胞内脂肪组织、细胞外脂肪组织和肌间脂肪组织;第三,本研究虽已证明基于ImageJ阈值分割法的准确性和一致性较高,但其测量需人工勾画,相对耗时,自动分割算法已出现,可为研究人员提供巨大便利,相信在不断地优化和规范后会具有较好的应用前景。

4 结论

       在量化椎旁肌脂肪含量的方法中,阈值分割法用于脂肪定量的结果与PDFF相关性高且较为稳定,IP/OP法的准确性较低且存在偏倚,视觉评分法的可靠性一般。基于ImageJ的阈值分割法可作为可脂肪定量参考标准的替代方法。

[1]
CORREA-DE-ARAUJO R, ADDISON O, MILJKOVIC I, et al. Myosteatosis in the context of skeletal muscle function deficit: an interdisciplinary workshop at the national institute on aging[J/OL]. Front Physiol, 2020, 11: 963 [2024-01-18]. https://pubmed.ncbi.nlm.nih.gov/32903666/. DOI: 10.3389/fphys.2020.00963.
[2]
MILJKOVIC I, VELLA C A, ALLISON M. Computed tomography-derived myosteatosis and metabolic disorders[J]. Diabetes Metab J, 2021, 45(4): 482-491. DOI: 10.4093/dmj.2020.0277.
[3]
HODGES P W, DANNEELS L. Changes in structure and function of the back muscles in low back pain: different time points, observations, and mechanisms[J]. J Orthop Sports Phys Ther, 2019, 49(6): 464-476. DOI: 10.2519/jospt.2019.8827.
[4]
KRKOSKA P, KOKOSOVA V, DOSTAL M, et al. Assessment of lumbar paraspinal muscle morphology using mDixon Quant magnetic resonance imaging (MRI): a cross-sectional study in healthy subjects[J]. Quant Imaging Med Surg, 2024, 14(8): 6015-6035. DOI: 10.21037/qims-23-1796.
[5]
HAN G Y, WU H T, DAI J Y, et al. Does paraspinal muscle morphometry predict functional status and re-operation after lumbar spinal surgery? A systematic review and meta-analysis[J]. Eur Radiol, 2023, 33(8): 5269-5281. DOI: 10.1007/s00330-023-09548-6.
[6]
康静, 查云飞, 李亮, 等. 基于IDEAL-IQ序列MR纹理分析评价慢性腰痛患者椎旁脂肪浸润[J]. 磁共振成像, 2021, 12(10): 6-11. DOI: 10.12015/issn.1674-8034.2021.10.002.
KANG J, ZHA Y F, LI L, et al. MR texture analysis of paravertebral fat infiltration in patients with chronic low back pain based on IDEAL-IQ sequence[J]. Chin J Magn Reson Imag, 2021, 12(10): 6-11. DOI: 10.12015/issn.1674-8034.2021.10.002.
[7]
FISCHER M A, PFIRRMANN C W A, ESPINOSA N, et al. Dixon-based MRI for assessment of muscle-fat content in phantoms, healthy volunteers and patients with achillodynia: comparison to visual assessment of calf muscle quality[J]. Eur Radiol, 2014, 24(6): 1366-1375. DOI: 10.1007/s00330-014-3121-1.
[8]
STAREKOVA J, HERNANDO D, PICKHARDT P J, et al. Quantification of liver fat content with CT and MRI: state of the art[J]. Radiology, 2021, 301(2): 250-262. DOI: 10.1148/radiol.2021204288.
[9]
HAUEISE T, SCHICK F, STEFAN N, et al. Comparison of the accuracy of commercial two-point and multi-echo Dixon MRI for quantification of fat in liver, paravertebral muscles, and vertebral bone marrow[J/OL]. Eur J Radiol, 2024, 172: 111359 [2024-02-15]. https://pubmed.ncbi.nlm.nih.gov/38325186/. DOI: 10.1016/j.ejrad.2024.111359.
[10]
WANG M, CHEN H Y, MA Y, et al. Dual-layer spectral-detector CT for detecting liver steatosis by using proton density fat fraction as reference[J/OL]. Insights Imaging, 2024, 15(1): 210 [2024-02-17]. https://pubmed.ncbi.nlm.nih.gov/39145877/. DOI: 10.1186/s13244-024-01716-6.
[11]
JANG W, SONG J S. Non-invasive imaging methods to evaluate non-alcoholic fatty liver disease with fat quantification: a review[J/OL]. Diagnostics, 2023, 13(11): 1852 [2024-02-20]. https://pubmed.ncbi.nlm.nih.gov/37296703/. DOI: 10.3390/diagnostics13111852.
[12]
DI MATTEO A, MOSCIONI E, LOMMANO M G, et al. Reliability assessment of ultrasound muscle echogenicity in patients with rheumatic diseases: Results of a multicenter international web-based study[J/OL]. Front Med (Lausanne), 2022, 9: 1090468 [2024-03-25]. https://pubmed.ncbi.nlm.nih.gov/36733934/. DOI: 10.3389/fmed.2022.1090468.
[13]
DAVE B R, MARATHE N, MAYI S, et al. Does conventional open TLIF cause more muscle injury when compared to minimally invasive TLIF? -A prospective single center analysis[J]. Global Spine J, 2024, 14(1): 93-100. DOI: 10.1177/21925682221095467.
[14]
ABAZA H, TAQASH A, SHATTAL M ABU, et al. Association between muscle mass and overall survival among colorectal cancer patients at tertiary cancer center in the Middle East[J/OL]. Sci Rep, 2024, 14(1): 20836 [2024-03-27]. https://pubmed.ncbi.nlm.nih.gov/39242580/. DOI: 10.1038/s41598-024-68503-7.
[15]
CARVALHO V, SANTOS J, SANTOS SILVA P, et al. Relationship between fatty infiltration of paraspinal muscles and clinical outcome after lumbar discectomy[J/OL]. Brain Spine, 2022, 2: 101697 [2024-04-20]. https://pubmed.ncbi.nlm.nih.gov/36605389/. DOI: 10.1016/j.bas.2022.101697.
[16]
INOUE K, HARA Y, NAGAWA K, et al. The utility of automatic segmentation of kidney MRI in chronic kidney disease using a 3D convolutional neural network[J/OL]. Sci Rep, 2023, 13(1): 17361 [2024-05-29]. https://pubmed.ncbi.nlm.nih.gov/37833438/. DOI: 10.1038/s41598-023-44539-z.
[17]
LI Y W, JIAO Y, CHEN N, et al. How to select the quantitative magnetic resonance technique for subjects with fatty liver: a systematic review[J]. World J Clin Cases, 2022, 10(25): 8906-8921. DOI: 10.12998/wjcc.v10.i25.8906.
[18]
GAO X C, DU J P, HAO D J, et al. Risk factors for residual back pain following percutaneous vertebral augmentation: the importance of paraspinal muscle fatty degeneration[J]. Int Orthop, 2023, 47(7): 1797-1804. DOI: 10.1007/s00264-023-05809-7.
[19]
PEETERS N H C, VAN DER KRAATS A M, VAN DER KRIEKEN T E, et al. The validity of ultrasound and shear wave elastography to assess the quality of the rotator cuff[J]. Eur Radiol, 2024, 34(3): 1971-1978. DOI: 10.1007/s00330-023-10037-z.
[20]
FUCHS B, WEISHAUPT D, ZANETTI M, et al. Fatty degeneration of the muscles of the rotator cuff: Assessment by computed tomography versus magnetic resonance imaging[J]. J Shoulder Elb Surg, 1999, 8(6): 599-605. DOI: 10.1016/S1058-2746(99)90097-6.
[21]
LIU Z D, DAI G Y, CAO Y, et al. Analysis of degenerative and isthmic lumbar spondylolisthesis from the difference of pelvic parameters and the degree of degeneration through imaging data[J/OL]. J Pers Med, 2023, 13(9): 1420 [2024-06-01]. https://pubmed.ncbi.nlm.nih.gov/37763187/. DOI: 10.3390/jpm13091420.
[22]
GUO J C, XIE D X, ZHANG J N, et al. Characteristics of the paravertebral muscle in adult degenerative scoliosis with PI-LL match or mismatch and risk factors for PI-LL mismatch[J/OL]. Front Surg, 2023, 10: 1111024 [2024-06-08]. https://pubmed.ncbi.nlm.nih.gov/37065994/. DOI: 10.3389/fsurg.2023.1111024.
[23]
NAGAWA K, HARA Y, INOUE K, et al. Three-dimensional convolutional neural network-based classification of chronic kidney disease severity using kidney MRI[J/OL]. Sci Rep, 2024, 14(1): 15775 [2024-06-10]. https://pubmed.ncbi.nlm.nih.gov/38982238/. DOI: 10.1038/s41598-024-66814-3.
[24]
KIM H S, YOON Y C, CHOI B O, et al. Muscle fat quantification using magnetic resonance imaging: case-control study of Charcot-Marie-Tooth disease patients and volunteers[J]. J Cachexia Sarcopenia Muscle, 2019, 10(3): 574-585. DOI: 10.1002/jcsm.12415.
[25]
SOMERSON J S, HSU J E, GORBATY J D, et al. Classifications in brief: goutallier classification of fatty infiltration of the rotator cuff musculature[J]. Clin Orthop Relat Res, 2016, 474(5): 1328-1332. DOI: 10.1007/s11999-015-4630-1.
[26]
DI MATTEO A, SMERILLI G, CIPOLLETTA E, et al. Muscle involvement in systemic lupus erythematosus: multimodal ultrasound assessment and relationship with physical performance[J]. Rheumatology, 2022, 61(12): 4775-4785. DOI: 10.1093/rheumatology/keac196.
[27]
严俊, 王玲, 黄益龙, 等. 基于轴位T1WI图像大腿肌肉脂肪浸润量化方法的可行性研究[J]. 磁共振成像, 2021, 12(12): 49-54. DOI: 10.12015/issn.1674-8034.2021.12.010.
YAN J, WANG L, HUANG Y L, et al. Feasibility study on quantification method of fat infiltration in thigh muscle based on axial T1WI image[J]. Chin J Magn Reson Imag, 2021, 12(12): 49-54. DOI: 10.12015/issn.1674-8034.2021.12.010.
[28]
NARDO L, KARAMPINOS D C, LANSDOWN D A, et al. Quantitative assessment of fat infiltration in the rotator cuff muscles using water-fat MRI[J]. J Magn Reson Imaging, 2014, 39(5): 1178-1185. DOI: 10.1002/jmri.24278.
[29]
ALIZAI H, NARDO L, KARAMPINOS D C, et al. Comparison of clinical semi-quantitative assessment of muscle fat infiltration with quantitative assessment using chemical shift-based water/fat separation in MR studies of the calf of post-menopausal women[J]. Eur Radiol, 2012, 22(7): 1592-1600. DOI: 10.1007/s00330-012-2404-7.
[30]
QADRI S, VARTIAINEN E, LAHELMA M, et al. Marked difference in liver fat measured by histology vs. magnetic resonance-proton density fat fraction: A meta-analysis[J/OL]. JHEP Rep, 2023, 6(1): 100928 [2024-06-20]. https://pubmed.ncbi.nlm.nih.gov/38089550/. DOI: 10.1016/j.jhepr.2023.100928.
[31]
JUNGMANN P M, BAUM T, NEVITT M C, et al. Degeneration in ACL injured knees with and without reconstruction in relation to muscle size and fat content-data from the osteoarthritis initiative[J/OL]. PLoS One, 2016, 11(12): e0166865 [2024-06-21]. https://pubmed.ncbi.nlm.nih.gov/27918596/. DOI: 10.1371/journal.pone.0166865.
[32]
MATSON A P, KIM C, BAJPAI S, et al. The effect of obesity on fatty infiltration of the rotator cuff musculature in patients without rotator cuff tears[J]. Shoulder Elbow, 2019, 11(1Suppl): 30-38. DOI: 10.1177/1758573217736008.
[33]
SHAH S A, KORMPAKIS I, CAVINATTO L, et al. Rotator cuff muscle degeneration and tear severity related to myogenic, adipogenic, and atrophy genes in human muscle[J]. J Orthop Res, 2017, 35(12): 2808-2814. DOI: 10.1002/jor.23593.
[34]
PENG X G, JU S H, QIN Y J, et al. Quantification of liver fat in mice: comparing dual-echo Dixon imaging, chemical shift imaging, and 1H-MR spectroscopy[J]. J Lipid Res, 2011, 52(10): 1847-1855. DOI: 10.1194/jlr.D016691.
[35]
BRAY T J P, SINGH S, LATIFOLTOJAR A, et al. Diagnostic utility of whole body Dixon MRI in multiple myeloma: a multi-reader study[J/OL]. PLoS One, 2017, 12(7): e0180562 [2024-06-25]. https://pubmed.ncbi.nlm.nih.gov/28672007/. DOI: 10.1371/journal.pone.0180562.
[36]
HARA Y, NAGAWA K, YAMAMOTO Y, et al. The utility of texture analysis of kidney MRI for evaluating renal dysfunction with multiclass classification model[J/OL]. Sci Rep, 2022, 12(1): 14776 [2024-07-01]. https://pubmed.ncbi.nlm.nih.gov/36042326/. DOI: 10.1038/s41598-022-19009-7.

上一篇 小视野扩散峰度成像技术在子宫内膜样腺癌分级评估中的价值研究
下一篇 三维超短回波绝热T1ρ对关节软骨退变的定量评估
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2