分享:
分享到微信朋友圈
X
临床研究
三维超短回波绝热T1ρ对关节软骨退变的定量评估
刘文锋 林俊坤 谭彩虹 刘晓彤 陈晓君 杜江 吴梅

Cite this article as: LIU W F, LIN J K, TAN C H, et al. Quantitative assessment of three-dimensional ultrashort echo time adiabatic T1ρ imaging in articular cartilage degeneration[J]. Chin J Magn Reson Imaging, 2025, 16(2): 88-93.本文引用格式:刘文锋, 林俊坤, 谭彩虹, 等. 三维超短回波绝热T1ρ对关节软骨退变的定量评估[J]. 磁共振成像, 2025, 16(2): 88-93. DOI:10.12015/issn.1674-8034.2025.02.014.


[摘要] 目的 应用三维超短回波绝热T1ρ(three dimensional ultrashort echo time adiabatic T1ρ, 3D UTE-AdiabT1ρ)定量评估关节软骨的退变,以期完善骨关节炎(osteoarthritis, OA)早期定量评估的磁共振技术方法。材料与方法 应用3D UTE-AdiabT1ρ序列圆锥(Cones)数据采集技术对20名健康志愿者和40名不同程度OA患者进行膝关节的扫描。由两名肌骨影像医师在T2WI压脂矢状位图像上把每层膝关节软骨分成13个亚区并进行全器官磁共振评分(Whole-Organ Magnetic-Resonance-Imaging Score, WORMS)。根据WORMS进行分组:WORMS=0为正常软骨组;按病变范围分为局限性病灶组(WORMS=1、2、2.5分)和弥漫性病灶组(WORMS=3、4、5分);按病变深度分为部分软骨层病变组(WORMS=1、2、3、4分)和全层病变组(WORMS=2.5、5分)。应用方差分析和Tukey-Kramer检验进行两两组间比较,分析不同WORMS分组间3D UTE-Cones-AdiabT1ρ值的差异性。应用Spearman's相关分析3D UTE-Cones-AdiabT1ρ及UTE-T1值与WORMS的相关性。应用受试者工作特征(receiver operating characteristic, ROC)曲线判定3D UTE-Cones-AdiabT1ρ诊断早期OA(WORMS=1)的效能,采用DeLong检验比较3D UTE-Cones-AdiabT1ρ、UTE大分子组分(macromolecular fraction, MMF)和磁化传递率(magnetization transfer ratio, MTR)诊断早期OA(WORMS=1)的曲线下面积(area under the curve, AUC)。结果 WORMS从0到5分各组的UTE-Cones-AdiabT1ρ值分别为36.6、41.7、42.7、45.0、43.2、44.3、47.9 ms;局限性病灶组的UTE-Cones-AdiabT1ρ值为42.0 ms,弥漫性病灶组的UTE-Cones-AdiabT1ρ值为44.3 ms;部分软骨层病变组的UTE-Cones-AdiabT1ρ值为42.5 ms;全层病变组的UTE-Cones-AdiabT1ρ值为46.9 ms。膝关节软骨病变的WORM评分越高、病变范围越广、病变越深时3D UTE-Cones-AdiabT1ρ值越高,组间差异均有统计学意义(F=159.7,P<0.001;F=423.6,P<0.001;F=466.3,P<0.001)。WORMS=0时不同软骨区域的3D UTE-Cones-AdiabT1ρ值不同。3D UTE-Cones-AdiabT1ρ值与WORM评分、病变范围、病变深度组呈正相关(r=0.55,P<0.001;r=0.53,P<0.001;r=0.55,P<0.001),UTE-T1值与WORMS评分呈正相关(r=0.27,P<0.001)。3D UTE-Cones-AdiabT1ρ诊断早期软骨退变(WORMS=1)的AUC为0.76(95% CI:0.74~0.78),诊断阈值是39.4 ms,诊断敏感度为70.9%,特异度为69.3%,与UTE-MMF(AUC=0.74)相近(Z=1.47,P=0.142),高于UTE-MTR(AUC=0.62;Z=8.67,P<0.001)。结论 3D UTE-Cones-AdiabT1ρ可以用于关节软骨的定量评估,具有早期诊断OA的临床价值。
[Abstract] Objective To quantitatively evaluate articular cartilage degeneration using three-dimensional ultrashort-echo-time Adiabatic-T1ρ (3D UTE-AdiabT1ρ) imaging and improve magnetic resonance technique for the early quantitative evaluation of osteoarthritis (OA).Materials and Methods The knee joint scanning was performed in 20 healthy volunteers and 40 OA patients with different degrees of OA using 3D UTE-AdiabT1ρ sequence and Cones data collection. The knee cartilages were divided into 13 subregions slice by slice on sagittal fat suppression images of T2WI and Whole-Organ Magnetic Resonance Imaging Score (WORMS) were performed by two musculoskeletal radiologists. WORMS includes 0, 1, 2, 2.5, 3, 4, and 5 points. According to the extent of lesions, they were divided into localized lesion group (WORMS = 1, 2, 2.5 points) and diffuse lesion group (WORMS = 3, 4, 5 points). According to the depth of lesions, they were divided into partial layer lesions (WORMS = 1, 2, 3, 4 points) and full layer lesions (WORMS = 2.5, 5 points). The differences in UTE-Cones-AdiabT1ρ among different groups based on WORMS were assessed and compared using one-way analysis of variance (ANOVA) and Tukey-Kramer test. The correlations between UTE-Cones-AdiabT1ρ, UTE-T1 and WORMS were evaluated using Spearman's correlation coefficient. Receiver operating characteristic (ROC) was used to evaluate the diagnostic efficacy of UTE-Cones-AdiabT1ρ for the detection of earl cartilage degeneration (WORMS = 1). The DeLong test was used to compare the area under the curve (AUC) of UTE-Cones-AdiabT1ρ, UTE macromolecular fraction (MMF) and magnetization transfer ratio (MTR).Results The UTE-Cones-AdiabT1ρ from 0 to 5 points of WORMS were 36.6 ms, 41.7 ms, 42.7 ms, 45.0 ms, 43.2 ms, 44.3 ms, and 47.9 ms, respectively. UTE-Cones-AdiabT1ρ in localized lesion group was 42.0 ms, with 44.3 ms in diffuse lesion group, 42.5 ms in partial layer lesions, and 46.9 ms in full layer lesions. The higher UTE-Cones-AdiabT1ρ values were observed in higher WORMS, also in larger and deeper lesions, and the differences among these groups were statistically significant (F = 159.7, P < 0.001; F = 423.6, P < 0.001; F = 466.3, P < 0.001). The 3D UTE-Cones-AdiabT1ρ values of different cartilage subregions were different when WORMS=0. 3D UTE-Cones-AdiabT1ρ values were positively correlated with WORMS, lesion ranges and depths (r = 0.55, P < 0.001; r = 0.53, P < 0.001; r = 0.55, P < 0.001), and UTE-T1 values was positively correlated with WORMS (r = 0.27, P < 0.001). The diagnostic threshold of 3D UTE-Cones-AdiabT1ρ for early cartilage degeneration (WORMS = 1) was 39.4 ms, diagnostic sensitivity was 70.9%, and specificity was 69.3%. The AUC of 3D UTE-Cones-AdiabT1ρ in the diagnosis of early cartilage degeneration (WORMS = 1) was 0.76 (95% CI: 0.74 to 0.78), which was similar to that of UTE-MMF (AUC = 0.74; Z = 1.47, P = 0.142) and higher than that of UTE-MTR (AUC = 0.62; Z = 8.67, P < 0.001).Conclusions The 3D UTE-Cones-AdiabT1ρ sequence can be useful in quantitative evaluation of articular cartilage degeneration. It has the clinical value of early diagnosis of OA.
[关键词] 骨关节炎;膝关节退行性变;关节软骨退变;磁共振成像;超短回波;绝热T1ρ;定量评估;早期诊断
[Keywords] osteoarthritis;knee degeneration;articular cartilage degeneration;magnetic resonance imaging;ultrashort echo time;AdiabT1ρ;quantitative assessment;early diagnosis

刘文锋 1   林俊坤 2   谭彩虹 3   刘晓彤 1   陈晓君 4   杜江 5   吴梅 1*  

1 广州市第一人民医院(华南理工附属第二医院)放射科,广州 510180

2 广东省中医院二沙岛分院影像科,广州 510100

3 广州中医药大学惠州医院医学影像科,惠州 516000

4 中山大学附属第五医院放射科,珠海 519000

5 美国加州大学圣地亚哥分校放射科,圣地亚哥 92037

通信作者:吴梅,E-mail: may9@sina.com

作者贡献声明:吴梅、杜江设计本研究的方案,对稿件重要内容进行了修改;刘文锋起草和撰写稿件,获取、分析和解释本研究的数据;林俊坤、谭彩虹、刘晓彤、陈晓君获取、分析和解释本研究的数据,对稿件重要内容进行了修改;吴梅、刘文锋获得了国家自然科学基金和广州市科技计划项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82372074 广州市科技计划项目 2024A03J1028
收稿日期:2024-03-19
接受日期:2025-01-10
中图分类号:R445.2  R684.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.02.014
本文引用格式:刘文锋, 林俊坤, 谭彩虹, 等. 三维超短回波绝热T1ρ对关节软骨退变的定量评估[J]. 磁共振成像, 2025, 16(2): 88-93. DOI:10.12015/issn.1674-8034.2025.02.014.

0 引言

       骨关节炎(osteoarthritis, OA)晚期可以致残,严重影响人们的生活和工作。OA没有特别有效的治疗办法,但OA是可以预防的。如果在OA早期就能够做出诊断,及时采取干预和治疗,就可以达到减轻症状,延缓病情发展的作用,防止疾病进展而出现致残。所以对OA的早期诊断非常重要。然而,许多组织和组织成分如深层软骨、半月板和骨组织都是短T2组织,在常规MRI上少有信号或者没有信号[1],常规MRI多用于进展期OA的诊断和疗效监测,对于早期OA的诊断缺乏敏感性[1]。与OA有关的两个特殊影像指标T2和T1ρ又存在魔角效应的影响[2],亦成为影响早期诊断准确性的因素。因此,采用合适的MRI新技术来早期诊断OA意义重大并且亟须解决。超短回波(ultrashort echo time, UTE)序列可以显示常规MRI上不能显示的短T2组织[3, 4, 5]。另外研究表明与常规T1ρ比较绝热T1ρ(Adiabatic T1ρ, AdiabT1ρ)对魔角效应的敏感性要低[6]。所以两个序列相结合来诊断OA时可以在显示关节的所有组织的同时排除魔角效应的影响,能够比常规MRI提供更准确的OA早期改变信息。目前仅见极少量文献报道了应用UTE-AdiabT1ρ技术在体定量评估软骨的退变[7, 8],但在与其他UTE技术对比研究以及在不同软骨区域的定量分析方面仍存在不足。本研究应用三维(three dimensional, 3D)UTE-AdiabT1ρ序列圆锥(Cones)数据采集定量评估膝关节软骨的退变,并进一步与UTE-T1、UTE磁化传递(magnetization transfer, MT)技术进行对比研究,同时对每个软骨区域进行定量分析,为分区域精准诊断OA提供参考,完善UTE-AdiabT1ρ研究,以期精准定量评估关节软骨的退变。

1 材料与方法

1.1 研究对象

       本研究为前瞻性病例对照研究,遵守《赫尔辛基宣言》,经广州市第一人民医院伦理委员会批准,批准文号:S-2023-051-02,全体受试者均签署了知情同意书。2023年3月至2024年6月期间招募健康志愿者20人及不同程度OA患者40人参与研究。健康志愿者纳入标准:无膝关节疼痛,无膝关节功能障碍,无膝关节疾病史。OA患者纳入标准:临床诊断OA,无膝关节其他疾病史、手术史。共同排除标准:(1)MRI检查禁忌证者;(2)图像存在伪影影响观察者;(3)软骨退变程度全器官磁共振评分[9](Whole-Organ Magnetic Resonance Imaging Scores, WORMS)6分者,WORMS 6分为软骨广泛破坏和缺失,无法准确获得UTE的定量参数。

1.2 扫描方法

       应用美国GE公司3.0T磁共振扫描仪(Architect, GE Healthcare Technologies, United States)。8通道膝部线圈用于信号的激发和接收。应用3D UTE-Cones-AdiabT1ρ序列进行膝关节的扫描(图1),扫描参数:视野(FOV)15 cm×15 cm,带宽 166 kHz,TR 500 ms,TE 32 μs,翻转角(FA)10°,采集矩阵256×256×36,自旋锁定时间(TSL)0、12、24、36、48、72和96 ms。T1 mapping序列扫描参数:TR 20 ms,FA 5°、10°、20°和30°。B1 mapping序列扫描参数:TR1 20 ms,TR2 100 ms,FA 45°。MT序列扫描参数:TR 100 ms,TE 32 μs,FA 7°,Nsp 11,3个MT能量分别为500°,1000°和1500°,5个MT频率偏移分别为2、5、10、20和50 kHz。T2WI压脂矢状位图像用于软骨的WORM评分,扫描参数:TR 5707 ms,TE 70 ms,层厚3 mm,矩阵352×256。

图1  三维(3D)超短回波(UTE)磁共振圆锥(Cones)采集绝热T1ρ(AdiabT1ρ)技术示意图。1A:使用绝热反转脉冲来产生T1ρ,然后通过多辐3D UTE Cones数据采集来减少总扫描时间;1B:短矩形脉冲用于信号激励,然后是圆锥形的三维螺旋采样。
Fig. 1  Schematic diagram of the three dimensional (3D) ultrashort echo time (UTE) Cones adiabatic T1ρ (AdiabT1ρ) technique. 1A: The 3D UTE-Cones-AdiabT1ρ sequence uses a train of adiabatic full passage (AFP) pulses to generate T1ρ contrast, followed by multiple-spoke 3D UTE-Cones data acquisition to reduce the total scan time; 1B: For each spoke, a short rectangular pulse is used for signal excitation, followed by 3D spiral sampling with conical view ordering.

1.3 数据分析

       由两名肌骨影像医师(年资13年副主任医师及年资4年主治医师)在T2WI压脂矢状位图像上对膝关节软骨进行WORM评分和勾画感兴趣区(region of Interest, ROI)。

       WORM评分[9]标准:0分为正常厚度和信号;1分为厚度正常,但T2WI图像上有信号增加;2分为局部厚度病灶缺陷最大宽度<1 cm;2.5分为全层病灶缺损最大宽度<1 cm;3分为多个局部厚度缺陷区域(2分与正常厚度区域混合,或2分缺陷宽度>1 cm但小于该区域的75%);4分为弥漫性(≥75%的区域)部分厚度损失;5分为多个区域全层丧失(2.5分)或2.5分病变,病变宽度大于1 cm,但面积小于75%;6分为弥漫性(≥75%的区域)全层损失。

       将受试者按WORMS进分组,WORMS=0分为正常软骨组,WORMS=1、2、2.5、3、4、5分为软骨病变组;软骨病变组按病变范围分为局限性病灶组(WORMS=1、2、2.5分)、弥漫性病灶组(WORMS=3、4、5分),按病变深度分为部分软骨层病变组(WORMS=1、2、3、4分)、全层病变组(WORMS=2.5、5分)。

       将膝关节软骨分为13个区,髌骨区,胫骨前、中、后区(胫骨软骨平分成3份),股骨前、中、后区(半月板前后上角与股骨的垂直线为分界线),胫骨、股骨软骨再分为内外侧区(滑车区属于内侧区)。按整个软骨分区的外轮廓人工勾画每层图像的每个区域为ROI(图2),通过Matlab2017b软件获得每个区域的UTE-Cones-AdiabT1ρ、UTE-T1值及UTE-MT中大分子组分(macromolecular fraction, MMF; UTE-MMF)和磁化传递率(magnetization transfer ratio, MTR; UTE-MTR)的曲线和数值。

图2  膝关节软骨感兴趣区(ROI)勾画图。膝关节软骨ROI的勾画按整个软骨分区的外轮廓人工勾画。其中黄色区域代表股骨软骨中部,红色区域代表胫骨软骨中部。
Fig. 2  Region of interest (ROI) outlining of the knee joint cartilage. The delineation of knee cartilage ROI is artificially delineated according to the outer contour of the entire cartilage division. The yellow area represents the middle femoral cartilage and the red area represents the middle tibial cartilage.

1.4 统计学方法

       使用SPSS 25.0统计软件进行统计学分析。连续变量用(x¯±s)表示,采用Shapiro-Wilk正态检验后,符合正态分布者两组间比较采用两样本t检验,否则组间差异采用Kruskal-Wallis秩和检验。分类变量用频数表示,两组间比较采用χ2检验。应用单因素方差分析和Tukey-Kramer检验两两比较,分析不同WORMS分组间3D UTE-Cones-AdiabT1ρ值的差异性。应用组内相关系数(intra-class correlation coefficient, ICC)评估两名医师在定量分析方面的一致性。应用Spearman's相关分析3D UTE-Cones-AdiabT1ρ及UTE-T1值与WORMS的相关性。应用受试者工作特征(receiver operating characteristic, ROC)曲线判定UTE-Cones-AdiabT1ρ诊断早期(WORMS=1)OA的效能。采用DeLong检验比较UTE-Cones-AdiabT1ρ与UTE-MMF和UTE-MTR的曲线下面积(area under the curve, AUC)。P<0.05为差异有统计学意义。

2 结果

2.1 一般资料

       20名健康志愿者和40名不同程度OA患者被纳入本研究。包括:男31人,女29人;年龄23~76(55±13)岁。60名受试者包含2870个软骨亚区。临床特征中,年龄在正常软骨组和软骨病变组中的差异有统计学意义(P<0.05),性别在两组中差异无统计学意义(表1)。

表1  正常软骨组和软骨病变组临床特征比较
Table 1  Comparison of clinical characteristics between normal group and cartilage lesion group

2.2 不同WORM分组、不同部位3D UTE-Cones-AdiabT1ρ值测量结果及一致性分析

       应用3D UTE-Cones-AdiabT1ρ序列扫描膝关节可以获得良好的三维软骨图像和拟合度优良的UTE-Cones-AdiabT1ρ曲线(图3)。不同WORM评分组(0、1、2、2.5、3、4、5分)的软骨的UTE-Cones-AdiabT1ρ值分别为:(36.6±5.1)ms、(41.7±4.8)ms、(42.7±5.2)ms、(45.0±5.7)ms、(43.2±5.3)ms、(44.3±5.0)ms、(47.9±5.6)ms。WORMS=0时膝关节不同区域软骨的UTE-Cones-AdiabT1ρ值不同,详见表2。观察者之间的一致性好,ICC=0.763~0.812(P<0.001)。

图3  3D UTE-Cones-AdiabT1ρ图像及曲线。3A:女,20岁,健康志愿者正常软骨的3D UTE-Cones-AdiabT1ρ图像及曲线,股骨软骨WORMS=0分,UTE-Cones-AdiabT1ρ=34.9 ms。3B:女,70岁,OA患者异常软骨的3D UTE-Cones-AdiabT1ρ图像及曲线,股骨软骨WORMS=3分,UTE-Cones-AdiabT1ρ=47.9 ms。3D UTE-Cones-AdiabT1ρ:三维超短回波磁共振圆锥采集绝热T1ρ;WORMS:全器官磁共振评分;图中AdiabT1ρ表示3D UTE-Cones-AdiabT1ρ。
Fig. 3  3D UTE-Cones-AdiabT1ρ image and curve. 3A: Female, 20 years old, healthy volunteer, 3D UTE-Cones-AdiabT1ρ image and curve of normal cartilage, femoral cartilage WORMS = 0, UTE-Cones-AdiabT1ρ= 34.9 ms. 3B: Female, 70 years old, OA patient, 3D UTE-Cones-AdiabT1ρ image and curve of abnormal cartilage, femoral cartilage WORMS = 3, UTE-Cones-AdiabT1ρ = 47.9 ms. 3D UTE-Cones-AdiabT1ρ: three dimensional ultrashort echo time Cones adiabatic T1ρ; WORMS: Whole-Organ Magnetic Resonance Imaging Scores; AdiabT1ρ in figure: 3D UTE-Cones-AdiabT1ρ.
表2  正常软骨组13个软骨区域的UTE-Cones-AdiabT1ρ值
Tab. 2  UTE-Cones-AdiabT1ρ values of 13 subregions in the normal cartilage group

2.3 不同WORM评分组间3D UTE-Cones-AdiabT1ρ值的差异

       3D UTE-Cones-AdiabT1ρ值在不同WORM评分组、WORMS不同病变范围组和WORMS不同病变深度组的差异均有统计学意义(F=159.7,P<0.001;F=423.6,P<0.001;F=466.3,P<0.001)(表3)。WORMS不同病变范围组间、WORMS不同病变深度组间两两比较UTE-Cones-AdiabT1ρ值的差异均有统计学意义(P<0.001)。但WORM评分各组间的两两比较,部分差异无统计学意义,见表4

表3  不同病变范围组和不同病变深度组的3D UTE-Cones-AdiabT1ρ值
Tab. 3  Mean UTE-Cones-AdiabT1ρ (ms) in different extent groups and depth groups
表4  WORM评分各组间两两比较3D TE-Cones-AdiabT1ρ值的差异(P值)
Tab. 4  Differences in the UTE-Cones-AdiabT1ρ values among WORMS groups (P value)

2.4 3D UTE-Cones-AdiabT1ρ值和UTE-T1值与WORMS的相关性

       相关分析显示UTE-Cones-AdiabT1ρ值与WORM不同评分呈正相关(r=0.55,P<0.001),与WORMS不同病变范围组(r=0.53,P<0.001)和不同病变深度组(r=0.55,P<0.001)也呈正相关。同时UTE-T1值与WORMS呈正相关(r=0.27,P<0.001)。

2.5 3D UTE-Cones-AdiabT1ρ及3D UTE-MT诊断早期软骨退变的效能

       ROC曲线分析结果显示:3D UTE-Cones-AdiabT1ρ诊断早期软骨退变(WORMS=1)的AUC是0.76(95% CI:0.74~0.78),诊断阈值是39.4 ms,诊断敏感度为70.9%,特异度为69.3%;3D UTE-Cones-MT的UTE-MMF及UTE-MTR诊断早期软骨退变(WORMS=1)的AUC是0.74(95% CI:0.72~0.77)和0.62(95% CI:0.59~0.64),诊断阈值是0.11和0.42,诊断敏感度为73.5%和66.2%,特异度为64.6%和53.3%。3D UTE-Cones-AdiabT1ρ与UTE-MMF的AUC(0.74)相近(Z=1.47,P=0.142),高于UTE-MTR的AUC(0.62;Z=8.67,P<0.001)(图4)。

图4  3D UTE-Cones-AdiabT1ρ、UTE-MMF及UTE-MTR诊断早期软骨退变(WORMS=1)的ROC曲线。3D UTE-Cones-AdiabT1ρ:三维超短回波磁共振圆锥采集绝热T1ρ;UTE-MMF:超短回波大分子组分;UTE-MTR:超短回波磁化传递率;ROC:受试者工作特征;WORMS:全器官磁共振评分。
Fig. 4  The ROC curve of 3D UTE-Cones-AdiabT1ρ, UTE-MMF and UTE-MTR for the diagnosis of early cartilage degeneration (WORMS = 1). 3D UTE-Cones-AdiabT1ρ: three dimensional ultrashort echo time cones adiabatic T1ρ; UTE-MMF: ultrashort echo time-macromolecular fraction; UTE-MTR: ultrashort echo time-magnetization transfer ratio; ROC: receiver operating characteristic; WORMS: Whole-Organ Magnetic Resonance Imaging Scores.

3 讨论

       本研究应用3D UTE结合AdiabT1ρ序列,对膝关节全层软骨退变的情况进行定量评估。研究结果显示3D UTE-Cones-AdiabT1ρ可以作为定量评估OA患者软骨退变的影像标记物,并在不同区域软骨的定量分析和相关UTE技术对比研究方面弥补了先前研究的不足,通过完善3D UTE-Cones-AdiabT1ρ在关节软骨中的定量研究,为OA的早期诊断提供一个新选择。

3.1 受试者临床特征研究

       文献报道OA多发生于女性,约占60%[10],而本研究结果显示正常软骨组和软骨病变组的性别差异无统计学意义,原因可能是在40岁之前,由于受伤或畸形,男性比女性更容易发生骨关节炎,而本研究中年轻者、男性所占的软骨亚区数比例较高。研究显示软骨病变组的平均年龄是60岁,与正常软骨组年龄差异有统计学意义,符合文献报道[10],即约有73%的骨关节炎患者年龄在55岁以上。

3.2 不同WORM分组、不同软骨区域的3D UTE-Cones-AdiabT1ρ研究

       本研究结果显示软骨的WORM评分越高,即软骨的退变越明显,3D UTE-Cones-AdiabT1ρ的数值就越高,且3D UTE-Cones-AdiabT1ρ值与WORMS评分呈正相关,3D UTE-Cones-AdiabT1ρ值在不同WORMS评分组间差异有统计学意义。与文献报道[11, 12, 13]的T1ρ和AdiabT1ρ在退变更明显的软骨中值越高的趋势基本一致。研究结果提示结合UTE-Cones-AdiabT1ρ数值可以判断软骨的退变程度。同时研究结果显示软骨病变范围越广、病变越深,UTE-Cones-AdiabT1ρ的数值就越高,按病变范围分组和按病变深度分组两两比较,组间差异均有统计学意义,提示可以通过UTE-Cones-AdiabT1ρ的数值判断软骨病变的范围和深度,与文献报道[7]相符。

       本研究创新性地获得了膝关节软骨13个分区的正常(WORMS=0时)UTE-Cones-AdiabT1ρ数值,研究结果显示不同区域软骨UTE-Cones-AdiabT1ρ正常值具有差异性,提示不同软骨区域的定量诊断标准也应该有所不同,为今后分区精准定量诊断提供了有意义的参考,而以往文献[8]仅对个别软骨亚区进行了研究,定量诊断标准不一定适合每个软骨亚区。

3.3 3D UTE-Cones-AdiabT1ρ对早期OA的诊断价值

       本研究创新性地对UTE-Cones-AdiabT1ρ、UTE-T1、UTE-MMF和UTE-MTR进行了对比研究,以期为联合早期诊断OA提供依据,而之前文献[7]未进行对比研究。研究结果显示,UTE-Cones-AdiabT1ρ与WORMS的相关性高于UTE-T1与WORMS的相关性,分析原因,与T1相比,T1ρ更能反映软骨的早期蛋白聚糖(proteoglycan, PG)丢失等生化改变[14]。研究表明UTE-Cones-AdiabT1ρ的不同数值可以区分WORMS=0和WORMS=1的软骨病变,对早期软骨退变进行诊断,其诊断效能高于UTE-MTR,但与UTE-MMF比较差异无统计学意义。究其原因,UTE-MMF对魔角效应不敏感,可以用来精准定量关节软骨或其他关节组织结构的生化改变[15, 16, 17, 18]。所以今后可以联合UTE-Cones-AdiabT1ρ和UTE-MMF对OA进行早期诊断。

3.4 应用3D UTE-Cones-AdiabT1ρ对关节软骨退变进行定量评估的意义

       OA是系统性疾病,可累及关节的多个组织,包括软骨、半月板、韧带、肌腱、骨及关节滑膜,早期以关节软骨变性为主要特征。早期诊断OA,对治疗和预防疾病的进一步发展有重要作用。MRI在高空间分辨率下提供了良好的软组织对比度,并可准确评估软骨形态的纵向变化。但是常规MRI很难显示深层软骨等短T2组织。另外关节软骨中PG的丢失是OA最重要的早期改变之一。研究表明T1ρ对软骨中的PG丢失反应敏感[11]。然而应用T1ρ诊断早期OA的过程中会遇到魔角效应的问题,即当组织纤维方与B0磁场方向交角约54°时,T1ρ值会增加数倍[19, 20],通常超过由于疾病引起的T1ρ值增高(疾病一般增高约10%~30%[14]),从而干扰OA的诊断和疗效监测。因此目前迫切需要一种定量MRI新技术来早期准确地评估OA。研究表明UTE序列可以使短T2组织成像,可以定量分析关节的所有组织。同时为解决魔角效应问题,很多专家提出应用绝热反转(adiabatic full passage, AFP)脉冲生成AdiabT1ρ。对牛软骨的研究表明与常规T1ρ比较,AdiabT1ρ对魔角效应的敏感性更低[6]。另有研究结果表明,与3D UTE常规T1ρ和3D UTE-T2*对比,3D UTE-AdiabT1ρ对魔角效应敏感性更低[21, 22]。所以本研究应用3D UTE结合AdiabT1ρ序列,对膝关节全层软骨退变的情况进行定量评估,以期为OA的早期诊断提供帮助。

       3D UTE-Cones-AdiabT1ρ序列还可以应用于关节的全部组织的系统评价,包括短T2组织,如半月板、韧带、肌腱、骨等[23, 24, 25]。对关节全部组织的评估有利于全面评价关节情况。另外UTE的其他定量参数也可以对关节的各个组织进行定量评价[26, 27, 28, 29],联合UTE AdiabT1ρ及UTE其他各定量参数,将会对OA的诊断和疗效监测提供准确的系统评估。文献报道[30]采用UTE对关节软骨的未钙化软骨、钙化软骨和软骨下骨成像将有助于对疾病进行早期诊断。

3.5 本研究的局限性

       首先,本研究没有进行病理学的对照研究,下一步将进行关节软骨样本的相关试验,研究3D UTE-Cones-AdiabT1ρ的定量诊断机制。其次,扫描时间相对较长,应用过程中可以通过减少TSLs数量,使用更先进的图像重建和数据处理技术,以及压缩感知,平行成像和深度学习等技术来进行改进。最后,本研究没有进行年龄、性别分组研究,临床指标和影像参数相结合需要进一步研究。

4 结论

       综上所述,3D UTE-Cones-AdiabT1ρ可以定量评估OA患者的软骨退变情况,并可以早期诊断OA。

[1]
CHANG E Y, DU J, CHUNG C B. UTE imaging in the musculoskeletal system[J]. J Magn Reson Imaging, 2015, 41(4): 870-883. DOI: 10.1002/jmri.24713.
[2]
DU J, PAK B C, ZNAMIROWSKI R, et al. Magic angle effect in magnetic resonance imaging of the Achilles tendon and enthesis[J]. Magn Reson Imaging, 2009, 27(4): 557-564. DOI: 10.1016/j.mri.2008.09.003.
[3]
MA Y J, JERBAN S, JANG H, et al. Quantitative ultrashort echo time (UTE) magnetic resonance imaging of bone: an update[J/OL]. Front Endocrinol, 2020, 11: 567417 [2024-09-06]. https://pubmed.ncbi.nlm.nih.gov/33071975/. DOI: 10.3389/fendo.2020.567417.
[4]
AFSAHI A M, MA Y J, JANG H, et al. Ultrashort echo time magnetic resonance imaging techniques: met and unmet needs in musculoskeletal imaging[J]. J Magn Reson Imaging, 2022, 55(6): 1597-1612. DOI: 10.1002/jmri.28032.
[5]
MA Y J, CHEN Y J, LI L, et al. Trabecular bone imaging using a 3D adiabatic inversion recovery prepared ultrashort TE Cones sequence at 3T[J]. Magn Reson Med, 2020, 83(5): 1640-1651. DOI: 10.1002/mrm.28027.
[6]
HÄNNINEN N, RAUTIAINEN J, RIEPPO L, et al. Orientation anisotropy of quantitative MRI relaxation parameters in ordered tissue[J/OL]. Sci Rep, 2017, 7: 9606 [2024-09-06]. https://pubmed.ncbi.nlm.nih.gov/28852032/. DOI: 10.1038/s41598-017-10053-2.
[7]
WU M, MA Y J, LIU M Y, et al. Quantitative assessment of articular cartilage degeneration using 3D ultrashort echo time cones adiabatic T1ρ (3D UTE-Cones-AdiabT1ρ) imaging[J]. Eur Radiol, 2022, 32(9): 6178-6186. DOI: 10.1007/s00330-022-08722-6.
[8]
SU X L, WANG Y T, CHEN J Y, et al. A feasibility study of in vivo quantitative ultra-short echo time-MRI for detecting early cartilage degeneration[J/OL]. Insights Imaging, 2024, 15(1): 162 [2024-10-20]. https://pubmed.ncbi.nlm.nih.gov/38922455/. DOI: 10.1186/s13244-024-01734-4.
[9]
PETERFY C G, GUERMAZI A, ZAIM S, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis[J]. Osteoarthritis Cartilage, 2004, 12(3): 177-190. DOI: 10.1016/j.joca.2003.11.003.
[10]
2019 DISEASES AND INJURIES COLLABORATORS G B D. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1204-1222. DOI: 10.1016/S0140-6736(20)30925-9.
[11]
NISSI M J, SALO E N, TIITU V, et al. Multi-parametric MRI characterization of enzymatically degraded articular cartilage[J]. J Orthop Res, 2016, 34(7): 1111-1120. DOI: 10.1002/jor.23127.
[12]
CASULA V, AUTIO J, NISSI M J, et al. Validation and optimization of adiabatic T1ρ and T2ρ for quantitative imaging of articular cartilage at 3 T[J]. Magn Reson Med, 2017, 77(3): 1265-1275. DOI: 10.1002/mrm.26183.
[13]
CASULA V, NISSI M J, PODLIPSKÁ J, et al. Elevated adiabatic T1ρ and T2ρ in articular cartilage are associated with cartilage and bone lesions in early osteoarthritis: a preliminary study[J]. J Magn Reson Imaging, 2017, 46(3): 678-689. DOI: 10.1002/jmri.25616.
[14]
MOSHER T J, ZHANG Z, REDDY R, et al. Knee articular cartilage damage in osteoarthritis: analysis of MR image biomarker reproducibility in ACRIN-PA 4001 multicenter trial[J]. Radiology, 2011, 258(3): 832-842. DOI: 10.1148/radiol.10101174.
[15]
XUE Y P, MA Y J, WU M, et al. Quantitative 3D ultrashort echo time magnetization transfer imaging for evaluation of knee cartilage degeneration in vivo[J]. J Magn Reson Imaging, 2021, 54(4): 1294-1302. DOI: 10.1002/jmri.27659.
[16]
ZHANG X, MA Y J, WEI Z, et al. Macromolecular fraction (MMF) from 3D ultrashort echo time cones magnetization transfer (3D UTE-Cones-MT) imaging predicts meniscal degeneration and knee osteoarthritis[J]. Osteoarthritis Cartilage, 2021, 29(8): 1173-1180. DOI: 10.1016/j.joca.2021.04.004.
[17]
JERBAN S, MOHAMMADI H S, ATHERTYA J S, et al. Significant age-related differences between lower leg muscles of older and younger female subjects detected by ultrashort echo time magnetization transfer modeling[J/OL]. NMR Biomed, 2024, 37(12): e5237 [2024-09-06]. https://pubmed.ncbi.nlm.nih.gov/39155273/. DOI: 10.1002/nbm.5237.
[18]
XUE Y P, JANG H, BYRA M, et al. Automated cartilage segmentation and quantification using 3D ultrashort echo time (UTE) cones MR imaging with deep convolutional neural networks[J]. Eur Radiol, 2021, 31(10): 7653-7663. DOI: 10.1007/s00330-021-07853-6.
[19]
DU J, STATUM S, ZNAMIROWSKI R, et al. Ultrashort TE T1ρ magic angle imaging[J]. Magn Reson Med, 2013, 69(3): 682-687. DOI: 10.1002/mrm.24296.
[20]
SHAO H, PAULI C, LI S, et al. Magic angle effect plays a major role in both T1rho and T2 relaxation in articular cartilage[J]. Osteoarthritis Cartilage, 2017, 25(12): 2022-2030. DOI: 10.1016/j.joca.2017.01.013.
[21]
WU M, MA Y J, WAN L D, et al. Magic angle effect on adiabatic T1ρ imaging of the Achilles tendon using 3D ultrashort echo time cones trajectory[J/OL]. NMR Biomed, 2020, 33(8): e4322 [2024-09-06]. https://pubmed.ncbi.nlm.nih.gov/32431025/. DOI: 10.1002/nbm.4322.
[22]
WU M, MA Y J, KASIBHATLA A, et al. Convincing evidence for magic angle less-sensitive quantitative T1ρ imaging of articular cartilage using the 3D ultrashort echo time cones adiabatic T1ρ (3D UTE cones-AdiabT1ρ) sequence[J]. Magn Reson Med, 2020, 84(5): 2551-2560. DOI: 10.1002/mrm.28317.
[23]
WU M, ZHAO W, WAN L D, et al. Quantitative three-dimensional ultrashort echo time cones imaging of the knee joint with motion correction[J/OL]. NMR Biomed, 2020, 33(1): e4214 [2024-09-06]. https://pubmed.ncbi.nlm.nih.gov/31713936/. DOI: 10.1002/nbm.4214.
[24]
JERBAN S, MA Y J, KASIBHATLA A, et al. Ultrashort echo time adiabatic T1ρ (UTE-Adiab-T1ρ) is sensitive to human cadaveric knee joint deformation induced by mechanical loading and unloading[J]. Magn Reson Imaging, 2021, 80: 98-105. DOI: 10.1016/j.mri.2021.04.014.
[25]
JERBAN S, AFSAHI A M, MA Y J, et al. Correlations between elastic modulus and ultrashort echo time (UTE) adiabatic T1ρ relaxation time (UTE-Adiab-T1ρ) in Achilles tendons and entheses[J/OL]. J Biomech, 2023, 160: 111825 [2024-09-06]. https://pubmed.ncbi.nlm.nih.gov/37856976/. DOI: 10.1016/j.jbiomech.2023.111825.
[26]
JERBAN S, HANANOUCHI T, MA Y J, et al. Correlation between the elastic modulus of anterior cruciate ligament (ACL) and quantitative ultrashort echo time (UTE) magnetic resonance imaging[J]. J Orthop Res, 2022, 40(10): 2330-2339. DOI: 10.1002/jor.25266.
[27]
JERBAN S, MA Y J, AFSAHI A M, et al. Lower macromolecular content in tendons of female patients with osteoporosis versus patients with osteopenia detected by ultrashort echo time (UTE) MRI[J/OL]. Diagnostics, 2022, 12(5): 1061 [2024-09-06]. https://pubmed.ncbi.nlm.nih.gov/35626217/. DOI: 10.3390/diagnostics12051061.
[28]
CHENG K Y, MOAZAMIAN D, MA Y J, et al. Clinical application of ultrashort echo time (UTE) and zero echo time (ZTE) magnetic resonance (MR) imaging in the evaluation of osteoarthritis[J]. Skeletal Radiol, 2023, 52(11): 2149-2157. DOI: 10.1007/s00256-022-04269-1.
[29]
MA Y J, CARL M, TANG Q B, et al. Whole knee joint mapping using a phase modulated UTE adiabatic T1ρ (PM-UTE-AdiabT1ρ) sequence[J]. Magn Reson Med, 2024, 91(3): 896-910. DOI: 10.1002/mrm.29871.
[30]
刘俊谷, 张进. 超短回波时间磁共振成像技术在骨肌系统中的应用进展[J]. 磁共振成像, 2020, 11(2): 158-160. DOI: 10.12015/issn.1674-8034.2020.02.017.
LIU J G, ZHANG J. Progress in the application of ultrashort echo time magnetic resonance imaging in musculoskeletal system[J]. Chin J Magn Reson Imag, 2020, 11(2): 158-160. DOI: 10.12015/issn.1674-8034.2020.02.017.

上一篇 基于MRI定量评估骨骼肌脂肪含量的方法对比研究
下一篇 基于T2* mapping的业余马拉松运动员足踝部关节软骨损伤及其影响因素分析
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2